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SynopsisThis paper argues for the development of syntheti approahes towardsthe study of brain and behavior as a omplement to the more traditionalempirial mode of researh. As an example we present our own work onlearning and problem solving whih relates to the behavioral paradigms oflassial and operant onditioning. We de�ne the onept of learning in theontext of behavior and lay out the basi methodologial requirements amodel needs to satisfy, whih inludes evaluations using robots. In addition,we de�ne a number of design priniples neuronal models should obey to beonsidered relevant. We present in detail the onstrution of a neural modelof short- and long-term memory whih an be applied to an arti�ial behav-ing system. The presented model (DAC4) provides a novel self-onsistentimplementation of these proesses, whih satis�es our priniples. This mod-el will be interpreted towards the present understanding of the neuronalsubstrate of memory.
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1 IntrodutionThe systemati investigation of animal learning and problem solving start-ed about one hundred years ago with the work of Thorndike and Pavlov[44, 33℄. These studies introdued two paradigms whih have sine thendominated the �eld; operant and lassial onditioning. Operant, or instru-mental, onditioning desribes tasks where animals learn on the basis of theonsequenes of their own ations. Thorndike used a, so alled, \puzzle box"(Figure 1.A), where an animal, a at or dog, had to learn a spei� sequeneof ations in order to esape from the box. Using these examples of trial anderror learning Thorndike showed that performane, as measured by time toesape, improved over trials. The paradigm of lassial, or Pavlovian, on-ditioning refers to learning phenomena where initially neutral, onditionedstimuli (CS), suh as lights and bells, beome through their orrelated p-resentation with motivational, unonditioned stimuli (US), like footshoksor food, able to trigger a onditioned response (CR). In the early work ofPavlov this involved the indution of onditioned salivation (CR) to a bell(CS), using food as an unonditioned stimulus (Figure 1.B).Insert �gure 1 about hereThorndike's researh is an early example of omparative psyhology,where the di�erenes between human and animal problem solving were in-vestigated. Thorndike's goal was to plae this line of researh on a �rm em-pirial footing as opposed to the more anedotal approah of his predeessors(i.e. [37℄). He aimed at isolating the laws that govern the learning proess.His most famous proposal is the so alled Law of E�et, whih states that3



assoiations develop aording to the outome of ations; rewarded ationsstrengthen assoiations while punished ations weaken assoiations. In aseof Pavlov the fous was on the neuronal mehanisms underlying the form-s of learning he initially observed while investigating the digestive system.Both inuential paradigms have over the last entury led to an extendedprogram of researh in psyhology, ethology, and neurosiene. They havealso formed the driving fore behind the behaviorist revolution of the twen-ties and thirties, with its emphasis on a stritly empirial approah towardsthe study of behavior. The restrition to \observables" imposed by this ap-proah1, however, together with the development of omputing mahineryindued a shift to a more integrative, multidisiplinary approah, ognitivesiene [12℄. The aim of ognitive siene was to open the blak box whih in-tervened between the stimuli and responses manipulated by the behaviorists.Today, the study of mind, brain, and behavior is a strongly multidisi-plinary �eld, also known as ognitive neurosiene. Properties of the brainand behavior are desribed over a wide range of levels: from moleules, ionhannels and ells to iruits and systems. These di�erent levels of desrip-tion have been progressively investigated by more and more researhers,who have beome inreasingly speialized. The olletive database of theire�orts has taken on enormous proportions. An immediate onsequene ofthis speialization is an unpreedented fragmentation of knowledge whihan be seen as one of the main limiting fators in our understanding ofmind, brain, and behavior. This problem is not unique for this domain.1although it needs to be emphasized that this is ertainly not true for many researhersof this period (e.g. [16℄) 4



Similar observations have been made in biology, where Strohman [41℄ inter-prets this as a sign of a sienti� risis, and in psyhology, where Newell[31℄, identi�es the \great psyhologial data puzzle" and proposes that asyntheti approah, arti�ial intelligene, an alleviate this situation.As an illustration of the fragmentation of sienti� knowledge we anonsider the issue of learning, the subjet of our own studies. The onep-t of learning traditionally designates long-term hanges in the behavior ofa system. Psyhologists have aumulated a large amount of observation-s on the behavioral regularities that an be observed under spei�, oftenrather arti�ial, onditions over a wide range of animal speies, from snail toman [23, 11℄. Neurosientists have added to this set observations on e�et-s whih are dependent on partiular lesions or pharmaologial hallenges.Alternatively they have reported on orrelations between physiologial mea-sures and performane [24℄. Other neurosientists have investigated thesubellular hanges assoiated with learning, for instane using the popularparadigms of long term potentiation and depression [2℄. These investigationsare often based on the ommon assumption that the substrate of learningis provided by synapti plastiity. Others, however, would argue that theneuronal substrate of learning needs to inlude more general hanges inneuronal morphology and interonnetivity patterns (e.g. [14℄). These ap-proahes are further omplemented with explorations at a geneti level [5℄.At the marosopi level of omplete systems novel imaging tehniques haveopened up a window on the proesses involved in learning and memory inthe human brain [40℄. The above demonstrates the wealth of methods and5



tehniques. The guiding priniple of how these are employed, however, isin general to detet a orrelation between a partiular manipulation of thebehaving system and brain derived measures. An added ompliating fatorin suh an approah is that not only di�erenes between speies, but alsofor instane between strains, gender, age, and the iradian rhythm need tobe onsidered [1, 10℄. Given the tremendous advanes in the tehnologiesavailable the spae of possible orrelations must be onsidered pratiallyin�nite. Given this wide range of perspetives on learning, the question anbe raised, whether the same phenomenon is studied in all these approah-es. Although the ognitive revolution might have opened the blak box, thepiees presently appear to us in a highly disordered manner. The need fora blueprint of the underlying design priniples is evident.We do not want to laim that no proposals are available on the prini-ples of behavioral and neural organization, whih underly the phenomenadesribed in the olletive neurosienti� database. For instane, in thease of lassial onditioning the model of Resorla and Wagner [36℄ (see[27℄ for a review), provides a good desription of many behavioral regulari-ties observed in this learning paradigm. The basi assumption behind thismodel is that the e�et of reinforement, derived from a US, on the assoi-ation between a stimulus (CS) with the unonditioned response is not onlydependent on the properties of that partiular stimulus but also upon theproperties of the other stimuli known to the system; learning is based onthe violation of expetations. The model aimed spei�ally at aountingfor the phenomena of bloking and overshadowing [17, 18℄, whih demon-6



strated that learning does not seem to follow Thorndike's Law of E�et, butdepends on \previous knowledge" of the organism. Although this modelhas in turn been ritiized on various grounds (see [23, 11, 48℄) it makesaurate preditions on the behavioral hanges whih an be observed inlassial onditioning.Given the overwhelming amount of data, and the relative lak of hypoth-esis on underlying priniples, we need to onsider whether a pure empirialinvestigation of the phenomenon of learning, or any other onstrut appliedto neuronal funtion for that matter, will help us to understand the basipriniples of neuronal organization, whih �nd their expression in this myri-ad olletion of researh paradigms. There is no reason to admit defeat, butthis situation an be taken as a hallenge to reonsider the basi approahesfollowed. In this paper we want to demonstrate how a syntheti approahan provide a researh strategy whih is omplementary to the empirialmode of researh, ommon in the brain and behavioral sienes. A syn-theti approah, for example using omputer simulations, an failitate thedevelopment and exploration of senarios on the priniples of neuronal or-ganization. Before elaborating on the methodologial onsiderations behindsuh a proposal we want to further de�ne the onept of learning.Following earlier proposals [35℄ we assume that behavior serves to guar-antee the integrity of the behaving system [46℄. In the ontext of this as-sumption we propose that learning is a response of biologial systems to aertain type of unpreditability [45℄. Indeed, the genomi plan of an organis-7



m has to address two types of unpreditability: somati and environmental.Somati unpreditability results from the various ways the body plan anbe realized, depending on the highly nonlinear and omplex interations be-tween the genes, the phenotype and the environment. Environmental unpre-ditability means that biologial systems, spei�ally vertebrates, will haveto deal with an environment whose ruial properties are a priori unknown.Despite this unertainty they sueed in performing a wide variety of tasks.The knowledge required to aomplish these tasks an be aquired, essen-tially beause the world has some regularities that an be learned. Hene,we all learning any strutural hange to a behaving system, that apturesregularities of its interation with an environment that were not preditedby its genome, as to allow these regularities to be exploited in its behavior.Biologial systems that express learning are able to deal with a wider rangeof tasks and environments than systems that do not. The paradigms oflassial and operant onditioning reet adaptations to onditioned stimulithat an be a priori of any kind (they are only onstrained by the propertiesof the sensors) and they illustrate this versatility.A syntheti approah is based on the onstrution of models. Givenpresent day omputer tehnology we have the unique opportunity to realizethought experiments on senarios representing priniples of neural organiza-tion. These realized thought experiments, however, aquire sienti� mean-ing only through their interation with the domain of empirial observation.It is important to onsider in more detail the methodologial onsiderationsbehind a syntheti approah. On one hand, the aim of a model needs to8



be onsidered. Models allow us to summarize large numbers of observation-s on a ertain phenomenon in a rather onise way in terms of assumedunderlying variables and parameters. This failitates ommuniation andevaluation. On the other hand we need to be onerned with the validityof a model. In general a model tries to desribe a ertain input-output re-lationship, response funtion, in terms of a transfer funtion f: output =f(input). The observations whih express the input-output relationship willonsist of a number of points in some multidimensional spae. A modelan be seen as a means to draw a ontinuous line through these points. Asan example we an onsider the model of Resorla and Wagner, disussedearlier, whih makes preditions on learning urves, whih are measured interms of the fration of observed CRs after a ertain number of learningtrials. These types of desriptive models, however, are onfronted with afundamental problem. In priniple an in�nite number of lines an be drawnthrough the observed response funtion. This problem of indeterminanywas �rst pointed out by Moore in 1956 [28℄.The only way to answer this hallenge is by imposing additional on-straints on the set of possible transfer funtions. However these additionalonstraints are taken from other levels of desription; onvergent validation[47℄. This implies, however, that a model needs to be de�ned as a generativemodel where the transfer funtion beomes a marosopi variable of thede�ned system, while its entral parameters are de�ned at its mirosopilevel. As an example we an onsider the inuential model of Hodgkin andHuxley [15℄, whih desribes how the marosopi property of axons to ini-9



tiate and propagate ation potentials an be aounted for in terms of theinteration of a number of mirosopi omponents; a sodium, potassium,and leak ondutane, whih hange depending on the ion onentration andan eletrial gradient. Hene, in order to address the problem of indeter-minany, models should neessarily be required to be generative, satisfyingonstraints from multiple levels of desription; i.e. anatomy, physiology, andbehavior. The ombination of our oneptualization of learning and thesemethodologial onsiderations onstitutes a program of syntheti epistemol-ogy [54℄; the study of learning by biologial systems following a multilevelsyntheti approah based on large sale omputer simulations and real-worlddevies; robots.1.1 RobotsIs there a di�erene between a brain, a robot and a omputer? What weall a robot is an arti�ial behaving system that an interat with an envi-ronment. There is no reason to believe that natural brains are intrinsiallyable to perform operations unaessible to omputers. But our previous def-inition implies that learning is possible in natural or arti�ial systems onlyif they interat with an environment. Hene, models that inlude robotiomponents an approah the study of the priniples of neural organizationin a more powerful way than methods that restrit themselves to internalomputations, sine they an aount for the various interations betweena behaving system and its environment. The \knowledge" developed by abehaving system (natural or arti�ial) through a learning proess depends�rst on the properties of its ontrol struture. However, another limiting fa-tor is the omplexity of its environment, whih generates the stimuli. Sine10



learning implies that some regularities exist in the world, omplex learnedabilities need, in order to emerge, a world with omplex properties.Robots an be real-world devies, but it is also possible to simulate be-having agents and their environment using omputer programs. In our re-searh we use both approahes [30℄. Using real-world devies an ensure thatthe omplexity of the environment will not be a limiting fator of learning.However, simulated robots allow a systemati evaluation of all the parame-ters that are relevant for the learning proess, and guarantee repeatabilityof the experiments.In our further analysis, we will present our work on learning and problemsolving as an example of a syntheti approah based on the above method-ologial and oneptual onsiderations. Sine the aim of the present paperis to provide an illustration of the potential of this approah we will fouson desribing relevant examples from our own work. In partiular, we willdesribe in more detail the development of a fully neurally realisti systemof short and long-term memory whih is evaluated in the ontext of arti�ialbehaving systems. This serves to illustrate the di�erent aspets of a syn-theti multilevel approah towards the study of mind, brain, and behavior.Given these aims we will not provide an exhaustive omparison with theexisting literature relating to the details of the presented models.
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1.2 The learning hypothesisIn order to explain the forms of learning revealed through the experimentalparadigms of lassial and operant onditioning, we assume that they anbe desribed by di�erent, but interating, levels of ontrol. First, unon-ditioned responses an be derived from a reative ontrol struture. Thisstruture implements prewired relationships between US events and URs,and will reexively respond to immediate events. Sine the set of unondi-tioned stimuli is derived from genomi information, these stimuli must besimple and based on low omplexity sensors, in general proximity sensors.Unonditioned responses reet ations of a behaving system in response tospei� events. For instane, a burning hot ontat on the hand triggers aontration of the arm. Reative ontrol provides the behaving system witha basi level of ompetene to deal with its environment and prevents itsdisintegration.Seond, the tuning of the responses of an organism to non-spei� eventsan be aounted for by an adaptive ontrol struture. Sine non-spei�events are a priori unknown, this struture will need to develop representa-tions of events that are relevant (the CS). The riterion of relevane is theorrelation of CS events with unonditioned stimuli, or previously aquiredonditioned stimuli. The representation of CS events is onstruted at thelevel of adaptive ontrol. This level of ontrol approximates relations be-tween CS and US events through instantaneous orrelative measures, andtriggers onditioned responses to onditioned stimuli. At the level of anadaptive ontrol struture the detailed properties of a UR, suh as its onset12



and duration, an be hanged to reate a CR (spei� learning).Third, orrelations between stimuli that are not instantaneous an beaptured by forming sequential representations of sensorimotor events. Alevel of ontrol forming sequential representations (ontextual ontrol) allowsthe behaving system to aquire \plans" involving its future ations and theexpeted stimuli resulting from these. For instane, in Thorndike's puzzlebox, a at had to perform several ations in a preise order, for it to esapefrom the box.Our hypothesis is that these three levels of ontrol are suÆient to a-ount for both lassial and operant onditioning phenomena. DistributedAdaptive Control (DAC) are a series of models that implement these threelevels of ontrol using arti�ial neural networks. They are evaluated in theontrol of behavior using robots [49, 50, 46, 30, 51, 53℄.1.3 Priniples of neural designGiven our inomplete knowledge of the biologial mehanisms of learningand problem solving, it is neessary to onstrain our hoies of implemen-tation. In this ase we want to partiularly emphasize the onstraints im-posed on information transfer in biologial systems. A neuron an only usethe information that is loally available, through synapses or other forms ofhemial transmission. In partiular, it is not possible to move a pattern ofativity from one population of neurons to another using a supervisor thatwould pik the information somewhere in the network and move it to anoth-13



er plae. This onstitutes a priniple of loality. This priniple is true forspae (spatial loality) but also holds for time; if a pattern of neural ativityhas not hanged the strutural properties of the substrate, (e.g. synapses,ell morphology), it annot be reonstruted later (temporal loality). It isfundamental to respet these priniples in the design of ontrol strutures, ifone doesn't want to violate the obvious fats known about biology. A thirdpriniple guiding model development is to minimize the omplexity of thenetwork. This is not only based on ommon sense (Okham's razor), butalso on the observation that in ase the testable omponents of a model areprovided by its assumptions, starting a model based on a super-powerfuldesription method would prelude any further validation [25℄.2 MethodsThe behavioral task we use to study our models of ontrol is a foragingtask, where an agent has to avoid ollisions with obstales while loatingtargets dispersed in its environment. Experiments are performed either in asimulation environment, BugWorld [13℄, or using a real-world robot (Khep-era, K-team,Lausanne) with the IQR421 distributed simulation environment[52℄.
Insert �gure 2 about hereBugWorld is a two-dimensional environment ontaining obstales, tar-gets, and irular robots. The body of a simulated robot is alled the soma(�gure 2.A). BugWorld robots have proximal and distal sensors. Their dis-tal sensors respond to the distane to surfaes in their �eld of view. The14



proximal sensors are target and ollision sensors. The target sensors areplaed at 90o and �90o from the axis of the soma. They detet a signalemitted by the targets, whih is a dereasing funtion of the distane to thetargets. For the Khepera robot (�gure 2.B), the targets are light soures.The proximal sensors of the Khepera robot are infrared (IR) sensors, withwhih the immediate proximity of IR reeting surfaes an be deteted,or ambient light levels an be measured. Its distal sensor is a olor CCDamera.In DAC, proximal sensors generate unonditioned stimuli (US) whiledistal sensors generate onditioned stimuli (CS). The unonditioned stimulian be of two types: aversive (US-) or appetitive (US+). Appetitive stim-uli ome from the targets and the assoiated reexes are approah ations.Aversive stimuli are ollisions with obstales, and the assoiated reexes areavoidane of the obstale.3 The Distributed Adaptive Control series3.1 DAC0: The reative ontrol strutureDAC0 is our implementation of a reative ontrol struture. It is fullyprewired and its ontrol onsists of basi reexes or stereotypi behavioralpatterns.The ontrol arhiteture DAC0 onsists of 3 types of neurons2 (�gure 3):� Internal state units (IS) reeive inputs from the US sensors. Theyan be of two types: aversive (IS�) or appetitive (IS+). The IS�2What we mean with neuron is an approximation of a biologial neuron, that sums itsinputs and gives an output value whih is a nonlinear funtion of this sum.15



group gets inputs from the ollision sensors while the IS+ group get-s inputs from the target sensors. The IS ells are ative when theorresponding ollision sensor element is ativated.� Ations are triggered by a group of motor units (UR). UR reeivesits inputs from the IS ells. The inputs reeived from IS+ triggerapproah ations while the inputs from IS� trigger avoidane ations.� An inhibitory unit I is exited by aversive events (IS�) and inhibit-s the appetitive ells IS+. This provides the agent with prioritiesbetween approah and avoidane behaviors; onit resolution.Insert �gure 3 about hereA trajetory of DAC0 onsists of typial events (�gure 4). The behavingagent an move forward, turn to the right or to the left. In the abseneof any stimulus, it moves forward, whih onstitutes exploration. Startingat position 0, DAC0 explores its environment (translational movements).In positions 1,2 it ollides with obstales and eah ollision indues a turnto the left (avoidane ation). At loation 3 the target A is deteted andan approah behavior is indued. Another ollision ours at loation 4,triggering a turn to the left. In loation 5, the soma follows the gradient ofthe signal until the target is found.Insert �gure 4 about here3.2 DAC2: Adaptive ontrol strutureThe adaptive ontrol struture, DAC2, learns to orrelate CS events (distalsensor) with internal states (IS). It is an implementation of the non-spei�16



omponent of lassial onditioning. DAC2 inludes the reative ontrol ofDAC0. Initially, the behavior of DAC2 is entirely made up of the unon-ditioned reexes triggered by its reative ontrol struture. This reativestruture onstrains any subsequent learning proess.
Insert �gure 5 about hereWe propose that a entral element of lassial onditioning is CS iden-ti�ation. Thus, DAC2 has another population of units, CS, whih reeivetheir inputs from the distal sensors (�gure 5). Learning at the adaptive lev-el onsists in \ategorizing" the CS events and lassifying their orrelationswith US events. Categorization means that a prototypial representation ofthe CS is onstruted from the input CS. Learning leads to the ontrol ofthe UR ells by the CS population; In ase a relevant CS event is reog-nized, the ativity of the CS ells is propagated to the IS units whih inturn ativate the motor units through the prede�ned onnetions betweenIS and UR.Learning the onnetions between CS and IS ells is based on a reon-strution: First, exitatory onnetions from CS to IS translate the ativityof CS into a pattern of ativity in IS. Then, inhibitory feedbak onne-tions from IS to CS propagate a prototype of the CS, dependent on ISativity, whih is subtrated from the ativity of the CS ells. The di�er-ene between the atual CS and the CS prototype is alled reonstrutionerror. The modi�ations of the symmetri synapti weights are proportionalto this error. 17



The ativity vi of unit i in the IS population is:vi =Xj wijuj + i (1)where i is the omponent that depends on the US, uj is the ativity of unitj in CS, and wij is the synapti weight between i and j. The IS populationin turn inhibits the CS population, generating a prototype. The prototypevetor p is de�ned by: 8j; pj =Xj wijvi (2)where pj is the predited ativity of CS unit j given the ativity in IS. Afterthis feedbak, the ativity of ell j of the CS population, u0j, is de�ned asu0j = uj � pj , whih orresponds to the reonstrution error. The weightsof the onnetions between CS and IS are updated aording to a Hebbianlearning rule: 8i; j;�wij = �viu0j (3)where � is a learning rate.This learning rule is de�ned on the basis of a number of observationsderived from our roboti experiments. In [49℄ it was shown that in orderto aquire and retain CS-US assoiations in a behaving devie a orrelationbased learning rule needs to inlude an ativity dependent depression ter-m. This renders a learning rule equivalent to the, so alled, Oja learningrule [32℄. It was demonstrated, however, that this solution beomes unstableover long periods of time. The observed instability of this loal learning rule,primay and overgeneralization, was solved by embedding the proess regu-18



lating synapti eÆay in a reurrent iruit [50℄, and was further developedin [53℄.Figure 6 shows the representations of CS events expressed in the strengthof the synapses between the CS and IS populations of a real-world agent.The environment of �gure 6.A has regular properties; di�erent US events areorrelated with the presene of pathes of di�erent olors that are detetedby the visual system of the robot. This system uses 36 ells, 12 for eah olor(red, green and blue). Eah ell overs a unique 45x30 pixels region in the640x480 image from the amera (see [53℄ for details). In this environment,the robot learned to assoiate partiular olors with partiular US events.Figure 6.B displays the time evolution of the synapti weights of the adaptiveontrol struture, after 1, 1.5 and 2 hours. Not only are the orrelationspresent in the environment aurately reeted in the interonnetivity, butindividual ells in IS� and IS+ develop unique representations of partiularollision or target events. For instane, the white retangle in the seondrow, �rst olumn of the \red { IS�" matrix shows that the ollision detetornumber 2 was orrelated with the presene of red in visual region number 1(upper left orner), resulting in a high synapti weight. Comparing the threedisplays we observe that the invariants extrated from the environment byDAC2 remain stable over an extended period of time (�gure 6.B).Insert �gure 6 about hereLearning in this ontrol struture is, however, limited to immediate or-relations between CS and US events. The result is that the behavior ofDAC2 entirely depends on urrent sensory inputs. The agent an exploreits environment and extrat some general properties, but annot learn tem-19



poral relations between multiple events.3.3 DAC3: A ontextual ontrol strutureThe aim of the third level of ontrol is to allow the aquisition of sequen-tial representations of events, to retain them in a memory, and to expressthem in behavior. In a task of sequene learning, the response (output) of asystem does not only depend on the immediate input, but also on the on-text provided by previous inputs; temporal ontext [56℄. An agent providedwith this third level of ontrol is able to hoose its ations based on both thetemporal ontext and on its experiene. This level is alled ontextual ontrol.A sequene onsists of sensorimotor events; segments. A segment is aouple onsisting of a CS prototype, onstruted by the adaptive ontrolstruture (eq. 2), and an assoiated motor ation (UR).A ontextual ontrol struture will need to selet ertain sensorimotor se-quenes, among the whole set of behaviors generated by the adaptive ontrolstruture. Sequenes that need to be seleted for aquisition are those thatlead to a modi�ation of an internal state. For instane, in our foraging task,we use the ontextual ontrol struture in order to �nd targets. In this spe-i� task, a sequene of ations that leads to a target is a rewarding sequene.Insert �gure 7 about hereIn order to aquire a sequene, it is neessary to remember the senso-rimotor events that have preeded the modi�ation of the internal state.20



Sine we do not know what the outomes of our ations are, it is neessaryto have a mehanism that ontinuously stores events and is able to retainthem; short-term memory. It should be emphasized that sine we have noa priori knowledge of what events will later trigger a hange in the internalstate, like the delivery of a reward, the short-term memory needs to keeptrak of any event at any time.In order to modify the behavior, sequenes that preeded a modi�ationof an internal state have to be stored in a seletive memory that keeps trakof these events over a longer period of time than the short-term memory.For the present disussion, we refer to this omponent as long-term memory.This de�nition is more restritive than the de�nition of long-term memorygenerally used in psyhology, whih designates all long-term hanges [42℄.For instane, learning at the DAC2 level is a form of long-term memory butfor our present disussion it is onsidered as a separate mehanism. Whilethe agent explores its environment it ompares its sensory inputs with theontent of its long-term memory in order to use its learned behaviors. Ifthe urrent CS prototype and the urrent ontext math a learned situa-tion, then the agent exeutes the orresponding motor ation stored in itslong-term memory.In our foraging task, rewarding sequenes are aquired during stimula-tion periods where targets emit a signal. The expression of learned behaviorsan be observed during reall periods where the signal emitted by the targetshas been suppressed. 21



For our implementation we make an additional distintion between de-fault and non-default ations. During the stimulation periods, the signalfrom the targets (US+) an trigger approah ations of the adaptive stru-ture, or suppress avoidane ations, if the inuenes of the US+ and theUS- are balaned. Ations that depend on the US+ are alled non-defaultations. If no US+ is deteted, default ations are generated by the adaptiveontrol struture. Sine we want to use the ontextual ontrol struture inorder to �nd targets during reall periods, only the non-default ations needto be onsidered in the sequene learning task.DAC3 is our �rst implementation of an agent with ontextual ontrol[46℄. Its ontextual ontrol struture is built on top of the same adaptiveontrol struture as DAC2. The short-term memory of DAC3 is a ring bu�erthat stores the last sensorimotor events. Eah time a target triggers a non-default ation, a CS-UR ouple is stored in this bu�er. The stored CS eventorresponds to the prototype that has been derived from the stimulus, theUR event orresponds to the triggered motor ation. If a target is found thenthe sequene ontained in the short-term memory is stored in the long-termmemory. Hene, the long-term memory is a list of sequenes of sensorimotorevents.During exploration the atual CS prototype (equation 2) is ompared tothe prototypes in the segments of the long-term memory. This omparisonis followed by a seletion; the best-mathing unit (winner), if its prototype22



is lose enough to the atual CS prototype, indues an ation by ativatingthe UR units. This seletion, however, is biased sine the winner unit willenhane the likelihood that the next segment of its sequene will win theompetition in the future. This bias allows the ations of the agent to bedependent on ontext (haining).Preliminary experiments showed that DAC3 is able to display struturedbehaviors, suh as stable trajetories between targets [46℄. In [53℄, we haveshown that the ontextual ontrol struture allows DAC3 to �nd more tar-gets than DAC2 during reall periods, when the signal from the targets issuppressed.4 DAC4: A neural implementation of a ontextualontrol strutureThe priniples underlying the ontextual ontrol struture of DAC3 are om-petition between simple units and seletion. These mehanisms are funda-mental priniples in unsupervised training of neural networks, and theirrole has been onsidered in natural systems, [4, 21℄. So far, however, forthe short-term and long-term memory strutures of DAC3 we made use ofring bu�ers and hained lists. In this way the implementational issues wereside-stepped in order to investigate the funtional properties of a ontextualontrol struture. These preliminary investigations established that sequen-tial learning ould be explained in these terms [53℄. The question whetherthe same funtional properties ould be implemented in a biologially plau-sible way raises some important hallenges.
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DAC4 is our �rst fully neural implementation of a ontextual ontrolstruture. It is onsistent with the priniples of loality presented in theintrodution; it does not violate the obvious knowledge that we have of bi-ologial proesses of learning. Addressing the issue of the neural design ofthis ontrol struture allows the investigation of the onstraints imposed onnatural nervous systems, in terms of aquisition, retention and expressionof information. These are fundamental questions that annot be addressedby the lassial approah of designing neural networks that perform isolatedtasks, given the relationship between a ontrol struture, the properties ofthe soma and of the environment we showed earlier.4.1 RequirementsBefore we present the model we want to speify in detail some funtionalrequirements of a neural struture that aquires, retains and expresses se-quential information.4.1.1 Sequene learning with ANNsA ontextual level has to aquire sequenes of sensorimotor assoiations.Sequene learning means that the responses generated by the network aremore than simple assoiations between inputs and outputs, but also dependon the temporal ontext provided by its previous inputs [56℄.Sequene learning with neural networks has been investigated in variousways [9℄, [34℄, [19℄. A robust lass of methods use networks with reurren-t onnetions, so that the pattern of ativity of the ells in the reurrent24



loop depends on the temporal ontext of past events, thus having units rep-resenting ontext [8℄. Most of these models, however, use the supervisedbakpropagation of an error signal in their learning rule, and this error termontains nonloal information. In addition these models fae diÆulties inthe representation of temporal ontexts with long-term dependenies [3℄.(Dominey et al, 1995) showed that sequene learning is also possible witha reurrent network, using only loal information [7℄. This network is madeof two interonneted populations, State and Context, and an output pop-ulation. The synapti weights of the reurrent onnetions between Stateand Context are randomly hosen, and not plasti. Sequenes are learnedusing a Hebbian learning rule between units of State and units of the outputlayer (assoiative memory). In this ase, the temporal ontext is representedby the pattern of ativity in State and Context; the ativities of the ellsin these populations depend on the temporal ontext. This representationis prede�ned by the random onnetions. This network has been applied tothe study of ortiostriatal plastiity, and the dynamis of prefrontal ortex[7, 6℄. Sine it does not violate the priniples of loality and has the ro-bustness of reurrent networks, we tried to adapt it to our task of sequenelearning.4.1.2 The short-term memoryCan we use a reurrent model like the one presented in [7℄ for the short-termmemory? This model is in general not able to learn a sequene using onesingle presentation, beause it uses an assoiative memory. A short-term25



memory, however, needs to aquire sequenes immediately. Consider thease of a network that needs several presentations of a sequene in orderto suessfully store it. In order to funtion as a short-term memory, suha network would need to aquire sequenes at the moment when they arepresented by the external environment, and not at moments that dependon internal onstraints imposed by the network. For instane, if two pre-sentations of a rewarding sequene are separated by an interval of one day,then this network would have to maintain the preliminary sketh of learningfor one day before it ould be re�ned. However, as we disussed earlier,the short-term memory needs to keep trak of any event. Therefore, all theevents that happen within this day would have to be aquired in the sameway, without erasing the �rst preliminary sketh of learning. Sine the out-ome of ations annot be known in advane, suh a memory would have tostore an exessive amount of information and thus need a giganti apaity.Therefore, aording to the de�nitions of short-term and long-term memo-ries given in setion 3.3, it is neessary that the short-term memory aquirespotential rewarding sequenes after one single presentation. In this ase, itsontent an be retrieved for long-term storage when there is a modi�ationof an internal state, or erased during foraging.4.1.3 The long-term memoryCan we use the same reurrent neural network for the short-term memoryand for the long-term memory? In the model of (Dominey et al, 1995) [7℄ therepresentation of ontext is prede�ned by the random onnetions. Aord-ing to our de�nition, the task of a short-term memory is limited to storage26



and restitution of sensorimotor sequenes. For this a prede�ned representa-tion of ontext is not a problem, as long as the sequene of events an beretrieved. However, a long-term memory has to do more than storage andretrieval of information. As a physial system, it will have a �nite apaity.However, sine it will have to learn a virtually in�nite set of sequenes, along-term memory needs to build ategories and perform generalization.A prede�ned representation of temporal ontext annot perform generaliza-tion and would restrit the set of possible ategories. This means that therepresentation of ontext used by a long-term memory needs to adapt itselfto the data rather than be �xed.Another requirement of long-term memory an be alled identi�ability:In the omparison of urrent events with the ontent of the long-term mem-ory, all the elements of any sequene are potentially relevant. Thus, theyall need to be aessible at every moment. This favors representations ofdistint prototypes by distint units, instead of omplex patterns that areattrators of the dynamis of a reurrent networks [53℄.4.2 The modelGiven the above onsiderations, we hoose to implement the long-term mem-ory and the short-term memory strutures using two di�erent neural net-works. These separate networks satisfy the above requirements. The follow-ing setions are a general presentation of these networks. For a ompletedesription, see the appendix.
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4.2.1 The short-term memoryMost models of sequene learning with a neural network need several p-resentations of a sequene in order to learn it. But as argued above theshort-term memory of a ontextual ontrol needs to aquire sequenes afterthe �rst presentation. Insert �gure 8 about hereIn order to solve this problem, we modi�ed the model of Dominey [7℄,adding a new population of ells, alled Segments (see �gure 8). The popu-lations of the reurrent network for the short-term memory are alled Stateand Context. Units of Segments get inputs from the State population andassoiate State ativities to sensory prototypes (in the CS population) andmotor ations (in the UR population). At eah time step, a ompetitionselets a new unit of Segments whih learns the assoiation between theurrent pattern of ativity in State, resulting from past events, and theurrent pattern of ativity in CS and UR. The ells in Segments haveextremely plasti synapses; seleted ells learn the assoiation immediately.The ounterpart of this plastiity is that the information retained in theSegments population might be erased quikly when new assoiations areformed. We use a ompetition mehanism that favors units whih have notbeen seleted for a long time, in order to prevent quik overwriting of a-quired assoiations. What prevents sequenes to be forgotten on a longertime sale is their retention in long-term memory.
28



4.2.2 Transfer from short-term memory to long-term memory:Retention, ReplayThe hoie of having two separate populations of ells implementing theshort-term and long-term memories implies that the information aquiredby the short-term memory needs to be retained in the long-term memory;physially moved to another struture. In order to do this, our priniple ofspatial loality allows one possibility, whih is to reativate the sensory andmotor ells orresponding to a sequene in order to modify the long-termmemory synapses. It is during this \replay" that sequenes are stored in thelong-term memory.This raises another question: How will sequenes be replayed? Sequenesare made of sensorimotor events, but it is not obvious whether one needs toreplay them in the order of aquisition or not. They ould also be replayedin a reverse order, or in a random order. We hoose to replay events in thesame order as they were aquired, beause the long-term memory relies ona reurrent representation of temporal ontext whih reets the order ofevents. The other possibilities, however, annot be exluded a priori (seedisussion).In order to replay a sequene aquired by the short-term memory, a �rstunit of Segments needs to be seleted (�gure 8), whih initiates the replay.The seleted ell does not hange its plastiity, but exites ells in the sen-sory population orresponding to the CS and the assoiated motor units.Motor ations are inhibited during this phase. The sensory ativation ispropagated in the reurrent network of the short-term memory, State and29



Context, whih triggers a representation of the ontext orresponding to thenext sensorimotor ouple of the sequene, and to the seletion of the nextorresponding Segments unit. This loop allows to replay events in theirorder of aquisition. The result of this replay is the reativation of sensori-motor units in the order of the sequene.4.2.3 Initiating the replayThe hoie of replaying sequenes leads to an additional problem: Our re-urrent network is able to retrieve a sequene starting from its beginning, orfrom any point of the sequene, but needs to be put in the state of ativityorresponding to the starting point of the replayed sequene. However, atthe moment the replay is initiated, the previous patterns of ativity of thenetwork are lost. Given the onstraint of temporal loality, the short-termmemory has to \retrieve" this starting point by translating a set of synapsesinto a pattern of ativity. In addition, the \starting point" of the rewardingsequene is a priori not de�ned for the network. Thus, how shall the replaybe initiated?A possibility ould be to use an additional system that ats as a super-visor. This system would store 'salient' events in order to use them later asstarting points for the replay. This solution would add omplexity to thenetwork, and raise multiple problems suh as: \what are salient events?",\when should they be forgotten?", et. For this reason, we did not use thisoption. Our solution onsists in adding a random perturbation to the ativ-ity of the ells in State and Context, in order to selet the unit in Segments30



whih initiates the replay. Sine this pattern of ativity results from a ran-dom perturbation, it is not sure yet whether the network will replay eventsin the order of the aquired sequene. The evolution of a perturbation of areurrent network is linked to properties of its internal onnetions, of theresponses of neurons, and to the time onstants used. In partiular, thereis a set of onditions for whih the stored sequenes are attrators of thedynamis (suh a system is alled Lyapunov-stable). In this ase, the ampli-tude of the perturbation dereases during the replay, allowing for a replayof the segments in their order of aquisition. We use suh a set of onditionsfor the reurrent network made of State and Context. Thus, during thereplay proess a learned sequene will be retrieved, whih is an attrator ofthe dynamis.This does not guarantee that the replayed sequene will orrespond ex-atly to the events that led to the reward. However, depending on the num-ber of units in Segments, and on the amplitude of the random perturbation,one an inuene the probability to replay the relevant events.4.2.4 The long-term memory; retention, expressionInsert �gure 9 about hereWe mentioned the need to have an adaptive representation of ontext inthe long-term memory.The layers of the reurrent network used for the long-term memory areSTATE and CONTEXT (see �gure 9). Instead of having prede�ned on-netions, as in [7℄, units in STATE learn to respond to the oinidene of a31



sensory stimulus and a ontext represented in CONTEXT . The ativity inCONTEXT depends only on the previous ativities in STATE. (A detaileddesription of the learning rule used is provided in the appendix). Units inSTATE learn to eÆiently represent sequenes that are often presented,and are less able to represent situations that are rarely present in the explo-ration task. On eah time step, the unit of STATE whih has the highestresponse ativates the motor units, if its response is above a given threshold.This priniple allows a high exibility in the exeution of sequenes; theells of STATE respond to the stimulus and also to the state of advane-ment of the behavioral plan that has been started. This allows to adapt thebehavior of the agent when events in the world do not orrespond to thelearned sequene.Not all the omponents of a sequene have to initiate an ation, but therepresentation of ontext has to be maintained at all time, in order to allowthe ontinuity of the exeuted plan. As in DAC3, we make the distintionbetween default and non-default ations. In order to redue the sequenelearning task to the neessary non-default ations, the representation of tem-poral ontext in CONTEXT depends on the nature of the urrent ation:Between two non-default ations, the ativity of the ells of the CONTEXTlayer slowly deays. This makes the ells in STATE learn how muh timesteps have elapsed between the sensory events orresponding to non-defaultations. So the system also learns to let the same time elapse when thesequene has to be exeuted. 32



Unlike the short-term memory, this reurrent network will need severalpresentations of a sequene in order to learn it. For the long-term memory,this is not a problem sine it is possible to replay the same sequene severaltimes. Alternatively, the agent may have to �nd the target several times ifthe sequene is replayed only one eah time a reward is found.
Insert �gure 10 about hereFigure 10 shows an example of a suessfully learned sequene. In a �rstpresentation (10.1) the signal from the target is deteted. When the signalis removed (10.2) the agent does not �nd the target anymore. After severalpresentations and replays of the sequene, the target an be found withoutthe signal (10.3). Note that in 10.3 the motor sequene is not exatly thesame as in 10.1. They an be made idential with further presentation-s. More generally, experiments showed that the behavior of DAC4 is verysimilar to the behavior of DAC3; both are implementations of the sameontextual ontrol. This demonstrates that the priniples of ontextual on-trol explored by DAC3 an be implemented in a onsistent way obeying thepriniples of spatial and temporal loality.5 DisussionThis paper aimed at onveying a need to �nd approahes whih an helpus to explore priniples of neural organization. We propose that synthet-i methods, for instane based on digital simulation, provide an exampleof suh an approah whih is omplementary to the more traditional em-33



pirial mode of researh in the study of brain and behavior. A synthetiapproah, however, needs to follow a methodology whih we summarizedunder the notion of onvergent validation. This means that models need tosatisfy onstraints taken from multiple levels of desription. As an exam-ple of suh an approah we have reviewed our own work on learning andproblem solving, Distributed Adaptive Control. In this ontext, learning isstudied from a perspetive that inludes the environment, the phenotype,and the detailed properties of its ontrol struture (brain). We onsider ourown work as providing a theoretial framework whih at this point in time isself-onsistent, it obeys the priniples of loality and onnets priniples onphysial struture to regularities in behavior whih have shown to be validin the real-world in real-time. It would be naive, however, to stik partiularanatomial labels to the subomponents of our models. They do provide,however, a perspetive in whih observations on properties of the neuralsubstrate an be interpreted. In our example we will restrit ourselves tothe further interpretation of DAC4.Reently, the replay of neuronal �ring patterns during sleep, in the sametemporal order as during exploration, has been desribed in the rat hip-poampus [39℄, [38℄. Although these results have been questioned [29℄, theexistene of two separate learning systems in the hippoampal loop and inthe neoortex is well established [43℄. The role of these separate learningsystems has been investigated in abstrat terms [26℄, but these investiga-tions are limited sine they do not rely on a model of learning whih anbe evaluated in the ontext of a behavioral task. A syntheti approah, as34



demonstrated in this paper, allows suh an evaluation. However, the modelpresented here is not inspired by the anatomy, physiology or neuropsyholo-gy of hippoampus and ortex, but addresses the general problem of ommu-niation between di�erent neural strutures, in the ontext of behaviorallyrealisti tasks and well evaluated models of learning.We established that a system that is able to immediately aquire om-plex sequenes and that an learn general properties of these sequenes anbe de�ned obeying the priniples of loality, using two separate networks.The funtional properties of these two networks are a priori not ompat-ible and a priori not implementable in one homogeneous neural network.We demonstrated that a system relying on replay ould ombine the abovefeatures in a funtionally valid way; this method is onsistent with the fun-tional requirements imposed by the external world, as disussed in setion 4.An interesting impliation of the priniple of loality is the use of re-play; we use two di�erent neural strutures that desribe the same sensoryinput and that need to exhange information. This exhange of informationmust be performed by synapti transmission in order to respet the prini-ple of loality. A system that would aomplish this exhange using diretonnetions, without using replay, would have to de�ne a \ode" for thistransmission of information. De�ning suh a ode, however, is unneessarysine the information enoded would desribe the same sensory reality forboth systems. Hene, replay provides a less omplex solution, in whih aninternal ode is not neessary. 35



However, using replay has some important impliations for a neural sys-tem; during this phase, the neural populations in whih sequenes are re-played annot be used for proessing other inputs. This implies that thesepopulations need to work in two exlusive modes; an interative-open mod-e that allows sensory ategorization, generation of ation, aquisition ofsequenes by the short-term memory, and expression of sequenes by thelong-term memory, and a passive-losed mode where the neural populationshave to be isolated from sensory inputs whih would perturb the replay, inorder to allow retention of the sequenes.It is obvious that an organism working with these two distint modes isstrongly weakened during the passive mode. One an wonder, however, whybiologial systems display iradian rhythms involving ative and passivephases. If one assumes that a passive mode is neessary to a given biologi-al proess, like in our ase the replay of ativity patterns, then this modean also be exploited by other proesses, suh as metaboli proesses. Theresult of suh a situation would be that these other mehanisms exploitingthe passive mode, would in turn beome dependent on it. Hene, it wouldbe diÆult to know a posteriori whih proess originally required a passivemode. Today, it is not lear whether replay is used in the brain [29℄, whetherthe orresponding passive mode is sleep, and whether sleep is neessary toother metaboli proesses, like ell regeneration [22℄.The modeling series presented in this paper is by no means omplete36



and is still under ative development. It does illustrate, however, that asyntheti approah an provide insights in possible priniples of neuronalorganization and plae them in relation to the overall behaving system, as-suming that a number of oneptual and methodologial onsiderations aremet. It an provide a ompensation for the more redutionisti methodsfollowed in neurosiene with its impliations of knowledge fragmentation.The validity of our own trajetory through the spae of possible modelsneeds to be srutinized ontinuously and as suh onstitutes only an exam-ple of this approah. We do feel, however, that the problem of knowledgefragmentation does deserve the full attention of the �eld.
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6 Appendix: Detailed spei�ations6.1 The short-term memoryDAC4 is based on an earlier model of sequene learning whih uses loallearning rules [7℄. Following this model the temporal ontext of short-termmemory is represented by two neural populations, State and Context, whihare reurrently onneted. The integrated input, i, of unit i in Context attime t + 1 depends on its input at t and on the input reeived from unit iin State, s0i: i(t+ 1) = (1� �) i(t) + � s0i(t) (4)where � is a onstant. The ativity, 0i, of unit i in Context, is a funtionf of its integrated input: 0i(t) = f(i(t)), where f is a sigmoidal funtion.Next to inputs from Context units in State also reeive external input fromthe CS population. The total input, si, of unit i in State is de�ned as:si(t) = NCXj=1wCij j(t) + NCSXk=1 wCSik CSk(t) (5)where wC and wCS are random �xed synapti weights. NC and NCS denotethe size of populations Context and CS respetively, and CSk is the ativityof ell k in CS. The ativity s0i of unit i in State is a sigmoidal funtion fof its total input: s0i(t) = f(si(t)).The short-term memory uses a third population alled Segments. Eahof its units stores a sensorimotor ouple in its synapti onnetions withpopulations CS and UR, while its reeptive �eld is a pattern of ativity inState. The ativity g0i(t), of unit i in Segments, is a Gaussian funtion ofthe Eulidean distane gi(t) between the atual pattern of ativity in State,38



s0(t), and its synapti weights:gi(t) = 0�NSXk=1(wSik � s0k(t))21A1=2 (6)where wSi represents the vetor of synapti weights from State to unit i inSegments and NS is the number of units in State, and:g0i(t) = exp ��(gi(t)=�i)2� (7)where �i is the width of the Gaussian response of unit i. After updatingthe ativities in Segments a winner take all ompetition selets the unit, k,with the highest ativity: g0k(t) = maxi2Segments g0i(t) (8)This mehanism involves non-loal information. However, ompetition with-in a neural population an be loally implemented using lateral inhibition[21℄ and annot be seen as a violation of our priniple of loality.The winning unit k in Segments updates its synapti onnetions withState, CS and UR. This update is one-trial learning: the pattern of a-tivity in State is immediately assoiated to the urrent sensorimotor ouplethrough unit k. The new weight vetor from State to k is: wSk (t+1) = s0(t).In addition, the weight vetors wG�CSk and wG�URk between the winning u-nit k in Segments and the CS and UR populations are modi�ed aordingto: 8i 2 1:::NCS ; wG�CSki (t) = CSi(t) (9)8i 2 1:::NUR; wG�URki (t) = URi(t) (10)39



where URi denotes ell i in UR. This one-step learning implies that theseleted unit will loose a possible previous assoiation. However, it is nees-sary to ontrol how forgetting takes plae in the short-term memory, beausereently learned assoiation need to be retained suÆiently long to allow re-tention by the long-term memory. The parameter �i in equation (7) ontrolsthe spei�ity of the response of unit i. A large value of �i means that unit iwill respond to a wide range of stimuli. Modulation of this parameter allowsthe ontrol of forgetting in the short-term memory. At eah time step, �i isinreased for all the units of Segments:�i(t+ 1) = � �i(t) (11)where � > 1 is an inrease rate. In addition, for the winner unit k, this widthis reinitialized: �k(t) = 1. The loss of spei�ity (equation 11) ensuresthat units that have not been seleted for a long time will have a higherprobability to be seleted in the future. In ontrast, the probability that areently seleted unit will be seleted again is low. This prevents disorderedreruitment of the units in Segments.6.2 ReplayShort-term memory patterns are retained in long-term memory through re-play. During replay units in Segments are updated aording to equations(7) and (8). The resultant winning unit in Segments will ativate a new CSprototype. This will, in turn, lead to new ativity in State and Context,and allows the next Segments unit to be seleted (haining). In this asethe rate �, and the parameter �i of eah ell, remain at 1. In addition duringreplay units in Segments are able to ativate units in UR.40



6.3 The long-term memoryThe long-term memory is implemented by a reurrent network, made oftwo populations, STATE and CONTEXT . As in the ase of the short-term memory, units of STATE send one-to-one projetions to the units ofCONTEXT . They reeive inputs from the CS and CONTEXT popula-tions. The onnetions from CONTEXT to STATE are updated as well asthe onnetions from CS to STATE. The learning rule used is derived fromthe so alled Self-Organizing Map algorithm [20℄. In this ase, however, itis applied to a reurrent network. This provides an adaptive representationof ontext [55℄.The populations STATE and CONTEXT are two-dimensional. Thisallows to de�ne the distane between two units. The internal ativity, Si,of unit i in STATE depends on both the ativity vetors CS(t) in CS, andC(t) in CONTEXT :Si(t) = exp ��(ajjWCSi � CS(t)jj+ bjjWCi � C(t)jj)2� (12)where WCSi is a vetor representing the weights from CS to unit i ofSTATE, WCi the weights from CONTEXT to i, a and b are real num-bers, and jj:::jj denotes the Eulidean norm. The ell l of STATE that hasthe highest ativity is then seleted:Sl(t) = maxi2STATE Si(t) (13)During replay, eah unit i of STATE has its synapti weights updated,aording to: WCSi (t+ 1) =WCSi (t) + gil(CS(t)�WCSi (t)) (14)41



WCi (t+ 1) =WCi (t) + Ægil(C 0(t)�WCi (t)) (15)where  and Æ are learning rates, and gil is a Gaussian funtion of thedistane between units i and l. In addition, during replay, the urrent motorpattern is stored in the weights WUR between the winner unit l in STATEand the UR population: WURl (t) = UR(t) (16)During exploration, any ell of STATE an ativate the UR population ifits ativity is above a threshold. However, the learning rules de�ned in e-quations (14) and (15) hange the reeptive �elds of the winning unit, butalso of its neighbors. Therefore it is neessary to prevent units in STATEfrom ativating the UR population if their reeptive �eld does not orre-spond to a learned sequene; the reeptive �eld may have been modi�edmore reently (equations 14, 15) than the output onnetions (equation 16).In this ase, we limit the output ativity of the ell so that it annot exitethe motor units, using a term ei(t) alled exitability of unit i. Thus, theoutput ativity of unit i of STATE is de�ned as:S0i(t) = Si(t) ei(t) (17)If the output ativity S0l of the winner unit l is above a threshold, then itpropagates its ativity to the UR ells, induing a motor ation. Duringreplay, the exitability el of the winner unit l is updated: If the replayedevent orresponds to a non-default ation, then this exitability is reset toone, el = 1, otherwise it deays, el = (1� �) el, with (0 < � < 1).The ativities of the ells in CONTEXT depend on the nature of the42



urrent ation. If a non-default ation is generated, then:Ci(t+ 1) = (1� �) Ci(t) + � Si(t) (18)where � is a onstant. In the ase of a default ation the ativity inCONTEXT dereases, independently of the ativity in STATE:Ci(t+ 1) = (1� �) Ci(t) (19)This latter mehanism ensures that the pattern of ativity in CONTEXTontinuously hanges between two non-default ations. Therefore, unitsin STATE, that trigger non-default ations, an learn to respond after aertain time interval following the last non-default ation triggered.
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A BFigure 1: A: Experimental setup used by Pavlov. B: Thorndike's puzzlebox.
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Target sensor Collision sensor array

Range finder field BFigure 2: A:The soma of the simulated robot: Target sensors are plaed oneah side. The front side is overed with ollision sensors and distal sensors.Arrow indiates the primary diretion of motion. B: The Khepera robot.The CS is the image from the olor CCD amera mounted on top. The USomes from light and IR sensors plaed at the lower irumferene of thebase. The Khepera robot is irular with a diameter of 3 m and 8 m high,inluding the amera.
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Figure 3: The reative ontrol struture. Collision sensors and target sensors(US) modify the internal state (IS). The IS populations trigger reativemotor ations. An inhibitory unit de�nes the priority between the two ISpopulations.

Figure 4: A trajetory of the soma generated by a reative ontrol struture.A ollision triggers an avoidane reation (US�) (1,2,4). Targets in A,B,C,Demit a signal that an be deteted by the sensors (appetitive unonditionedstimulus, US+). These an trigger approah ations (3,5).
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Figure 5: The adaptive ontrol struture. A reurrent loop with inhibitoryfeedbak onnetions allows to learn how to ategorize the CS events. TheCS modi�es the internal states (IS), triggering onditioned reexes.
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Figure 6: A: An environment used for the Khepera robot. Blue and greenolor pathes are dispersed on the oor (light and dark gray respetively onthe �gure), and the environment is delimited by a irular wall on whih redpathes are attahed. Red was orrelated with ollisions (US-) while greenand blue were orrelated with the presene of a light soure (targets-US+)plaed over the middle of the environment. A trajetory of the robot is plot-ted, whih lasted 4 minutes and was reorded after one hour of exploration.B: Synapti onnetions between the olor responsive CS ells and the ISpopulations. Eah olumn represents the set of ells of CS responsive to aspei� olor, red, green, and blue respetively. The �rst row of matriesrepresents the onnetions between the ells of the IS� population and theolor ells. The lower row displays the strength of the onnetions betweenIS+ and the olor sensitive ells. The �rst display shows the onnetivitypattern after 1 hour of learning the subsequent displays relate to the on-netivity after 1.5 and 2 hours. Eah row in a sub-matrix an be interpretedas the reeptive �eld of the IS neurons. The top row in eah sub-matrixorresponds with the sensor plaed at 90o of the enter of the robot. Eahfollowing sensor is plaed at -30o from the previous one. The last two rowsorrespond with the sensors plaed at the bak of the robot.51
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Figure 7: The ontextual ontrol struture of DAC3. 1: The UR populationreeives inputs from the IS population of the adaptive ontrol struture. 2:If a non-default ation ours, the CS prototype and the UR ativity arestored as a segment in the short-term memory. 3: The urrent CS prototypeis mathed against prototypes of the segments in the long-term memory.4: If a CS prototype in the long-term memory mathes the urrent CSprototype, then then ontextual ontrol struture indues a motor ation.5: If a sequene is seleted, the segments in the short-term memory arestored in long-term memory.
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Figure 8: The short-term memory of DAC4. The CS, IS, UR, State,Context, and Segments populations are represented. The reurrent on-netions between State and Context are symbolized by the double framelabeled \State". A ell of the Segments population assoiates a patternof a reurrent network with the sensorimotor events of the next time step.A,B: Exploration. In A, the state of the reurrent network that depends onthe urrent ontext (CS1, and before), is assoiated with the stimulus andthe motor ation of the urrent time step (CS2, UR2). C: A target is found,this will trigger replay to allow retention in LTM. D: Replay was initiatedby Segments unit 1. During the replay, the seleted ell of Segments (unit1) ativates the CS population with the assoiated CS events (CS2), in or-der to generate the next pattern in the reurrent network (State2). The URpopulation is also ativated in order to allow its aquisition by the long-termmemory. Motor ations are inhibited during replay.
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Figure 9: Long-term memory of DAC4: A ell of STATE has a doublereeptive �eld, one part orresponding to the temporal ontext (A) and theother part to the stimulus (B). The ontext layer CONTEXT is in turn a-tivated by STATE. A ompetition in STATE selets the ell responding toboth the input (CS prototype) and the ontext represented in CONTEXT .

Figure 10: A sequene suessfully learned by the ontextual ontrol ofDAC4. 1: (Stimulation period) The soma starts from (A). The target in theright lower orner emits a signal whih attrats the soma at loation (B),until the target is found (C). 2: (Reall period before learning) The signaloming from the targets has been removed. The soma of DAC4, started from(A) does not �nd the target (D). 3: (Reall period after learning) The long-term memory of DAC4 expresses the sequene. The soma starts from (A).In (B') the ontextual ontrol struture engages approah ations learned in(1), and the target is found in (C').
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