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Collision avoidance using a model of the locust LGMD neuron
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Abstract

The lobula giant movement detector (LGMD) system in the locust responds selectively to objects approaching the animal
on a collision course. In earlier work we have presented a neural network model based on the LGMD system which shared
this preference for approaching objects.

We have extended this model in order to evaluate its responses in a real-world environment using a miniature mobile robot.
This extended model shows reliable obstacle detection over an eight-fold range of speeds, and raises interesting questions
about basic properties of the biological system. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For animals the ability to detect approaching objects
is important for survival, serving both to prevent colli-
sions as the animal moves and also to avoid capture by
predators [30]. While the fate of a mobile robot is un-
likely to involve being eaten the ability to avoid colli-
sions is equally important. Traditionally robotic tech-
nology has involved active sensors, such as ultrasound
and infra-red devices, or high-precision sensors, such
as laser scanners, for the detection of obstacles [7]. In
biology, however, many examples are found of sys-
tems which rely on visual information to accomplish
this task, and these have been successfully applied to
real-world robotic control tasks [8,49]. Neurons tuned
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to respond to approaching objects have been identi-
fied in species as diverse as pigeons [42] and locusts
[31,38].

The lobula giant movement detector (LGMD), a
large visual interneuron in the optic lobe of the lo-
cust [24], is one such neuron. Originally the LGMD
was thought to be tuned to detect novel movement
of small objects [35]. However, more recent work
has shown that the LGMD responds most strongly
to approaching objects [31,38] and that it is tightly
tuned to objects approaching the animal on a di-
rect collision course [14]. Receding objects produce
little or no response [31]. Approaching objects are
distinguished by the LGMD using the increasing
speed of edge movement and increasing length of
the edges [40]. The response dynamics during the
approach of an object are the subject of two con-
flicting reports, one showing that the spike rate in-
creases continuously during approach [31], the other
showing that the spike rate may peak before colli-
sion [9,12]. At the time of writing, this conflict is
unresolved.

0921-8890/00/$ – see front matter ©2000 Elsevier Science B.V. All rights reserved.
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Fig. 1. Experimental environment. (a) Robot’s arena as seen by the overhead camera. (b) Dimensions of the arena.

The LGMD is believed to play a role in triggering
escape jumps and steering responses during flight.
This belief is supported by the strong connection of
the LGMD to the descending contralateral movement
detector (DCMD) neuron [23] which in turn makes
connections with interneurons and motoneurons in
the thoracic ganglia [5,39]. Responses in the DCMD
match responses in the LGMD one-for-one [23,27].

A neural network model of the input circuitry of
the LGMD was developed by Rind and Bramwell
[29]. Based closely on the anatomy and physiology of
the optic lobe, the network comprised three principal
layers:
• the input photoreceptive layer, which responded to

changes in the image in order to detect the edges of
moving objects;

• a processing layer, where excitation passed retino-
topically through the network while delayed inhibi-
tion spread laterally;

• the output layer, which represented the LGMD,
where the excitation and inhibition were combined.
In addition, a feed-forward pathway inhibited the

output of the model LGMD during large changes in
the image, such as those caused by ego-motion. This
model displayed the same preference for approaching
objects as the LGMD and revealed that, at least for
simple stimuli, this preference results from a critical
race between the excitation produced by the move-
ment of an object’s edges and the delayed lateral flow
of inhibition within the network. This model was sub-
sequently extended to allow the network to respond to
textured stimuli [3].

In this paper we evaluate the behaviour of the
LGMD network in a real-world environment. We
show that robust obstacle detection can be achieved
using an insect-based solution which relies on vi-
sion. Our results have interesting implications for the
understanding of the biological LGMD system and
demonstrate the potential of our LGMD model for
real-world obstacle detection applications.

2. Methods

2.1. Experimental apparatus

Experiments were conducted in the environment
shown in Fig. 1. This comprised of small stacks of
Duplo blocks of various colours (red, green or blue)
within a white outer wall. At the widest point the
blocks were separated by 40 cm and at the narrowest
point by 33 cm (Fig. 1(b)). The spaces between blocks
were approximately 5 cm. The floor of the environ-
ment was clear Perspex over a gray sheet of paper.

A Khepera mobile robot (K-Team A.G., Lausanne,
Switzerland) was fitted with a monochrome pinhole
CCD camera (K2D-BW-PAL, K-Team A.G., Lau-
sanne, Switzerland) which gave a field-of-view of ap-
proximately 60◦. The camera was angled downwards
by 5◦ to exclude views over the wall of the environ-
ment. The views seen via this camera are shown in
Fig. 2.

A colour CCD camera (K2D-C-PAL, K-Team A.G.,
Lausanne, Switzerland) was mounted above the cen-
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Fig. 2. View of the environment as seen from the camera mounted on the robot: (a) across the full width of the environment; (b) 2 cm
from a block. Notice that the images include significant shadows and reflections.

tre of the environment and faced directly downwards.
The images from this camera were used to track the
position of the robot during our experiments. Fig. 1(a)
shows the view from this camera.

2.2. Simulation system

We performed our experiments using the simulation
software IQR421, formerly known as Xmorph [43].
IQR421 provides a graphical programming environ-
ment for the specification, analysis, and documenta-
tion of large-scale heterogeneous neural models which
can be interfaced to external devices. Real-time robot
control can be achieved using a distributed comput-
ing environment based on the TCP/IP protocol. This
distributed system allows both the computational load
and specialised hardware to be spread among several
machines.

Processes were run on three Pentium II (two
450 MHz and one 333 MHz) PCs connected via an
ethernet. All the machines used the Red Hat Linux 5.1
operating system. Video frame grabbers (Mediavision
ProMovie Studio) were fitted into each 450 MHz ma-
chine which provided 210× 210 pixel images. The
robot was connected to the serial port on the 333 MHz
machine.

For these experiments we constructed the simu-
lation system shown in Fig. 3. The simulation sys-
tem comprised of four processes, the LGMD model,

the robot control system, the IQR421 tracker module
TraX and the IQR421 graphical user interface. In to-
tal, our simulation comprised over 1800 cells and 6000
synapses, and ran at approximately 16 timesteps per
second. The LGMD, robot control and TraX processes
are described below. Equations for the cell types used
and the parameter values are given in Appendix A.

Fig. 3. IQR421 simulation system used for the experiments. The
processes were distributed in order to spread the input/output
load.
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Fig. 4. Circuit for LGMD model, which comprised approximately 1500 cells and 4600 synapses. (a) Cell groups used in the model (P,
photoreceptive; E, excitatory; I, inhibitory; S, summing; F, feed-forward; LGMD) and the global connections between these groups. The
P cell group received the input from the video camera. (b) Detail of the connections between specific cells within the model. The S cells
received strong excitation from their topographically aligned E cell without delay, and weaker delayed inhibition from topographically
neighbouring I cells. Circles, excitatory connections; squares, inhibitory connections;1, delay of one timestep; solidity of lines represents
connection strengths.

2.2.1. LGMD model process
The LGMD model was based on the input organi-

sation of the biological system. Each element within
the network represented a cell type found in the lo-
cust eye. An overview of this model is given here, full
descriptions are given in [3,29].

The model comprised of the four groups of cells (P,
photoreceptive; E, excitatory; I, inhibitory and S, sum-
ming) and two single cells (F, feed-forward inhibition
and LGMD) used in the original model (Fig. 4(a)).
The detailed connections (Fig. 4(b)) are described
below.
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Input to the model, via the 20×20 group of photore-
ceptive P cells, was taken from the difference between
successive images derived from the robot-mounted
camera, which were sampled at 16 frames per sec-
ond. The P cells were integrate-and-fire cells which
responded to edges crossing the receptive field of the
cell with discrete spikes (impulses). The number of
cells was chosen to reduce the resolution of the cam-
era image to represent approximately that of the locust
eye.

Output from the P cells passed to two groups, the ex-
citatory E cells and the inhibitory I cells, and the single
feed-forward inhibitory F cell. The P-to-E and P-to-I
groups were connected topographically with each P
cell connected to one E and one I cell. On the con-
trary, the excitatory projections from the P cell group
to the single F cell connected the central 256 P cells
to the F cell equally. This gave a measure of the total
change within the image, and was used to inhibit the
LGMD during large changes in the image. Only the
central 256 P cells were used in the P-to-F connec-
tions in order to eliminate edge effects. This strategy
was also used for the E-to-S and I-to-S connections.

The linear threshold E and I cells integrated their in-
puts and passed suprathreshold values directly to their
outputs, approximating the graded potential neurons
observed in insect visual systems. The output from
these cells passed to the S cells. The excitatory E-to-S
connection linked the central 256 cells in each group
topographically. However, in the inhibitory I-to-S con-
nection the central 256 S cells each received input
from a ring of 12 I cells in the nearest and next-nearest
neighbouring positions, forming a lateral inhibitory
network within the model. The weights and delays of
the synapses within these connections depended on
the distance between the I and S cells, with the weight
decreasing and the delay increasing as the distance
increased.

The integrate-and-fire S cells received excitatory in-
put from the E cells and inhibitory input from the I
cells. The gains of these two inputs were independent,
and the output from the S cells was computed us-
ing the difference between the total excitation and the
total inhibition received.

Finally, input to the single integrate-and-fire
LGMD cell was from the S cells and the F cell. The
S-to-LGMD connection connected the cells in the S
group to the LGMD equally. Input from the S cells

was excitatory, input from the F cell was inhibitory.
The cell produced a pulse of activity whenever the
integrated input exceeded a preset threshold, after
which the membrane potential of the cell was reset.

2.2.2. Robot control process
The robot control process was derived from our pre-

vious work called Distributed Adaptive Control (DAC,
a study of synthetic models of learning and problem
solving, see [44,45] for an overview). It consisted of a
so-called reactive control structure capable of control-
ling the robot using only the input from the infra-red
sensors. The input from the LGMD was used to trig-
ger avoidance actions, a turn to the left, when it re-
sponded to obstacles. Fig. 5 shows the structure of the
circuit used.

This control structure provided three specific be-
haviours:
• basic exploratory activity (translation);
• simple collision avoidance responses using the

infra-red sensors (rotation);
• avoidance of more distant obstacles, triggered by

the responses LGMD (rotation);
All sensory inputs converged onto the MotorOut

cell group, which comprised an array of 100 (10×
10) linear threshold cells. This group represented a
motor map with the positions of the cells producing
specific motor responses (Fig. 6). Cells in the upper
half of the array produced forward motion, those in
the lower half produced backward motion, and cells to
the left and right produced turning responses in their
respective directions. The motor response was selected
on a winner-take-all basis with the cell with greatest
activity defining the movement at each timestep.

The infra-red sensors were mapped onto the Coll
group (Fig. 7), which consisted of eight linear thresh-
old neurons. When any of these cells was active, avoid-
ance reactions were triggered via the Reflex group
of linear threshold cells, which connected one-to-one
with the MotorOut group. Predefined connection pat-
terns caused collisions on the left to produce turns to
the right, and vice versa.

Exploratory activity was produced by the Noise
group of random spike cells. The overall activity in this
group was summed in the Explore group and resulted
in forward motion by activating a specific cell in the
Reflex group. During avoidance reactions triggered by
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Fig. 5. Circuit of reactive control structure, which comprised 360 cells and over 1400 synapses. Input from the robot’s infra-red sensors
and the LGMD was received by the 8 Coll cells and the LGMDRcv cell respectively. The robot motors were controlled via the MotorOut
group, which represented a map of possible motor states. Functional details are given in the text. Circles, excitatory connections; squares,
inhibitory connections.

Fig. 6. Mapping of activity in the MotorOut group onto motor
actions. The arrows show the speed and direction of the robot’s
two motors, with longer arrows denoting higher speeds. The cell
with the highest response triggered the corresponding pattern.

the infra-red sensors, the Explore group was inhibited
in order to suppress forward motion, ensuring that the
avoidance reaction dominated in the MotorOut group.

LGMD responses were added into this control struc-
ture via two additional cells not present in previous
DAC systems, LGMDRcv and Avoid. The activity
from the LGMD was integrated in the LGMDRcv
integrate-and-fire cell, which produced a single spike

Fig. 7. Mapping of the robot’s infra-red sensors onto the Coll cell
group, viewed from above the robot. The numbers show the cell
indices.

when an obstacle was detected by the LGMD cir-
cuit. This spike then triggered a pulse in the Avoid
cell which connected directly onto MotorOut cell 4,
which produced strong anti-clockwise turns. This sim-
ple avoidance strategy, which was not intended to
replicate any specific biological circuits, was sufficient
for the present study where the emphasis was on the
responses of the LGMD model.

It was necessary to tune the responses of the LGM-
DRcv cell according to the speed of the robot. At
the lower speeds tested (1.5–7.5 cm/s) several LGMD
spikes were required in rapid succession in order to
produce each LGMDRcv spike. However, at the high-
est speeds (10.0 and 12.5 cm/s), the LGMDRcv cell
was tuned to produce a spike when only a single
LGMD spike was received. The need for this retuning
is discussed later.
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Fig. 8. Comparison between raw and edited position data, illustrating the removal of spurious jumps in position. The data shown was
taken from the 5 cm/s experiment. Dotted line, raw data; solid line, edited data.

2.2.3. TraX process
The position of the robot during the experiments

was monitored using IQR421’s internal tracking sys-
tem TraX. The position of the brightest moving point
within the images from the overhead camera was
found and mapped onto a normalised Cartesian co-
ordinate system where (−1, −1) corresponded to the
bottom left corner of the image and (1,1) represented
the top right corner. To ease the recognition of the
robot, and hence minimise noise within the signal, a
small lamp was attached to the left side of the robot
(visible in Fig. 1(a)). The offset position of this lamp
resulted in a slight error in the position recorded, par-
ticularly during rotation of the robot when the tracked
position appeared to translate.

2.3. Protocol

At the beginning of each experiment the robot was
placed in approximately the same position (indicated
in Fig. 1(b)) with its centre 10 cm from the right-hand
blocks, facing leftwards towards the distant blocks.
Data was recorded for 1000 timesteps as the robot
moved, which took on average 62 s. Six different
speeds of movement were tested: 1.5, 2.5, 5, 7.5, 10,
12.5 cm/s.

Experiments were performed under normal fluores-
cent room lighting. Only one level of illumination was

used due to the limitations imposed by the CCD cam-
era, which did not provide the constant contrast re-
sponses characteristic of insect visual systems [18].

The raw position data recorded by TraX was edited
to remove spurious jumps caused by other objects (for
example, the wall of the environment or the robot’s
cable) being tracked. Jumps of greater than 0.1 (5% of
the range) during a single timestep were assumed to
be errors, and missing data values were interpolated
linearly from the position values immediately before
and after the error. The data was then smoothed with
a sliding average of width 11 timesteps. Fig. 8, which
shows a comparison between raw and edited position
data, illustrates that we were able to track the position
of the robot robustly.

3. Results

The directional selectivity of both the LGMD neu-
ron and our neural network model is illustrated in
Fig. 9. During the approach of an object the spike
rate from the LGMD increases whereas there is only
a brief response to receding objects. This response is
found over a wide range of speeds of movement [28]
and is tightly coupled to objects moving on a direct
collision course [14].

In our present study we ran two series of experi-
ments. In the first set of experiments, using only reac-
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Fig. 9. Example responses to looming (a,c) and receding (b,d) objects of the LGMD neuron (a,b) and the LGMD model (c,d). For (a,b),
the responses of the neuron to a 100 mm×75 mm object moving at 5 m/s were recorded using a sharp intracellular electrode. Each record
shows 1.1 s of data. The traces in (c,d) show the spike rate of the model LGMD during movement of a 70 mm square object at 6 m/s.
The responses of the original model (shown as dashed lines) have been converted into spikes (solid lines) to simplify comparison with the
physiological record. Neuron responses from [28], model responses modified from [3].

tive infra-red based control for the robot, we recorded
the responses of the LGMD model in isolation. In the
second, the LGMD responses were used to control the
robot. The parameters of the LGMD model, which
are given in Appendix A, were modified to match the
responses to the speed of movement of the robot, a
strategy also observed in insect visual systems [22].

3.1. Reactive control

Example responses of the LGMD model at two
translational speeds are shown in Fig. 10. As the robot
approached the blocks in its environment the LGMD
responded with trains of spikes which tended to in-
crease in rate during the approach. Notice, however,
that the timing of the spikes within these responses is
less predictable than those observed in both the bio-

logical system and our previous simulations: for exam-
ple, the two responses in Fig. 10(b) show very differ-
ent patterns of activity during approach. We attribute
this to the more complex nature of the stimuli used
here, e.g. blocks of different colours, and noticeable
shadows and reflections (see Fig. 2).

Fig. 11 shows the responses within the model during
approach. When the robot was far from the blocks, the
movement of edges was slow and the lateral inhibition
from the I cells prevented responses from the S cells.
However, just before collision the edges of the objects
moved more quickly than the lateral inhibition and the
S cells were active.

Single approach responses for all speeds tested are
shown in Fig. 12. These traces show that the theory
that LGMD spike rate increases with speed of motion
and increases until collision, as discussed in the intro-
duction, is not necessarily true when the variability of
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Fig. 10. Example responses of the LGMD when the robot moved
under IR control at (a) 2.5 cm/s, (b) 10 cm/s. LGMD spikes are
shown as *, the starting position of each trace is shown with a+,
and the direction of motion is indicated.

real images is considered. This would affect the ability
of the LGMD to trigger escape responses at specific
times during approach. The traces for the four low-
est speeds tested show the peak spike rate increased
with speed. The peak rate during motion at 7.5 cm/s
was close to the end of the response, but the peak oc-
curred near the beginning of the response at 5 cm/s. At
the two highest speeds the spike rate was lower than
at either 5 or 7.5 cm/s. This specific result, however,

Fig. 11. Responses within the different cell groups during approach
at 7.5 cm/s. Plots (a,c,e,g,i) show the responses when the robot
was far from the blocks. Plots (b,d,f,h,j) show the responses just
prior to a collision. In all plots, brighter squares represent higher
activity. The time constant of the S cells was increased to aid
interpretation of these static images.

could be an artifact of the limited rate of video capture
and cannot at this point be interpreted as an inherent
property of the LGMD model.

During motion which covered the whole visual field,
inhibition from the I cells reduced the S cell responses.
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Fig. 12. LGMD responses during a single approach for all six speeds tested. Responses are aligned at the time of the last spike, which is
taken as zero. From the top, the traces show responses during motion at: 1.5, 2.5, 5, 7.5, 10 and 12.5 cm/s.

This is shown in Fig. 13 where the excitatory input,
inhibitory input and output activity of the S cell group
are compared. During forward motion (Fig. 13(a)) the
S cell activity followed the excitation closely with the
inhibition having little effect. However, during rotation
(Fig. 13(b)), which occurred at the same motor speed
as forward motion but with one motor reversed, visual
features flow equally over all parts of the image. This
increased optic flow produced greater activity in all
cell groups, and the inhibition reduced strongly the
activity in the S cell group, and consequently the input
to the LGMD. Note the relatively long decay time of
the inhibition, which persisted after rotation ceased.

A second mechanism which controlled LGMD
responses during whole-field motion involved the
summed P cell activity inhibiting the LGMD via the
F cell (Fig. 14). The F cell received excitation from
all P cells but, due to its high threshold, was usually
inactive during forward motion. However, during ro-
tation, which produced activity in a large number of
P cells, the F cell was activated strongly. This activity
reduced the membrane potential of the LGMD.

3.2. LGMD control

Fig. 15 illustrates the behaviour of the robot when
the LGMD response was used to avoid collisions. At

Table 1
Percentage of avoidance reactions produced by the LGMD based
reactive control structure relative to total events (events were de-
fined as avoidance reactions+ collisions)

Speed (cm/s) Avoidance reactions (%)

1.5 90
2.5 91
5.0 81
7.5 69

10.0 88
12.5 92

the lower speed (Fig. 15(a)) the input from the LGMD
was integrated and several spikes were required to
produce an avoidance reaction, whereas at the higher
speed (Fig. 15(b)) the parameters of the LGMDRcv
cell in the robot control circuit were modified to gen-
erate avoidance behaviour in response to individual
LGMD spikes.

The performance of the LGMD control structure is
shown in Table 1. The effectiveness of control via the
LGMD was always better than 69% and for half of
the speeds tested it was over 90%.

Most of the collisions which occurred while the
robot was under LGMD control were due to the in-
hibition to the S cell group decaying slowly after the
robot rotated. This is illustrated in Fig. 16 which shows
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Fig. 13. Comparison between the normalised excitatory input, inhibitory input and output activity of the S cell group during (a) forward
motion and (b) rotation, when the S group was inhibited and the LGMD produced no spikes. The data is taken from the 7.5 cm/s experiment.
Dashed line, excitatory input to S cells; dot-dash line, inhibitory input to S cells; solid line, S cell group output activity; arrows, LGMD
spikes.
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Fig. 14. Effect of the F cell during motion at 7.5 cm/s. The robot moved forward during the first 40 timesteps, then rotated for the next
40 steps before resuming forward motion. Dotted line, P cell group activity; dot-dash line, S cell group activity; dashed line, F cell group
activity; solid line, LGMD membrane potential; arrows, LGMD spikes. Responses of P, S and F groups are normalised to maximum of F
cell activity, LGMD membrane potential is normalised to its own minimum value.

both the activity within the LGMD model and the be-
haviour of the robot. Particularly at high translation
speeds (at the highest speed tested the robot crossed its
environment in approximately 3 s) the time between
an avoidance reaction and the robot’s next encounter
with an obstacle could be short. In this case the ac-
tivity of the I cells had insufficient time to decay, in-
hibiting the S cells and in turn suppressing LGMD re-
sponses. It will be interesting to challenge the locust
using similar stimuli to see whether this response is
observed in the neuron.

4. Discussion

In this project we evaluated a biologically based
model of the locust LGMD in behavioural terms using
a mobile robot. We found that the model responded
reliably as the robot approached obstacles in its path
over an eight-fold range of speeds. This illustrates
that robust obstacle avoidance can be achieved using
an insect based solution which relies on vision. Our
experiments provided new insights into the dynamic

responses of our model, which will be investigated
in future experiments using both the model and the
neuron.

4.1. LGMD model

This is the first time that our LGMD model has been
challenged with complex real-world stimuli, and we
have shown that it is able to detect approaching ob-
jects reliably. The need to tune the model’s parameters
for the speed of motion suggests new interpretations
of existing features of the LGMD system. For exam-
ple, it was necessary to increase the P cell threshold
for higher speeds of motion. Although we were only
able to test the model at one level of luminance due
to the variable contrast gain provided by our camera
(see methods above), we suggest that this tuning may
correlate with the habituation observed in the input
neurons to the LGMD [35]. It is known that stimula-
tion of the LGMD in one region of the eye produces
responses which decrease with repetition of the stimu-
lus. This habituation could act to stabilise the amount
of excitation received by the LGMD due to increased
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Fig. 15. Example responses of the LGMD when the robot moved under LGMD control at: (a) 2.5 cm/s; (b) 10 cm/s. LGMD spikes are
shown as *, the starting position of each trace is shown with a+, and the direction of motion is indicated. Dashed circles indicate the
positions at which avoidance reactions occurred.

optic flow. This is reminiscent of an automatic gain
control system. Habituation of responses is seen in
transient cells which are believed to provide the in-
put to the LGMD [25]. In our model, addition of an

adapting threshold to the P cells may be sufficient to
incorporate the effect of habituation. Alternatively, the
model could be extended to include the earlier steps
of visual processing which are only approximated by
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Fig. 16. Collision due to prolonged decay of inhibition to S cells after rotation. (a) Activity within the model. Dotted line, excitatory
input to S cells; dashed line, inhibitory input to S cells; solid line, S cell group output activity; arrows, LGMD spikes. (b) Corresponding
behaviour of the robot. Solid line, path of robot; *, LGMD spikes; dashed circle, avoidance reaction; dashed X, collision. Speed of
experiment was 7.5 cm/s, robot rotated between timesteps 335 and 350.



M. Blanchard et al. / Robotics and Autonomous Systems 30 (2000) 17–38 31

our P cells. A recent model of ON–OFF units in the
fly visual system [37], which incorporated synaptic
depression, could produce a similar effect.

There is evidence that the sensitivity of these cir-
cuits can be restored by neuromodulators released by
particular neurons projecting from the brain back into
the optic lobe. Octopamine was found to reduce the
habituation seen in the LGMD during responses to re-
peated visual stimuli [2,41]. During motion, a graded
release of octopamine could regulate the gain within
the LGMD system according to the speed of flight.
Presently, the dynamics of octopamine release require
further investigation.

Most existing records of LGMD responses were
obtained using simple stimuli comprising an object
of constant illumination moving smoothly against an
evenly illuminated background. The interpretation of
these responses as either a continuous rise in spike
rate during object approach [31,32] or as a peak be-
fore collision which codes the angular size of the ob-
ject [12,16], relied on the LGMD seeing a single un-
ambiguous object. Our experiments show that the re-
sponses of our model LGMD do not increase pre-
dictably to more complex real-world scenes, where
the edges of objects may be occluded, in shadow, etc.
This suggests that the responses of the LGMD may
be poorly suited for triggering escape behaviour at a
specific time during the approach of an object, such
as when the object subtends a specific angular size
[34] or at a constant time before collision [10]. Even-
though we used a simplified visual environment, the
responses of the model could be strongly asymmetric
during approaches towards the blocks. This implies
that the behaviour of the LGMD is difficult to predict
from its responses to simple stimuli and that an ex-
tensive study of LGMD responses to complex stimuli
should be conducted. We shall pursue this goal using
both our robot-based model and physiological exper-
iments.

The suppressed responses of the model following
rotation of the robot, caused by the prolonged inhibi-
tion of the S cells, enforced the tuning of the motor re-
sponses in order to trigger avoidance behaviour. How-
ever, this was not sufficient to prevent all collisions
at the highest speeds tested. It is not known whether
this prolonged inhibition is also present in the locust.
We will perform further experiments on the locust us-
ing similar stimuli in order to resolve this question. A

modification of the model, moving the target of lat-
eral inhibition from the S cells to the P cells (negative
feedback), may reduce this problem by restricting the
build-up of activity in the I cells. The origin of this
proposed modification is recent electron-microscope
analysis of the inputs to the LGMD [33]. This analy-
sis revealed a novel arrangement of synapses around
the dendrites of the LGMD capable of mediating both
excitation of the LGMD and inhibition of the presy-
naptic cells using a single neurotransmitter.

LGMD responses also show pronounced inhibition
as the animal prepares to jump or move its head rapidly
[50]. This saccadic suppression is generated centrally,
but the site within the LGMD input pathway at which
this inhibition acts has not been identified experimen-
tally. Inhibition of this form, acting at the P cells in
our model, would limit activity in the network during
rotation but would be ineffective during involuntary
motion.

4.2. Robot control structure

It has become customary to relate reactive con-
trol systems to the so-called subsumption architecture
[4], which was based on earlier work on hierarchical
task decomposition by Albus [1]. In this case, control
architectures are described as consisting of multiple
processing layers, each of which contains input, pro-
cessing and output components. In addition, specific
preference relationships between the processing layers
are predefined. It is important to point out, however,
that this proposal is neutral towards the content that
the designer assigns to these processing layers [44].
For instance, in the original proposal one layer of a
hypothetical subsumption architecture contained a hy-
pothetical expert system.

Loosely, one could find hierarchical task decompo-
sitions at any level in a neural system, from the signal
transduction performed by single synapses to overall
relationships between sensory and motor events of the
behaving system. An important aspect one loses in
this perspective, however, is the extent to which the
performance of the system depends on the continu-
ous feed-forward and recurrent integration of activity
within and between multiple processing stages. Hence,
although we appreciate the use of this perspective in
the analysis and engineering of control systems, at
present it does not seem to be a concept which pro-
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vides additional insight into the invertebrate system
we study.

4.3. Comparison with other biologically-based
robotics research

Our model was based closely on the anatomy and
physiology of the locust LGMD circuit. This close
relationship with biology is shared with studies of
chemotaxis in ants [48]. A Lego robot equipped
with two gas sensors and a simple on-board com-
puter reproduced the trail-following behaviour ob-
served in ants using a small network of neurons.
However, unlike our LGMD model, the neural cir-
cuit implemented was not based on identified neu-
rons. Instead, data from a number of insect species
was combined and no specific predictions could be
made about the exact neural circuit used by the
ant.

In other biologically-based robotics studies, more
abstract models of neural processing have been imple-
mented on robots. The polarized light compass used
by the desert antCataglyphishas been studied using
Sahabot [17] and Sahabot 2 [21]. Input to the compass
was obtained using three polarised light sensors mod-
elled after the POL neurons found in the optic lobe
of the cricket. Subsequent processing, however, was
performed mathematically as the neural circuitry was
unknown. The later Sahabot 2 combined the polarisa-
tion compass with algorithms for path integration and
landmark learning. Abstract models were also used to
test strategies for phonotaxis in crickets [47,48] and
navigation in bees [36,49]. In both cases, the neural
circuitry controlling these behaviours in the animal
had not been identified.

Fly visual motion detection has been successfully
applied to robot navigation (for a review, see [8]).
Based on the Reichardt correlation-type elementary
movement detector [26], a model of the fly’s eye
was constructed using an analogue design technique
similar to neuromorphic engineering [6]. The optic
flow detected by this “eye” was used to steer a robot
through a cluttered environment successfully. This
analogue modelling approach reproduces neural pro-
cessing more faithfully than computer simulations,
but makes it more difficult (if not impossible) to ob-
serve the internal states of a model. On the contrary,
our simulation system, IQR421, allows us to see the

states of all the cells in our model in real-time during
a simulation.

4.4. Application in robotic control tasks

Our results suggest that the implementation of the
basic LGMD circuitry using a VLSI, or neuromorphic,
technology is feasible [46]. By adding the circuitry of
this model into a silicon retina [20], a smart sensor for
visually based obstacle detection could be developed.
Neuromorphic sensors based on models of insect mo-
tion detection have already been designed [11,19] and
applied to robotic control tasks [13,15]. Development
of a smart sensor based on the LGMD would provide a
robotics engineer with a compact, safe, low-power so-
lution for obstacle detection using vision, eliminating
the need to use traditional image processing methods
or active sensing (e.g. laser scanners).

4.5. Conclusions

In our investigations we attempt to develop biologi-
cally realistic models of sensory processing which can
be applied to mobile platforms. The LGMD circuit
investigated in the present study is a step in this di-
rection. This approach illustrates the synergistic rela-
tionship between basic neuroscientific research, mod-
elling studies using digital simulation and real-world
devices, and neuromorphic engineering.

We have demonstrated that our model of the LGMD
system of the locust detected approaching obstacles
robustly in a complex visual environment, but that the
responses were less predictable than those obtained
using simple stimuli. We will continue to investigate
the responses of both the neuron and our robot-based
model to complex stimuli in order to determine the
behavioural properties of the LGMD and assess pos-
sible applications in robot control systems. Although
the precision of visual systems such as the LGMD is
limited when compared with traditional robotic range
sensors, their widespread use in diverse animal species
suggests that such systems can become valuable tools
for robotics engineers.
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Appendix A

A.1. Cell types

Three types of cell were used: linear threshold,
integrate-and-fire and random spike.

A.1.1. Linear threshold
This cell type was used to model graded potential

neurons. The membrane potential of a linear threshold
cell i at timet + 1, vi(t + 1), was given by

vi(t + 1) = pivi(t) + gExc
i

m∑
j=1

wijaj (t − δij )

−gInh
i

n∑
k=1

wikak(t − δik), (A.1)

wherepi ∈ {0, 1} was the persistence of the mem-
brane potential,gExc

i and gInh
i were the gains of the

excitatory and inhibitory inputs, respectively,m was
the number of excitatory inputs,n was the number of
inhibitory inputs,wij and wik were the strengths of
the synaptic connections between cellsi andj and i

andk respectively,aj andak were the output activities
of cellsj andk, respectively, andδij > 0 andδik > 0
were the delays along the connections between cellsi

andj and cellsi andk respectively.
The output activity of celli at timet + 1, ai(t + 1),

was given by

ai(t + 1) =
{

vi(t + 1) for vi(t + 1) > θ,

0 otherwise,
(A.2)

whereθ was the membrane potential threshold.

A.1.2. Integrate-and-fire
The dynamics of the membrane potential of the

integrate-and-fire cell was identical to that of the linear
threshold cell described above (Eq. (A.1)). However,
an integrate-and-fire cell produced a discrete spike
whenever its membrane potential reached a thresh-
old after which the membrane potential was hyperpo-
larised. The activity of integrate-and-fire celli at time
t + 1, ai(t + 1), was given by

ai(t + 1) =
{

β for vi(t + 1) > θ,

0 otherwise,
(A.3)

whereβ was the amplitude of the output spikes andθ

was the threshold membrane potential.
After producing a spike at timet +1, the membrane

potential of celli was hyperpolarised such that

v′
i (t + 1) = vi(t + 1) − α, (A.4)

wherev′
i (t + 1) was the membrane potential after hy-

polarisation andα was the amplitude of the hyperpo-
larisation.

A.1.3. Random spike
This cell type generated random spiking activity

with adjustable spiking probability. It received no in-
put and had no membrane potential. The output activ-
ity of neuroni at timet + 1, ai(t + 1), was given by

ai(t + 1) =
{

β with probabilityP,

0 otherwise,
(A.5)

whereβ was the amplitude of output spikes andP

was the probability that the cell would be active at any
given time.

A.2. Connection mapping

Connections were defined around topographically
aligned cells, cells in the same relative positions within
their groups. A presynaptic cell with positionxpre and
ypre was topographically aligned with a postsynaptic
cell with positionxpost andypost when

xpre= (xpost/wpost) × wpre,

ypre= (ypost/hpost) × hpre, (A.6)

wherewpre andwpost were the widths of the pre-and
postsynaptic groups, respectively, andhpre and hpost
were the heights of the pre-and postsynaptic groups,
respectively. The values ofxpre andypre were rounded
to the nearest integer. Fig. A.1, shows an example.

A.3. LGMD model process

Tables A.1 and A.2 show the parameters and group
sizes used in the LGMD model, which comprised ap-
proximately 1500 cells. The P cell was a special case:
its input was the difference between two successive
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Fig. A.1. Topographic connections between a presynaptic group
of 49 cells and a postsynaptic group of 16 cells.

Table A.1
Parameters used in LGMD model for a robot speed of 5 cm/sa

Name Type gExc gInh Θ β p α

P Cell I&F – – 0.3∗ 1 0.4 0.5
E Cell LinTh 0.6 0 0 – 0.1 –
I Cell LinTh 0.2 0 0 – 0.8 –
S Cell I&F 1 1 0.5 1 0.4 0.5
F Cell LinTh 0.2 0 0.15 – 0.1 –
LGMD Cell I&F 2 5 0.25 1 0.4 0.25

aValues labelled * were dependent upon the robot speed (see
Table A.8). LinTh, linear threshold; I&F, integrate-and-fire;gExc,
excitatory input gain;gInh, inhibitory input gain;Θ, threshold;
β, output spike height;p, membrane potential persistence;α,
membrane potential reset (after hyperpolarisation).

Table A.2
Cell groups used in LGMD model

Name Size Cell type

P 20× 20 P Cell
E 20× 20 E Cell
I 20 × 20 I Cell
S 20× 20 S Cell
F 1 F Cell
LGMD 1 LGMD Cell

images from the monochrome camera mounted on the
robot. For this cell type, Eq. (A.1) became

vi(t + 1) = pivi(t) + xi(t + 1) − xi(t), (A.7)

Table A.3
Connection types used in the LGMD modela

Name Type Arborisation Npre Npost w δ

P-to-E + 1 : 1 400 400 1 0
P-to-I + 1 : 1 400 400 1 0
E-to-S + 1 : 1 400 400 1 0
I-to-S − (see Fig. A.2)
S-to-LGMD + 256 : 1 256 1 0.04 0
P-to-F + 256 : 1 256 1 0.04 0
F-to-LGMD − 1 : 1 1 1 1 1

aTypes:+, excitatory;−, inhibitory; Npre, number of presynaptic cells;Npost, number of postsynaptic cells;w, strength of connection
between each pair of pre-and postsynaptic cells;δ, delay of connection between each pair of pre-and postsynaptic cells.

Fig. A.2. Connection between I and S groups in the LGMD model
circuit. Each of the 256 central cells in S was connected to a ring
of 12 cells in I to produce lateral inhibition, with the remaining S
cells not connected. The weights and delays were related to the
relative positions of the pre- and postsynaptic cells. The strength,
w, and delay,δ, parameters used were: a,w = 0.4, δ = 1; b,
w = 0.32, δ = 1; c, w = 0.2, δ = 2.

wherexi(t+1) andxi(t) were the current and previous
states of the pixel which was topographically aligned
with cell i. The output activity was calculated using
Eq. (A.3) as normal.

There were seven connection types, which produced
4600 synapses, used in the model. The parameters
for these connection types are given in Table A.3 and
Fig. A.2.

A.4. Robot control process

Tables A.4 and A.5 show the parameters used in the
robot control circuit, which comprised 360 cells.

There were eight connection types, which produced
over 1400 synapses, used in the model. The parameters
for these connection types are given in Tables A.6 and
A.7.



M. Blanchard et al. / Robotics and Autonomous Systems 30 (2000) 17–38 35

Table A.4
Parameters used in the robot control circuit for a robot speed of 5 cm/sa

Name Type gExc gInh Θ β P p α

AvCell LinTh 0.25 0 0.05 0 – 0.7 –
AvoidCell I&F 1 0 0.05 5 – 0.75 0.05
CollCell LinTh 1 0 0.54 1 – 0.55 –
ExpCell LinTh 0.5 0.25 0.25 1 – 0.7 –
LGMDRcvCell I&F 0.75* 0 1* 1 – 0.9 2.0
MOCell LinTh 1 0 0.3 0 – 0.5 –
NoiseCell RandSpk 0 0 0 1 0.15 0.85 –
ReflexCell LinTh 0.55 5 0.5 0 – 0.85 –

aValues labelled * were dependent upon the robot speed (see Table A.8). LinTh, linear threshold; I&F, integrate-and-fire;gExc, excitatory
input gain;gInh, inhibitory input gain;Θ, threshold;β, output spike height;P , output probability;p, membrane potential persistence;α,
membrane potential reset (after hyperpolarisation).

Table A.5
Cell groups used in robot control circuit

Name Size Cell type

Aversive 8 AvCell
Avoid 1 AvoidCell
Coll 8 CollCell
Explore 5× 5 ExpCell
LGMDRcv 1 LGMDRcvCell
MotorOut 10× 10 MOCell
Noise 10× 10 NoiseCell
Reflex 10× 10 ReflexCell

Table A.6
Connection types used in the robot control circuita

Name Type Arborisation Npre Npost w δ

Noise-to-Explore + R(12, 100) : 1 100 25 R(0.05, 0.1) 0
Explore-to-Reflex + 25 : 1 25 1 (42) 0.25 0
Reflex-to-MotorOut + 1 : 1 100 100 1 0
Coll-to-Aversive + 1 : 1 8 8 1 0
Aversive-to-Explore − 25 : 1 8 25 1 0
Coll-to-Reflex + (see Table A.7)
LGMDRcv-to-Avoid + 1:1 1 1 1 0
Avoid-to-MotorOut + 1 : 1 1 1 (4) 1 0

aTypes:+, excitatory;−, inhibitory. Npre, number of presynaptic cells;Npost, number of postsynaptic cells; numbers in parentheses
give specific cell IDs.w, strength of connection between each pair of pre-and postsynaptic cells;δ, delay of connection between each pair
of pre-and postsynaptic cells.R(x, y) denotes a random number betweenx and y.
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Table A.7
Specific connections between the Coll and Reflex cell groups in
the robot control circuit (w, strength of connection;δ, delay of
connection)

Coll cell ID Reflex cell ID w δ

0 64 2 0
1 64 2 0
2 74 2 0
3 14 2 0
4 24 2 0
5 24 2 0
6 41 2.5 0
7 41 2.5 0

Table A.8
Variation of cell parameters with robot speed

Speed (cm/s) P CellΘ LGMDRcvCell gExc LGMDRcvCell Θ

1.5 0.20 0.75 1.0
2.5 0.25 0.75 1.0
5.0 0.30 0.75 1.0
7.5 0.30 0.75 1.0

10.0 0.42 1.0 0.9
12.5 0.50 1.0 0.9

A.5. Variation of cell parameters

Table A.8 gives the parameter changes required
to tune the LGMD circuit for different speeds of
motion.
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