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Abstract. Autonomous learning systems of significant complexity often consist of several interact-
ing modules or agents. These modules collaborate to produce a system which, when viewed as a
whole, exhibit behaviour that can be interpreted in some way as learning. In designing these systems,
the complexity of the interactions of large numbers of modules can become overwhelming, making
debugging difficult and obscuring the workings of the system when viewed from an architectural
level. A way of controlling system complexity called the Layered Learning System architecture
(LLS) has been developed, which offers the advantages of incremental development and testing,
easier debugging and progressive upgrading facilitation. A hexapod robot has been implemented
using LLS principles, with the main learning task being that of learning to walk as fast as possible
without falling over.
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1. Introduction and Related Work

Much research has gone into the many different aspects of the cognitive design
of autonomous systems. Many specific task-oriented learning problems have been
defined and investigated in great detail. Each of these problems has had many
algorithms and strategies developed to address the particular challenges of that
problem. Very broadly speaking, the research in machine learning can be said to
fall into three overlapping categories:

High level, for example: concept learning, language acquisition and goal-
directed decision making. Knowledge at this level tends to be very abstract in
nature and is often encoded into symbolic systems. Decision rule trees built up
by trial and error are one simple example of this.

Medium level, for example: route planning, visual object classification and
navigation. Problems in this class tend to be addressed by a moderate degree of
abstraction of the environment, for example, a sonar-based navigation system may
encode a flat terrain as tuples of landmarks and bounding polygons.

Low level, for example: intelligent controllers and any sort of system that deals
with sensor data in a mostly unfiltered form. Brooks (1990) asserts that “physical
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grounding” is essential for any truly autonomous robotic system; ie. all system
functionality must relate directly to sensor data. A softer form of this view is taken
in the use of analogical data representations (Steels, 1990), where some degree of
abstraction of the data is allowed as long as the internal storage “looks” like the
raw sensor data in some way.

In developing practical fully autonomous systems, it is very difficult for any
single classical algorithm or strategy to cover all required system functionality.
Often, multiple strategies are used to achieve a desired overall behaviour. For ex-
ample, the navigation system developed by Elfes (1995) uses a stochastic model
with multi-objective optimisation methods to enable a robot to explore and map its
environment using sonar. Here, two overlapping goals (exploration and mapping)
are achieved using two approaches to environmental modelling (stochastic and
multi-objective optimisation), which are carefully designed to work in an integrated
system. Other researchers believe that task-fulfilling systems can evolve on their
own through complex interactions of simple components. Vogt (1998) outlines a
system of robotic designed to perceptually ground and distinguish objects in their
environment, using feature generation and self-organisation. He also shows how
robots may evolve a kind of simple language, using previous work on the origins
of language done by Steels (e.g., Steels, 1997).

As learning systems increase in their range of potential functionality and behav-
iour, the task of integrating many different components working at different levels
of abstraction becomes more difficult. Three broad theories on how to approach the
integration task exist:

Non-Localised: Any particular aspect of system knowledge cannot be eas-
ily said to reside in any particular part of the cognitive structure. The subsump-
tion architecture as used in the walking robotGenghis(Brooks, 1990) and neural
networks are two well-known examples.

Localised:Each particular learning task of the system is contained in a separate
functional block, with each block being mostly self-contained. All current conven-
tional software engineering is done this way. Learning systems which work by task
decomposition are also likely to be designed in this way.

Semi-Localised:Learning functionality is shared between two or more compo-
nents of the system in such a way that removal of one impairs the learning function,
but does not necessarily totally remove it. The human brain is an example that
comes easily to mind.

This paper deals only with learning systems designed using the localist and
semi-localist paradigms.

Many learning robots have anad hocarchitectural design, usually because a
non-localist paradigm was followed or because the robot was sufficiently sim-
ple for architectural considerations to be ignored. More recently, however, it has
been recognised that learning robots functioning at different levels of learning
abstraction are usually too complex forad hoc implementation. Borrowing the
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software engineering ideas of system design through functionality decomposition,
researchers have been able to understand and handle increasingly complex systems.
Arkin (1990) describes an autonomous robot architecture which decomposes sys-
tem functionality into blocks, specifically designed for mobile robot applications.
In a more architecturally systematic vein, Crowley (1996) describes a parallel hi-
erarchical architecture for vehicle control that features a layered system of control.
The motors and sensors are at the lowest level, with a vehicle control level and
navigation level above that. At the top sits a supervisor and a human interface.

For future development of very complex learning robots that will appear in the
future, methods will be required to facilitate the design and verification processes.
One important step towards achieving this will be the definition of a general-
purpose architecture for the development of such systems.

2. Layered Learning Architectures

2.1. INSPIRATIONS

Consider first the well-known OSI reference model for computer networking as
shown in Figure 1 (Stallings, 1994).

Some interesting characteristics of this model are:

1. Only the physical layer has any access to the real data-transmission world.
2. The higher the level, the greater the degree of abstraction of concepts.
3. Communication is only allowed between adjacent layers; i.e., layer 5 cannot

communicate directly with layer 2, for example.

One way of mapping these features on to aspects of a learning system architec-
ture proceeds as follows:

1. Only the physical layer has any access to sensors and actuators.
2. Higher level learning functions occupy higher layers.
3. Complexity control is provided by forcing learning system components to in-

teract only with adjacent layers.

Figure 1. OSI networking reference model.
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2.2. LAYERED LEARNING SYSTEM ARCHITECTURE DEFINITION

The LLS definition seeks to make the different levels of thinking and learning ex-
plicit, and in doing so to make the design of learning systems more straightforward.
Using the ISO model shown in Section 2.1 as a basis, a model can be devised for a
layered learning system architecture (see Figure 2):

The general characteristics of each of these layers can be summarised as fol-
lows:

Physical:The real world of sensors and actuators – motors, cameras, switches,
etc.
Sensory:Filtering of low-level real-world data – converting signals into data
structures.
Reflexive:Automatic reactions to input – responding to direct threats.
Action: Implementation and sequencing of simple operations.
Planning: Route setting, obstacle avoidance, etc.
Motivational: Controls the initiation and termination of planning functions.
Reasoning:Moderates the motivational behaviours of the system for long-
term goal achievement.
Metaphysical: Control of reasoning: religion, imagination, fantasies.

Communication between layers can be via any mechanism, for example, via
message queues, polled outputs, interrupts, etc. The circumstances of a particular
system implementation may suggest one interface solution over another, or even
several different interface types for different layers within the one system.

2.3. OTHER NATURAL AND ARTIFICIAL LEARNING SYSTEMS

It is interesting to rank some existing learning systems in terms of how they fit into
the LLS framework described in the previous section (see Table I).

Figure 2. Layered Learning System (LLS).
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Table I

System Level

Bacteria Physical-reflexive

Map computer Planningonly

Navigation robot Physical-planning

Cat Physical-motivational

Chimpanzee Physical-reasoning

Human Physical-metaphysical

There may be arguments over which levels each learning system fits into but
that is unimportant for the purposes of this discussion. The main point to note is
that the LLS appears to provide a way to categorise all known learning systems
into a contiguous block of LLS levels, or “learning competence levels”.

In most real robotic systems, the higher layers are implemented implicitly in the
system design or are under human control. In most cases this is the most practical
thing to do: the vast majority of robots are designed with a specific purpose in mind
and it would be a waste of effort to bother trying to model the robot’s inclination
to carry out its designated task. Even more of a waste of time (at current techno-
logical levels) would be trying to model a robot’s ruminations about philosophical
questions. By placing higher cognitive levels under human control, either explicitly
through a user interface or implicitly in the design of an autonomous robot, robots
are kept in a subservient role by virtue of the lower cognitive level of the robot.
An organic version of intellectual control can be seen in the widespread historical
use of animals for labour. Equal intellects are also able to cooperate with, or subju-
gate, each other: humans have long known how to do this through the appropriate
understanding and manipulation of cognitive functions.

2.4. LLS ADVANTAGES AND DISADVANTAGES

The main advantages of the LLS architecture come from an implementation per-
spective:

• High complexity is limited to the internal structure of each layer, making it more
likely that humans will be able to understand the system architecture.
• The forced modularity imposed by the architecture allows for the possibility of

incremental development. In other words, any component of the system can be
implemented in a basic way at first and upgraded later.
• Incremental development shortens the time to a working prototype because all

components can be implemented in a very basic fashion at first (perhaps, even
without any learning components) to check that the interfaces work.
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• The layered architecture limits the amount of rework required when a system
component is changed since at most two inter-layer interfaces need to be dealt
with.
• The graduated multi-filtering process for transferring data from low to high

levels (and vice versa) makes it more likely that very low-level data will be
able to be translated into high-level concepts, even if the means for doing so is
not known at the beginning of system implementation.
• The LLS naturally lends itself to multiprocessing and distributed implemen-

tations, since each layer could feasibly be implemented on a separate proces-
sor.

There are also some potential disadvantages of the LLS:

• It is not known how much the layered architecture limits the potential for inter-
esting and useful interactions between very high-level and very low-level mod-
ules. It is up to the intermediate modules to pass on information to higher/lower
levels as they deem appropriate.
• Latency delays caused by data transfer across many layers may make system

performance unacceptable for real-time applications. This can be avoided by
careful system design – events requiring an immediate response should be han-
dled by lower levels of the system. In any case, at least the lowest level must be
able to run in real-time for any useful autonomous system.
• Poor design of any one layer could effectively block meaningful data transmis-

sion in the whole system.
• Care needs to be taken to avoid deadlock or starvation situations for individ-

ual layers. An intuitively obvious way to do this is to implement each layer
so that it never blocks waiting for input, but continues processing with best
approximations that are updated as new data becomes available.

3. Robbie – the Running Robot

3.1. ARCHITECTURAL ROBOT DESIGN

To test the theory of learning system implementation using LLS principles, a hexa-
pod walking robot called Robbie was built. A basic schematic of the robot config-
uration is shown in Figure 3.

Robbie has six legs arranged symmetrically about a rectangular torso, each with
two degrees of freedom. The six foot sensors indicate which feet are on the ground
and the four belly sensors indicate when any corner of the torso of the robot is
touching the ground.

For this study only the physical, sensory, reflexive and action layers of the
LLS were implemented. The robot was designed with oneprime directiveand two
secondary directives:
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Figure 3 Robot schematic – top view.

Prime directive •Walk: move forwards in a straight line

Secondary directives • Avoid pain: stand up without falling over

•Compete: walk as fast as possible in a straight line

These directives were each captured in a vertical integration of the layers in
the LLS, with the prime directive forming the main trunk of the system. Some
degree of horizontal integration between directives in different layers was also
provided. Since the competing directives generated inconsistent data,conflict reso-
lution blockswere included in the interfaces between different levels. An overview
of the system architecture can be seen in Figure 3.

This design places all higher cognitive levels under implicit human control. In
particular, the use of the term “directives” indicates the predefined nature of the ro-
bot’s motivations. Real-time explicit human control is provided by a user interface,
not shown in the architectural diagram. The interfaces between the modules are
typed, but the system could have been designed with untyped interfaces as well.

3.2. LEARNING ALGORITHMS

To test the theory of the LLS allowing incremental development, all modules were
initially implemented as simple I/O filters. At the same time, simple software was
also implemented to show the state of each module and interface in real-time.
This enabled all of the interfaces to be verified in a very short time – in other
words, the robot did not do any learning, but the user was able to make it walk
like a “zombie” by directly feeding data into the system. Over time, modules were
replaced one by one with increasingly sophisticated learning algorithms. Testing
and evaluation continued at each stage, and modules were written so that different
learning algorithms could be called into use as desired.
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Figure 4. System architecture showing primary and secondary directives.

The development of the actual algorithms implemented can be summarised as
follows:

Avoid Pain (Level 2): prevent the robot from falling over, or if it has fallen over
then recover to a standing position.
1. Simple pass-through interface test.
2. List of leg positions which cause the robot to fall over.
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3. Dynamically generated rule-tree containing information about leg configura-
tions which cause the robot to fall over.

4. Augmented rule-tree incorporating the notion of the robot’s own symmetry to
speed up rule generation.

Modify to Avoid Pain (Level 3): change the robot’s walking gait so that it does
not fall over.
1. Simple pass-through interface test.
2. Dynamically generated and updated rule-tree.
3. Augmented rule-tree incorporating symmetry to speed up rule generation.

Evaluate (Level 2) and Modify to Walk Fast (Level 3):change the robot’s walk-
ing gait to walk as fast as possible.
1. Simple pass.through interface test.
2. Rule-of-thumb algorithms aimed at minimising the amount of time without any

leg movements. (Other algorithms were proposed but not implemented due to
resource limitations.)

3.3. PHYSICAL CONSTRUCTION

The robot is about 300 mm long and has a total mass of 1 kg. It is constructed
mainly of brightly coloured 3 mm translucent acrylic sheets. Normal radio-control
servo motors are used to actuate each of the two degree-of-freedom legs. The six
legs each have a microswitch mounted in the feet, and microswitches in each corner
of the robot’s torso tell it when it has fallen down. A photograph of the robot in
action can be seen in Figure 5.

Control of the robot is effected by a PC running MS-DOS. This is connected
to the robot via a long umbilical cord. All signals to the servos are supplied using
two parallel ports in the PC. The learning software is run on a separate computer,
connected by a RS-232 serial cable running at 9600 baud.

Figure 5. Robbie climbing an inclined plane.
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Before the robot was built, a simulation was developed to check that its overall
learning architecture was likely to work. This was a simply done by plugging in a
“world” simulation module at level 0, and removing it when the robot was ready.
The simulated world was based in part on work by Bajd et al. (1994) on unstable
states in legged locomotion.

3.4. ROBOT PERFORMANCE

The actual performance of the learning algorithms will not be discussed in depth
here. It is sufficient to note that the more sophisticated learning algorithms gave
better performance, both in the speed of learning (time to successful walking with-
out falling over) and in the maximum walking speed attained. In particular, it was
found that the algorithms which included the concept of the robot’s own symmetry
performed significantly better than those which did not. This was particularly true
at the start of the learning process, when the robot needed as much information as
possible to learn quickly – even if that information was not reliable.

Over time, the performance of the robot during development progressed as
follows:

1. No learning; “zombie” walking only.
2. Simple learning modules installed: poor performance.
3. More sophisticated learning modules installed: better performance as each im-

proved module was added.

Because the robot was verified as working even before the first learning al-
gorithms were devised, a degree of concurrent engineering was made possible.
Implementation of the physical robot began before the simulation was completed,
and the learning algorithms were developed incrementally alongside the physical
robot. The critical element for providing the confidence to proceed with paral-
lel development was the early definition and verification of the layered learning
architecture, even without any idea of how each individual module was to be
implemented.

4. Conclusion

A generalised way of designing large learning systems using layers has been de-
veloped which provides a framework for controlling the complexity of the system.
A robot developed according to the principles of decomposition into layers was
found to have several advantages in development, including incremental upgrad-
ability, easy design verification, rapid development and concurrent development.
Further work should include the building of a system incorporating all of the cog-
nitive levels proposed, at least in a very crude fashion, to further test the viability
of the architecture.
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