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Synopsis

This paper argues for the development of synthetic approaches towards
the study of brain and behavior as a complement to the more traditional
empirical mode of research. As an example we present our own work on
learning and problem solving which relates to the behavioral paradigms of
classical and operant conditioning. We define the concept of learning in the
context of behavior and lay out the basic methodological requirements a
model needs to satisfy, which includes evaluations using robots. In addition,
we define a number of design principles neuronal models should obey to be
considered relevant. We present in detail the construction of a neural model
of short- and long-term memory which can be applied to an artificial behav-
ing system. The presented model (DAC4) provides a novel self-consistent
implementation of these processes, which satisfies our principles. This mod-
el will be interpreted towards the present understanding of the neuronal

substrate of memory.



1 Introduction

The systematic investigation of animal learning and problem solving start-
ed about one hundred years ago with the work of Thorndike and Pavlov
[44, 33]. These studies introduced two paradigms which have since then
dominated the field; operant and classical conditioning. Operant, or instru-
mental, conditioning describes tasks where animals learn on the basis of the
consequences of their own actions. Thorndike used a, so called, “puzzle box”
(Figure 1.A), where an animal, a cat or dog, had to learn a specific sequence
of actions in order to escape from the box. Using these examples of trial and
error learning Thorndike showed that performance, as measured by time to
escape, improved over trials. The paradigm of classical, or Pavlovian, con-
ditioning refers to learning phenomena where initially neutral, conditioned
stimuli (CS), such as lights and bells, become through their correlated p-
resentation with motivational, unconditioned stimuli (US), like footshocks
or food, able to trigger a conditioned response (CR). In the early work of
Pavlov this involved the induction of conditioned salivation (CR) to a bell

(CS), using food as an unconditioned stimulus (Figure 1.B).

Insert figure 1 about here

Thorndike’s research is an early example of comparative psychology,
where the differences between human and animal problem solving were in-
vestigated. Thorndike’s goal was to place this line of research on a firm em-
pirical footing as opposed to the more anecdotal approach of his predecessors
(i.e. [37]). He aimed at isolating the laws that govern the learning process.

His most famous proposal is the so called Law of Effect, which states that



associations develop according to the outcome of actions; rewarded actions
strengthen associations while punished actions weaken associations. In case
of Pavlov the focus was on the neuronal mechanisms underlying the form-
s of learning he initially observed while investigating the digestive system.
Both influential paradigms have over the last century led to an extended
program of research in psychology, ethology, and neuroscience. They have
also formed the driving force behind the behaviorist revolution of the twen-
ties and thirties, with its emphasis on a strictly empirical approach towards
the study of behavior. The restriction to “observables” imposed by this ap-
proach!, however, together with the development of computing machinery
induced a shift to a more integrative, multidisciplinary approach, cognitive
science [12]. The aim of cognitive science was to open the black box which in-

tervened between the stimuli and responses manipulated by the behaviorists.

Today, the study of mind, brain, and behavior is a strongly multidisci-
plinary field, also known as cognitive neuroscience. Properties of the brain
and behavior are described over a wide range of levels: from molecules, ion
channels and cells to circuits and systems. These different levels of descrip-
tion have been progressively investigated by more and more researchers,
who have become increasingly specialized. The collective database of their
efforts has taken on enormous proportions. An immediate consequence of
this specialization is an unprecedented fragmentation of knowledge which
can be seen as one of the main limiting factors in our understanding of

mind, brain, and behavior. This problem is not unique for this domain.

although it needs to be emphasized that this is certainly not true for many researchers
of this period (e.g. [16])



Similar observations have been made in biology, where Strohman [41] inter-
prets this as a sign of a scientific crisis, and in psychology, where Newell
[31], identifies the “great psychological data puzzle” and proposes that a

synthetic approach, artificial intelligence, can alleviate this situation.

As an illustration of the fragmentation of scientific knowledge we can
consider the issue of learning, the subject of our own studies. The concep-
t of learning traditionally designates long-term changes in the behavior of
a system. Psychologists have accumulated a large amount of observation-
s on the behavioral regularities that can be observed under specific, often
rather artificial, conditions over a wide range of animal species, from snail to
man [23, 11]. Neuroscientists have added to this set observations on effect-
s which are dependent on particular lesions or pharmacological challenges.
Alternatively they have reported on correlations between physiological mea-
sures and performance [24]. Other neuroscientists have investigated the
subcellular changes associated with learning, for instance using the popular
paradigms of long term potentiation and depression [2]. These investigations
are often based on the common assumption that the substrate of learning
is provided by synaptic plasticity. Others, however, would argue that the
neuronal substrate of learning needs to include more general changes in
neuronal morphology and interconnectivity patterns (e.g. [14]). These ap-
proaches are further complemented with explorations at a genetic level [5].
At the macroscopic level of complete systems novel imaging techniques have
opened up a window on the processes involved in learning and memory in

the human brain [40]. The above demonstrates the wealth of methods and



techniques. The guiding principle of how these are employed, however, is
in general to detect a correlation between a particular manipulation of the
behaving system and brain derived measures. An added complicating factor
in such an approach is that not only differences between species, but also
for instance between strains, gender, age, and the circadian rhythm need to
be considered [1, 10]. Given the tremendous advances in the technologies
available the space of possible correlations must be considered practically
infinite. Given this wide range of perspectives on learning, the question can
be raised, whether the same phenomenon is studied in all these approach-
es. Although the cognitive revolution might have opened the black box, the
pieces presently appear to us in a highly disordered manner. The need for

a blueprint of the underlying design principles is evident.

We do not want to claim that no proposals are available on the princi-
ples of behavioral and neural organization, which underly the phenomena
described in the collective neuroscientific database. For instance, in the
case of classical conditioning the model of Rescorla and Wagner [36] (see
[27] for a review), provides a good description of many behavioral regulari-
ties observed in this learning paradigm. The basic assumption behind this
model is that the effect of reinforcement, derived from a US, on the associ-
ation between a stimulus (CS) with the unconditioned response is not only
dependent on the properties of that particular stimulus but also upon the
properties of the other stimuli known to the system; learning is based on
the violation of expectations. The model aimed specifically at accounting

for the phenomena of blocking and overshadowing [17, 18], which demon-



strated that learning does not seem to follow Thorndike’s Law of Effect, but
depends on “previous knowledge” of the organism. Although this model
has in turn been criticized on various grounds (see [23, 11, 48]) it makes
accurate predictions on the behavioral changes which can be observed in

classical conditioning.

Given the overwhelming amount of data, and the relative lack of hypoth-
esis on underlying principles, we need to consider whether a pure empirical
investigation of the phenomenon of learning, or any other construct applied
to neuronal function for that matter, will help us to understand the basic
principles of neuronal organization, which find their expression in this myri-
ad collection of research paradigms. There is no reason to admit defeat, but
this situation can be taken as a challenge to reconsider the basic approaches
followed. In this paper we want to demonstrate how a synthetic approach
can provide a research strategy which is complementary to the empirical
mode of research, common in the brain and behavioral sciences. A syn-
thetic approach, for example using computer simulations, can facilitate the
development and exploration of scenarios on the principles of neuronal or-
ganization. Before elaborating on the methodological considerations behind

such a proposal we want to further define the concept of learning.

Following earlier proposals [35] we assume that behavior serves to guar-
antee the integrity of the behaving system [46]. In the context of this as-
sumption we propose that learning is a response of biological systems to a

certain type of unpredictability [45]. Indeed, the genomic plan of an organis-



m has to address two types of unpredictability: somatic and environmental.
Somatic unpredictability results from the various ways the body plan can
be realized, depending on the highly nonlinear and complex interactions be-
tween the genes, the phenotype and the environment. Environmental unpre-
dictability means that biological systems, specifically vertebrates, will have
to deal with an environment whose crucial properties are a priori unknown.
Despite this uncertainty they succeed in performing a wide variety of tasks.
The knowledge required to accomplish these tasks can be acquired, essen-
tially because the world has some regularities that can be learned. Hence,
we call learning any structural change to a behaving system, that captures
regularities of its interaction with an environment that were not predicted
by its genome, as to allow these regularities to be exploited in its behavior.
Biological systems that express learning are able to deal with a wider range
of tasks and environments than systems that do not. The paradigms of
classical and operant conditioning reflect adaptations to conditioned stimuli
that can be a priori of any kind (they are only constrained by the properties

of the sensors) and they illustrate this versatility.

A synthetic approach is based on the construction of models. Given
present day computer technology we have the unique opportunity to realize
thought experiments on scenarios representing principles of neural organiza-
tion. These realized thought experiments, however, acquire scientific mean-
ing only through their interaction with the domain of empirical observation.
It is important to consider in more detail the methodological considerations

behind a synthetic approach. On one hand, the aim of a model needs to



be considered. Models allow us to summarize large numbers of observation-
s on a certain phenomenon in a rather concise way in terms of assumed
underlying variables and parameters. This facilitates communication and
evaluation. On the other hand we need to be concerned with the validity
of a model. In general a model tries to describe a certain input-output re-
lationship, response function, in terms of a transfer function f output =
f(input). The observations which express the input-output relationship will
consist of a number of points in some multidimensional space. A model
can be seen as a means to draw a continuous line through these points. As
an example we can consider the model of Rescorla and Wagner, discussed
earlier, which makes predictions on learning curves, which are measured in
terms of the fraction of observed CRs after a certain number of learning
trials. These types of descriptive models, however, are confronted with a
fundamental problem. In principle an infinite number of lines can be drawn
through the observed response function. This problem of indeterminancy

was first pointed out by Moore in 1956 [28].

The only way to answer this challenge is by imposing additional con-
straints on the set of possible transfer functions. However these additional
constraints are taken from other levels of description; convergent validation
[47]. This implies, however, that a model needs to be defined as a generative
model where the transfer function becomes a macroscopic variable of the
defined system, while its central parameters are defined at its microscopic
level. As an example we can consider the influential model of Hodgkin and

Huxley [15], which describes how the macroscopic property of axons to ini-



tiate and propagate action potentials can be accounted for in terms of the
interaction of a number of microscopic components; a sodium, potassium,
and leak conductance, which change depending on the ion concentration and
an electrical gradient. Hence, in order to address the problem of indeter-
minancy, models should necessarily be required to be generative, satisfying
constraints from multiple levels of description; i.e. anatomy, physiology, and
behavior. The combination of our conceptualization of learning and these
methodological considerations constitutes a program of synthetic epistemol-
ogy [54]; the study of learning by biological systems following a multilevel
synthetic approach based on large scale computer simulations and real-world

devices; robots.

1.1 Robots

Is there a difference between a brain, a robot and a computer? What we
call a robot is an artificial behaving system that can interact with an envi-
ronment. There is no reason to believe that natural brains are intrinsically
able to perform operations unaccessible to computers. But our previous def-
inition implies that learning is possible in natural or artificial systems only
if they interact with an environment. Hence, models that include robotic
components can approach the study of the principles of neural organization
in a more powerful way than methods that restrict themselves to internal
computations, since they can account for the various interactions between
a behaving system and its environment. The “knowledge” developed by a
behaving system (natural or artificial) through a learning process depends
first on the properties of its control structure. However, another limiting fac-

tor is the complexity of its environment, which generates the stimuli. Since
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learning implies that some regularities exist in the world, complex learned

abilities need, in order to emerge, a world with complex properties.

Robots can be real-world devices, but it is also possible to simulate be-
having agents and their environment using computer programs. In our re-
search we use both approaches [30]. Using real-world devices can ensure that
the complexity of the environment will not be a limiting factor of learning.
However, simulated robots allow a systematic evaluation of all the parame-
ters that are relevant for the learning process, and guarantee repeatability

of the experiments.

In our further analysis, we will present our work on learning and problem
solving as an example of a synthetic approach based on the above method-
ological and conceptual considerations. Since the aim of the present paper
is to provide an illustration of the potential of this approach we will focus
on describing relevant examples from our own work. In particular, we will
describe in more detail the development of a fully neurally realistic system
of short and long-term memory which is evaluated in the context of artificial
behaving systems. This serves to illustrate the different aspects of a syn-
thetic multilevel approach towards the study of mind, brain, and behavior.
Given these aims we will not provide an exhaustive comparison with the

existing literature relating to the details of the presented models.
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1.2 The learning hypothesis

In order to explain the forms of learning revealed through the experimental
paradigms of classical and operant conditioning, we assume that they can
be described by different, but interacting, levels of control. First, uncon-
ditioned responses can be derived from a reactive control structure. This
structure implements prewired relationships between US events and URs,
and will reflexively respond to immediate events. Since the set of uncondi-
tioned stimuli is derived from genomic information, these stimuli must be
simple and based on low complexity sensors, in general proximity sensors.
Unconditioned responses reflect actions of a behaving system in response to
specific events. For instance, a burning hot contact on the hand triggers a
contraction of the arm. Reactive control provides the behaving system with
a basic level of competence to deal with its environment and prevents its

disintegration.

Second, the tuning of the responses of an organism to non-specific events
can be accounted for by an adaptive control structure. Since non-specific
events are a priori unknown, this structure will need to develop representa-
tions of events that are relevant (the CS). The criterion of relevance is the
correlation of CS events with unconditioned stimuli, or previously acquired
conditioned stimuli. The representation of CS events is constructed at the
level of adaptive control. This level of control approximates relations be-
tween CS and US events through instantaneous correlative measures, and
triggers conditioned responses to conditioned stimuli. At the level of an

adaptive control structure the detailed properties of a UR, such as its onset
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and duration, can be changed to create a CR (specific learning).

Third, correlations between stimuli that are not instantaneous can be
captured by forming sequential representations of sensorimotor events. A
level of control forming sequential representations (contextual control) allows
the behaving system to acquire “plans” involving its future actions and the
expected stimuli resulting from these. For instance, in Thorndike’s puzzle
box, a cat had to perform several actions in a precise order, for it to escape

from the box.

Our hypothesis is that these three levels of control are sufficient to ac-
count for both classical and operant conditioning phenomena. Distributed
Adaptive Control (DAC) are a series of models that implement these three
levels of control using artificial neural networks. They are evaluated in the

control of behavior using robots [49, 50, 46, 30, 51, 53].

1.3 Principles of neural design

Given our incomplete knowledge of the biological mechanisms of learning
and problem solving, it is necessary to constrain our choices of implemen-
tation. In this case we want to particularly emphasize the constraints im-
posed on information transfer in biological systems. A neuron can only use
the information that is locally available, through synapses or other forms of
chemical transmission. In particular, it is not possible to move a pattern of
activity from one population of neurons to another using a supervisor that

would pick the information somewhere in the network and move it to anoth-
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er place. This constitutes a principle of locality. This principle is true for
space (spatial locality) but also holds for time; if a pattern of neural activity
has not changed the structural properties of the substrate, (e.g. synapses,
cell morphology), it cannot be reconstructed later (temporal locality). Tt is
fundamental to respect these principles in the design of control structures, if
one doesn’t want to violate the obvious facts known about biology. A third
principle guiding model development is to minimize the complexity of the
network. This is not only based on common sense (Ockham’s razor), but
also on the observation that in case the testable components of a model are
provided by its assumptions, starting a model based on a super-powerful

description method would preclude any further validation [25].

2 Methods

The behavioral task we use to study our models of control is a foraging
task, where an agent has to avoid collisions with obstacles while locating
targets dispersed in its environment. Experiments are performed either in a
simulation environment, BugWorld [13], or using a real-world robot (Khep-
era, K-team,Lausanne) with the IQR421 distributed simulation environment

[52].

Insert figure 2 about here

BugWorld is a two-dimensional environment containing obstacles, tar-
gets, and circular robots. The body of a simulated robot is called the soma
(figure 2.A). BugWorld robots have proximal and distal sensors. Their dis-

tal sensors respond to the distance to surfaces in their field of view. The
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proximal sensors are target and collision sensors. The target sensors are
placed at 90° and —90° from the axis of the soma. They detect a signal
emitted by the targets, which is a decreasing function of the distance to the
targets. For the Khepera robot (figure 2.B), the targets are light sources.
The proximal sensors of the Khepera robot are infrared (IR) sensors, with
which the immediate proximity of IR reflecting surfaces can be detected,
or ambient light levels can be measured. Its distal sensor is a color CCD

camera.

In DAC, proximal sensors generate unconditioned stimuli (US) while
distal sensors generate conditioned stimuli (CS). The unconditioned stimuli
can be of two types: aversive (US-) or appetitive (US+). Appetitive stim-
uli come from the targets and the associated reflexes are approach actions.
Aversive stimuli are collisions with obstacles, and the associated reflexes are

avoidance of the obstacle.

3 The Distributed Adaptive Control series

3.1 DACO0: The reactive control structure

DACO is our implementation of a reactive control structure. It is fully
prewired and its control consists of basic reflexes or stereotypic behavioral

patterns.

The control architecture DACO consists of 3 types of neurons? (figure 3):

e Internal state units (IS) receive inputs from the US sensors. They

can be of two types: aversive (IS—) or appetitive (IS+). The IS5—

2What we mean with neuron is an approximation of a biological neuron, that sums its
inputs and gives an output value which is a nonlinear function of this sum.
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group gets inputs from the collision sensors while the I.S+ group get-
s inputs from the target sensors. The IS cells are active when the

corresponding collision sensor element is activated.

e Actions are triggered by a group of motor units (UR). UR receives
its inputs from the IS cells. The inputs received from IS+ trigger

approach actions while the inputs from I.S5— trigger avoidance actions.

e An inhibitory unit I is excited by aversive events (IS—) and inhibit-
s the appetitive cells IS+. This provides the agent with priorities

between approach and avoidance behaviors; conflict resolution.

Insert figure 3 about here

A trajectory of DACO consists of typical events (figure 4). The behaving
agent can move forward, turn to the right or to the left. In the absence
of any stimulus, it moves forward, which constitutes exploration. Starting
at position 0, DACO explores its environment (translational movements).
In positions 1,2 it collides with obstacles and each collision induces a turn
to the left (avoidance action). At location 3 the target A is detected and
an approach behavior is induced. Another collision occurs at location 4,
triggering a turn to the left. In location 5, the soma follows the gradient of

the signal until the target is found.

Insert figure 4 about here

3.2 DAC2: Adaptive control structure

The adaptive control structure, DAC2, learns to correlate CS events (distal

sensor) with internal states (1S). It is an implementation of the non-specific
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component of classical conditioning. DAC2 includes the reactive control of
DACQO. Initially, the behavior of DAC2 is entirely made up of the uncon-
ditioned reflexes triggered by its reactive control structure. This reactive

structure constrains any subsequent learning process.

Insert figure 5 about here

We propose that a central element of classical conditioning is CS iden-
tification. Thus, DAC2 has another population of units, C'S, which receive
their inputs from the distal sensors (figure 5). Learning at the adaptive lev-
el consists in “categorizing” the CS events and classifying their correlations
with US events. Categorization means that a prototypical representation of
the CS is constructed from the input CS. Learning leads to the control of
the UR cells by the C'S population; In case a relevant CS event is recog-
nized, the activity of the CS cells is propagated to the IS units which in
turn activate the motor units through the predefined connections between

IS and UR.

Learning the connections between CS and IS cells is based on a recon-
struction: First, excitatory connections from C'S to IS translate the activity
of C'S into a pattern of activity in 1.S. Then, inhibitory feedback connec-
tions from IS to CS propagate a prototype of the CS, dependent on IS
activity, which is subtracted from the activity of the C'S cells. The differ-
ence between the actual CS and the CS prototype is called reconstruction
error. The modifications of the symmetric synaptic weights are proportional

to this error.
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The activity v; of unit ¢ in the I.S population is:

v; = Zw,;juj + ¢ (1)
J

where ¢; is the component that depends on the US, u; is the activity of unit
7 in CS, and w;; is the synaptic weight between ¢ and j. The IS population
in turn inhibits the C'S population, generating a prototype. The prototype

vector p is defined by:
Vi, pj = 211)7;j1),; (2)
J

where p; is the predicted activity of C'S unit j given the activity in IS. After
this feedback, the activity of cell j of the C'S population, u_’j, is defined as
u’] = u; — p;, which corresponds to the reconstruction error. The weights
of the connections between C'S and IS are updated according to a Hebbian

learning rule:

Vi, j, Awgj = nuju (3)

where 7 is a learning rate.

This learning rule is defined on the basis of a number of observations
derived from our robotic experiments. In [49] it was shown that in order
to acquire and retain CS-US associations in a behaving device a correlation
based learning rule needs to include an activity dependent depression ter-
m. This renders a learning rule equivalent to the, so called, Oja learning
rule [32]. It was demonstrated, however, that this solution becomes unstable
over long periods of time. The observed instability of this local learning rule,

primacy and overgeneralization, was solved by embedding the process regu-
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lating synaptic efficacy in a recurrent circuit [50], and was further developed
in [53].

Figure 6 shows the representations of CS events expressed in the strength
of the synapses between the C'S and IS populations of a real-world agent.
The environment of figure 6.A has regular properties; different US events are
correlated with the presence of patches of different colors that are detected
by the visual system of the robot. This system uses 36 cells, 12 for each color
(red, green and blue). Each cell covers a unique 45x30 pixels region in the
640x480 image from the camera (see [53] for details). In this environment,
the robot learned to associate particular colors with particular US events.
Figure 6.B displays the time evolution of the synaptic weights of the adaptive
control structure, after 1, 1.5 and 2 hours. Not only are the correlations
present in the environment accurately reflected in the interconnectivity, but
individual cells in I.S— and 1S+ develop unique representations of particular
collision or target events. For instance, the white rectangle in the second

" matrix shows that the collision detector

row, first column of the “red — I.S—’
number 2 was correlated with the presence of red in visual region number 1
(upper left corner), resulting in a high synaptic weight. Comparing the three

displays we observe that the invariants extracted from the environment by

DAC2 remain stable over an extended period of time (figure 6.B).

Insert figure 6 about here

Learning in this control structure is, however, limited to immediate cor-
relations between CS and US events. The result is that the behavior of
DAC?2 entirely depends on current sensory inputs. The agent can explore

its environment and extract some general properties, but cannot learn tem-
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poral relations between multiple events.

3.3 DAC3: A contextual control structure

The aim of the third level of control is to allow the acquisition of sequen-
tial representations of events, to retain them in a memory, and to ezpress
them in behavior. In a task of sequence learning, the response (output) of a
system does not only depend on the immediate input, but also on the con-
text provided by previous inputs; temporal context [56]. An agent provided
with this third level of control is able to choose its actions based on both the

temporal context and on its experience. This level is called contextual control.

A sequence consists of sensorimotor events; segments. A segment is a
couple consisting of a CS prototype, constructed by the adaptive control

structure (eq. 2), and an associated motor action (UR).

A contextual control structure will need to select certain sensorimotor se-
quences, among the whole set of behaviors generated by the adaptive control
structure. Sequences that need to be selected for acquisition are those that
lead to a modification of an internal state. For instance, in our foraging task,
we use the contextual control structure in order to find targets. In this spe-

cific task, a sequence of actions that leads to a target is a rewarding sequence.

Insert figure 7 about here

In order to acquire a sequence, it is necessary to remember the senso-

rimotor events that have preceded the modification of the internal state.
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Since we do not know what the outcomes of our actions are, it is necessary
to have a mechanism that continuously stores events and is able to retain
them; short-term memory. It should be emphasized that since we have no
a priori knowledge of what events will later trigger a change in the internal
state, like the delivery of a reward, the short-term memory needs to keep

track of any event at any time.

In order to modify the behavior, sequences that preceded a modification
of an internal state have to be stored in a selective memory that keeps track
of these events over a longer period of time than the short-term memory.
For the present discussion, we refer to this component as long-term memory.
This definition is more restrictive than the definition of long-term memory
generally used in psychology, which designates all long-term changes [42].
For instance, learning at the DAC2 level is a form of long-term memory but
for our present discussion it is considered as a separate mechanism. While
the agent explores its environment it compares its sensory inputs with the
content of its long-term memory in order to use its learned behaviors. If
the current CS prototype and the current context match a learned situa-
tion, then the agent executes the corresponding motor action stored in its

long-term memory.

In our foraging task, rewarding sequences are acquired during stimula-
tion periods where targets emit a signal. The expression of learned behaviors
can be observed during recall periods where the signal emitted by the targets

has been suppressed.
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For our implementation we make an additional distinction between de-
fault and non-default actions. During the stimulation periods, the signal
from the targets (US+) can trigger approach actions of the adaptive struc-
ture, or suppress avoidance actions, if the influences of the US+ and the
US- are balanced. Actions that depend on the US+ are called non-default
actions. If no US+ is detected, default actions are generated by the adaptive
control structure. Since we want to use the contextual control structure in
order to find targets during recall periods, only the non-default actions need

to be considered in the sequence learning task.

DAC3 is our first implementation of an agent with contextual control
[46]. Its contextual control structure is built on top of the same adaptive
control structure as DAC2. The short-term memory of DAC3 is a ring buffer
that stores the last sensorimotor events. Each time a target triggers a non-
default action, a CS-UR couple is stored in this buffer. The stored CS event
corresponds to the prototype that has been derived from the stimulus, the
UR event corresponds to the triggered motor action. If a target is found then
the sequence contained in the short-term memory is stored in the long-term
memory. Hence, the long-term memory is a list of sequences of sensorimotor

events.

During exploration the actual CS prototype (equation 2) is compared to

the prototypes in the segments of the long-term memory. This comparison

is followed by a selection; the best-matching unit (winner), if its prototype
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is close enough to the actual CS prototype, induces an action by activating
the UR units. This selection, however, is biased since the winner unit will
enhance the likelihood that the next segment of its sequence will win the
competition in the future. This bias allows the actions of the agent to be

dependent on context (chaining).

Preliminary experiments showed that DAC3 is able to display structured
behaviors, such as stable trajectories between targets [46]. In [53], we have
shown that the contextual control structure allows DAC3 to find more tar-
gets than DAC2 during recall periods, when the signal from the targets is
suppressed.

4 DAC4: A neural implementation of a contextual
control structure

The principles underlying the contextual control structure of DAC3 are com-
petition between simple units and selection. These mechanisms are funda-
mental principles in unsupervised training of neural networks, and their
role has been considered in natural systems, [4, 21]. So far, however, for
the short-term and long-term memory structures of DAC3 we made use of
ring buffers and chained lists. In this way the implementational issues were
side-stepped in order to investigate the functional properties of a contextual
control structure. These preliminary investigations established that sequen-
tial learning could be explained in these terms [53]. The question whether
the same functional properties could be implemented in a biologically plau-

sible way raises some important challenges.
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DAC4 is our first fully neural implementation of a contextual control
structure. It is consistent with the principles of locality presented in the
introduction; it does not violate the obvious knowledge that we have of bi-
ological processes of learning. Addressing the issue of the neural design of
this control structure allows the investigation of the constraints imposed on
natural nervous systems, in terms of acquisition, retention and expression
of information. These are fundamental questions that cannot be addressed
by the classical approach of designing neural networks that perform isolated
tasks, given the relationship between a control structure, the properties of

the soma and of the environment we showed earlier.

4.1 Requirements

Before we present the model we want to specify in detail some functional
requirements of a neural structure that acquires, retains and expresses se-

quential information.

4.1.1 Sequence learning with ANNs

A contextual level has to acquire sequences of sensorimotor associations.
Sequence learning means that the responses generated by the network are
more than simple associations between inputs and outputs, but also depend

on the temporal context provided by its previous inputs [56].

Sequence learning with neural networks has been investigated in various
ways [9], [34], [19]. A robust class of methods use networks with recurren-

t connections, so that the pattern of activity of the cells in the recurrent
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loop depends on the temporal context of past events, thus having units rep-
resenting context [8]. Most of these models, however, use the supervised
backpropagation of an error signal in their learning rule, and this error term
contains nonlocal information. In addition these models face difficulties in

the representation of temporal contexts with long-term dependencies [3].

(Dominey et al, 1995) showed that sequence learning is also possible with
a recurrent network, using only local information [7]. This network is made
of two interconnected populations, State and Context, and an output pop-
ulation. The synaptic weights of the recurrent connections between State
and Context are randomly chosen, and not plastic. Sequences are learned
using a Hebbian learning rule between units of State and units of the output
layer (associative memory). In this case, the temporal context is represented
by the pattern of activity in State and Context; the activities of the cells
in these populations depend on the temporal context. This representation
is predefined by the random connections. This network has been applied to
the study of corticostriatal plasticity, and the dynamics of prefrontal cortex
[7, 6]. Since it does not violate the principles of locality and has the ro-
bustness of recurrent networks, we tried to adapt it to our task of sequence

learning.

4.1.2 The short-term memory

Can we use a recurrent model like the one presented in [7] for the short-term
memory? This model is in general not able to learn a sequence using one

single presentation, because it uses an associative memory. A short-term
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memory, however, needs to acquire sequences immediately. Consider the
case of a network that needs several presentations of a sequence in order
to successfully store it. In order to function as a short-term memory, such
a network would need to acquire sequences at the moment when they are
presented by the external environment, and not at moments that depend
on internal constraints imposed by the network. For instance, if two pre-
sentations of a rewarding sequence are separated by an interval of one day,
then this network would have to maintain the preliminary sketch of learning
for one day before it could be refined. However, as we discussed earlier,
the short-term memory needs to keep track of any event. Therefore, all the
events that happen within this day would have to be acquired in the same
way, without erasing the first preliminary sketch of learning. Since the out-
come of actions cannot be known in advance, such a memory would have to
store an excessive amount of information and thus need a gigantic capacity.
Therefore, according to the definitions of short-term and long-term memo-
ries given in section 3.3, it is necessary that the short-term memory acquires
potential rewarding sequences after one single presentation. In this case, its
content can be retrieved for long-term storage when there is a modification

of an internal state, or erased during foraging.

4.1.3 The long-term memory

Can we use the same recurrent neural network for the short-term memory
and for the long-term memory? In the model of (Dominey et al, 1995) [7] the
representation of context is predefined by the random connections. Accord-

ing to our definition, the task of a short-term memory is limited to storage
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and restitution of sensorimotor sequences. For this a predefined representa-
tion of context is not a problem, as long as the sequence of events can be
retrieved. However, a long-term memory has to do more than storage and
retrieval of information. As a physical system, it will have a finite capacity.
However, since it will have to learn a virtually infinite set of sequences, a
long-term memory needs to build categories and perform generalization.
A predefined representation of temporal context cannot perform generaliza-
tion and would restrict the set of possible categories. This means that the
representation of context used by a long-term memory needs to adapt itself

to the data rather than be fixed.

Another requirement of long-term memory can be called identifiability:
In the comparison of current events with the content of the long-term mem-
ory, all the elements of any sequence are potentially relevant. Thus, they
all need to be accessible at every moment. This favors representations of
distinct prototypes by distinct units, instead of complex patterns that are

attractors of the dynamics of a recurrent networks [53].

4.2 The model

Given the above considerations, we choose to implement the long-term mem-
ory and the short-term memory structures using two different neural net-
works. These separate networks satisfy the above requirements. The follow-
ing sections are a general presentation of these networks. For a complete

description, see the appendix.
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4.2.1 The short-term memory

Most models of sequence learning with a neural network need several p-
resentations of a sequence in order to learn it. But as argued above the
short-term memory of a contextual control needs to acquire sequences after

the first presentation.

Insert figure 8 about here

In order to solve this problem, we modified the model of Dominey [7],
adding a new population of cells, called Segments (see figure 8). The popu-
lations of the recurrent network for the short-term memory are called State
and Contexrt. Units of Segments get inputs from the State population and
associate State activities to sensory prototypes (in the C'S population) and
motor actions (in the UR population). At each time step, a competition
selects a new unit of Segments which learns the association between the
current pattern of activity in State, resulting from past events, and the
current pattern of activity in C'S and UR. The cells in Segments have
extremely plastic synapses; selected cells learn the association immediately.
The counterpart of this plasticity is that the information retained in the
Segments population might be erased quickly when new associations are
formed. We use a competition mechanism that favors units which have not
been selected for a long time, in order to prevent quick overwriting of ac-
quired associations. What prevents sequences to be forgotten on a longer

time scale is their retention in long-term memory.
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4.2.2 Transfer from short-term memory to long-term memory:
Retention, Replay

The choice of having two separate populations of cells implementing the
short-term and long-term memories implies that the information acquired
by the short-term memory needs to be retained in the long-term memory;
physically moved to another structure. In order to do this, our principle of
spatial locality allows one possibility, which is to reactivate the sensory and
motor cells corresponding to a sequence in order to modify the long-term
memory synapses. It is during this “replay” that sequences are stored in the

long-term memory.

This raises another question: How will sequences be replayed? Sequences
are made of sensorimotor events, but it is not obvious whether one needs to
replay them in the order of acquisition or not. They could also be replayed
in a reverse order, or in a random order. We choose to replay events in the
same order as they were acquired, because the long-term memory relies on
a recurrent representation of temporal context which reflects the order of
events. The other possibilities, however, cannot be excluded a priori (see

discussion).

In order to replay a sequence acquired by the short-term memory, a first
unit of Segments needs to be selected (figure 8), which initiates the replay.
The selected cell does not change its plasticity, but excites cells in the sen-
sory population corresponding to the CS and the associated motor units.
Motor actions are inhibited during this phase. The sensory activation is

propagated in the recurrent network of the short-term memory, State and
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Context, which triggers a representation of the context corresponding to the
next sensorimotor couple of the sequence, and to the selection of the next
corresponding Segments unit. This loop allows to replay events in their
order of acquisition. The result of this replay is the reactivation of sensori-

motor units in the order of the sequence.

4.2.3 Initiating the replay

The choice of replaying sequences leads to an additional problem: Our re-
current network is able to retrieve a sequence starting from its beginning, or
from any point of the sequence, but needs to be put in the state of activity
corresponding to the starting point of the replayed sequence. However, at
the moment the replay is initiated, the previous patterns of activity of the
network are lost. Given the constraint of temporal locality, the short-term
memory has to “retrieve” this starting point by translating a set of synapses
into a pattern of activity. In addition, the “starting point” of the rewarding
sequence is a priori not defined for the network. Thus, how shall the replay

be initiated?

A possibility could be to use an additional system that acts as a super-
visor. This system would store ’salient’ events in order to use them later as
starting points for the replay. This solution would add complexity to the
network, and raise multiple problems such as: “what are salient events?”,
“when should they be forgotten?”, etc. For this reason, we did not use this
option. Our solution consists in adding a random perturbation to the activ-

ity of the cells in State and Context, in order to select the unit in Segments
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which initiates the replay. Since this pattern of activity results from a ran-
dom perturbation, it is not sure yet whether the network will replay events
in the order of the acquired sequence. The evolution of a perturbation of a
recurrent network is linked to properties of its internal connections, of the
responses of neurons, and to the time constants used. In particular, there
is a set of conditions for which the stored sequences are attractors of the
dynamics (such a system is called Lyapunov-stable). In this case, the ampli-
tude of the perturbation decreases during the replay, allowing for a replay
of the segments in their order of acquisition. We use such a set of conditions
for the recurrent network made of State and Context. Thus, during the
replay process a learned sequence will be retrieved, which is an attractor of

the dynamics.

This does not guarantee that the replayed sequence will correspond ex-
actly to the events that led to the reward. However, depending on the num-
ber of units in Segments, and on the amplitude of the random perturbation,

one can influence the probability to replay the relevant events.

4.2.4 The long-term memory; retention, expression

Insert figure 9 about here

We mentioned the need to have an adaptive representation of context in

the long-term memory.

The layers of the recurrent network used for the long-term memory are
STATE and CONTEXT (see figure 9). Instead of having predefined con-

nections, as in [7], units in ST ATE learn to respond to the coincidence of a
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sensory stimulus and a context represented in CONT EXT. The activity in
CONTEXT depends only on the previous activities in STATE. (A detailed
description of the learning rule used is provided in the appendix). Units in
STATUE learn to efficiently represent sequences that are often presented,
and are less able to represent situations that are rarely present in the explo-
ration task. On each time step, the unit of ST AT E which has the highest

response activates the motor units, if its response is above a given threshold.

This principle allows a high flexibility in the execution of sequences; the
cells of STATE respond to the stimulus and also to the state of advance-
ment of the behavioral plan that has been started. This allows to adapt the
behavior of the agent when events in the world do not correspond to the

learned sequence.

Not all the components of a sequence have to initiate an action, but the
representation of context has to be maintained at all time, in order to allow
the continuity of the executed plan. As in DAC3, we make the distinction
between default and non-default actions. In order to reduce the sequence
learning task to the necessary non-default actions, the representation of tem-
poral context in CONTEXT depends on the nature of the current action:
Between two non-default actions, the activity of the cells of the CONTEXT
layer slowly decays. This makes the cells in STATFE learn how much time
steps have elapsed between the sensory events corresponding to non-default
actions. So the system also learns to let the same time elapse when the

sequence has to be executed.
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Unlike the short-term memory, this recurrent network will need several
presentations of a sequence in order to learn it. For the long-term memory,
this is not a problem since it is possible to replay the same sequence several
times. Alternatively, the agent may have to find the target several times if

the sequence is replayed only once each time a reward is found.

Insert figure 10 about here

Figure 10 shows an example of a successfully learned sequence. In a first
presentation (10.1) the signal from the target is detected. When the signal
is removed (10.2) the agent does not find the target anymore. After several
presentations and replays of the sequence, the target can be found without
the signal (10.3). Note that in 10.3 the motor sequence is not exactly the
same as in 10.1. They can be made identical with further presentation-
s. More generally, experiments showed that the behavior of DAC4 is very
similar to the behavior of DAC3; both are implementations of the same
contextual control. This demonstrates that the principles of contextual con-
trol explored by DAC3 can be implemented in a consistent way obeying the

principles of spatial and temporal locality.

5 Discussion

This paper aimed at conveying a need to find approaches which can help
us to explore principles of neural organization. We propose that synthet-
ic methods, for instance based on digital simulation, provide an example

of such an approach which is complementary to the more traditional em-
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pirical mode of research in the study of brain and behavior. A synthetic
approach, however, needs to follow a methodology which we summarized
under the notion of convergent validation. This means that models need to
satisfy constraints taken from multiple levels of description. As an exam-
ple of such an approach we have reviewed our own work on learning and
problem solving, Distributed Adaptive Control. In this context, learning is
studied from a perspective that includes the environment, the phenotype,
and the detailed properties of its control structure (brain). We consider our
own work as providing a theoretical framework which at this point in time is
self-consistent, it obeys the principles of locality and connects principles on
physical structure to regularities in behavior which have shown to be valid
in the real-world in real-time. It would be naive, however, to stick particular
anatomical labels to the subcomponents of our models. They do provide,
however, a perspective in which observations on properties of the neural
substrate can be interpreted. In our example we will restrict ourselves to

the further interpretation of DACA4.

Recently, the replay of neuronal firing patterns during sleep, in the same
temporal order as during exploration, has been described in the rat hip-
pocampus [39], [38]. Although these results have been questioned [29], the
existence of two separate learning systems in the hippocampal loop and in
the neocortex is well established [43]. The role of these separate learning
systems has been investigated in abstract terms [26], but these investiga-
tions are limited since they do not rely on a model of learning which can

be evaluated in the context of a behavioral task. A synthetic approach, as
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demonstrated in this paper, allows such an evaluation. However, the model
presented here is not inspired by the anatomy, physiology or neuropsycholo-
gy of hippocampus and cortex, but addresses the general problem of commu-
nication between different neural structures, in the context of behaviorally

realistic tasks and well evaluated models of learning.

We established that a system that is able to immediately acquire com-
plex sequences and that can learn general properties of these sequences can
be defined obeying the principles of locality, using two separate networks.
The functional properties of these two networks are a priori not compat-
ible and a priori not implementable in one homogeneous neural network.
We demonstrated that a system relying on replay could combine the above
features in a functionally valid way; this method is consistent with the func-

tional requirements imposed by the external world, as discussed in section 4.

An interesting implication of the principle of locality is the use of re-
play; we use two different neural structures that describe the same sensory
input and that need to exchange information. This exchange of information
must be performed by synaptic transmission in order to respect the princi-
ple of locality. A system that would accomplish this exchange using direct
connections, without using replay, would have to define a “code” for this
transmission of information. Defining such a code, however, is unnecessary
since the information encoded would describe the same sensory reality for
both systems. Hence, replay provides a less complex solution, in which an

internal code is not necessary.
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However, using replay has some important implications for a neural sys-
tem; during this phase, the neural populations in which sequences are re-
played cannot be used for processing other inputs. This implies that these
populations need to work in two exclusive modes; an interactive-open mod-
e that allows sensory categorization, generation of action, acquisition of
sequences by the short-term memory, and expression of sequences by the
long-term memory, and a passive-closed mode where the neural populations
have to be isolated from sensory inputs which would perturb the replay, in

order to allow retention of the sequences.

It is obvious that an organism working with these two distinct modes is
strongly weakened during the passive mode. One can wonder, however, why
biological systems display circadian rhythms involving active and passive
phases. If one assumes that a passive mode is necessary to a given biologi-
cal process, like in our case the replay of activity patterns, then this mode
can also be exploited by other processes, such as metabolic processes. The
result of such a situation would be that these other mechanisms exploiting
the passive mode, would in turn become dependent on it. Hence, it would
be difficult to know a posteriori which process originally required a passive
mode. Today, it is not clear whether replay is used in the brain [29], whether
the corresponding passive mode is sleep, and whether sleep is necessary to

other metabolic processes, like cell regeneration [22].

The modeling series presented in this paper is by no means complete
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and is still under active development. It does illustrate, however, that a
synthetic approach can provide insights in possible principles of neuronal
organization and place them in relation to the overall behaving system, as-
suming that a number of conceptual and methodological considerations are
met. It can provide a compensation for the more reductionistic methods
followed in neuroscience with its implications of knowledge fragmentation.
The validity of our own trajectory through the space of possible models
needs to be scrutinized continuously and as such constitutes only an exam-
ple of this approach. We do feel, however, that the problem of knowledge

fragmentation does deserve the full attention of the field.
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6 Appendix: Detailed specifications

6.1 The short-term memory

DAC4 is based on an earlier model of sequence learning which uses local

learning rules [7]. Following this model the temporal context of short-term

time ¢t + 1 depends on its input at ¢ and on the input received from unit ¢
in State, s

ci(t+1) = (1 - a)ci(t) + a si(t) (4)

where « is a constant. The activity, ¢, of unit i in Context, is a function
f of its integrated input: ¢(t) = f(c;i(t)), where f is a sigmoidal function.
Next to inputs from Context units in State also receive external input from

the C'S population. The total input, s;, of unit 4 in State is defined as:

NCS

NC
= Z w,;(; )+ Z wG® CSk(t (5)
=1

where w® and w®S

are random fixed synaptic weights. N and N¢9 denote
of cell k£ in C'S. The activity s; of unit 7 in State is a sigmoidal function f

of its total input: s;(¢) = f(s:i(¢)).

The short-term memory uses a third population called Segments. Each
of its units stores a sensorimotor couple in its synaptic connections with
populations CS and U R, while its receptive field is a pattern of activity in
State. The activity g}(¢), of unit i in Segments, is a Gaussian function of

the Euclidean distance g;(#) between the actual pattern of activity in State,
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s'(t), and its synaptic weights:

NS ]/2

gi(t) = | D_(wii — s4(t))* (6)
k=1

where wf represents the vector of synaptic weights from State to unit ¢ in

Segments and N° is the number of units in State, and:

6i(t) = exp (~(g:(1)/:)?) (7)

where o0; is the width of the Gaussian response of unit i. After updating
the activities in Segments a winner take all competition selects the unit, k,

with the highest activity:

gr(t) = max  gi(t) (8)

i€Segments”

This mechanism involves non-local information. However, competition with-
in a neural population can be locally implemented using lateral inhibition

[21] and cannot be seen as a violation of our principle of locality.

The winning unit k in Segments updates its synaptic connections with
State, C'S and UR. This update is one-trial learning: the pattern of ac-
tivity in State is immediately associated to the current sensorimotor couple
through unit £. The new weight vector from State to k is: wy (t+1) = s'(t).

G-CS

In addition, the weight vectors w) and w,f*UR between the winning u-

nit k£ in Segments and the C'S and U R populations are modified according

to:
Vi € 1.N wC=C5 (1) = CS;(t) (9)
Vi€ 1.NVE wG-UR(4) = UR;(t) (10)
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where UR; denotes cell 7 in UR. This one-step learning implies that the
selected unit will loose a possible previous association. However, it is neces-
sary to control how forgetting takes place in the short-term memory, because
recently learned association need to be retained sufficiently long to allow re-
tention by the long-term memory. The parameter o; in equation (7) controls
the specificity of the response of unit 7. A large value of o; means that unit 4
will respond to a wide range of stimuli. Modulation of this parameter allows
the control of forgetting in the short-term memory. At each time step, o; is

increased for all the units of Segments:

O'Z'(t + 1) = O'Z'(t) (11)

where XA > 1 is an increase rate. In addition, for the winner unit &, this width
is reinitialized: oy (t) = 1. The loss of specificity (equation 11) ensures
that units that have not been selected for a long time will have a higher
probability to be selected in the future. In contrast, the probability that a
recently selected unit will be selected again is low. This prevents disordered

recruitment of the units in Segments.

6.2 Replay

Short-term memory patterns are retained in long-term memory through re-
play. During replay units in Segments are updated according to equations

(7) and (8). The resultant winning unit in Segments will activate a new CS

and allows the next Segments unit to be selected (chaining). In this case
the rate A, and the parameter o; of each cell, remain at 1. In addition during

replay units in Segments are able to activate units in UR.
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6.3 The long-term memory

The long-term memory is implemented by a recurrent network, made of
two populations, STATE and CONTEXT. As in the case of the short-
term memory, units of ST ATFE send one-to-one projections to the units of
CONTEXT. They receive inputs from the CS and CONTEXT popula-
tions. The connections from CONTEXT to STATFE are updated as well as
the connections from C'S to STATE. The learning rule used is derived from
the so called Self-Organizing Map algorithm [20]. In this case, however, it
is applied to a recurrent network. This provides an adaptive representation

of context [55].

The populations STATE and CONTEXT are two-dimensional. This
allows to define the distance between two units. The internal activity, S;
of unit 7 in STATFE depends on both the activity vectors C'S(t) in C'S, and

C(t) in CONTEXT:
Si(t) = exp (~ (| WES — CS@| +0WE —cm)?)  (12)

where W is a vector representing the weights from CS to unit i of

STATE, WF the weights from CONTEXT to i, a and b are real num-
bers, and ||...|| denotes the Euclidean norm. The cell [ of STATFE that has

the highest activity is then selected:

S0 = i 51 (13)

During replay, each unit i of STATE has its synaptic weights updated,
according to:
WES(t+1) = WE (1) +9u(CS () = WES (1)) (14)
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Wt +1) = W) + 6ga(C' (1) = WE (1) (15)

where v and § are learning rates, and g; is a Gaussian function of the
distance between units ¢ and [. In addition, during replay, the current motor
pattern is stored in the weights WY between the winner unit [ in STATE
and the UR population:

wf(t) = UR(t) (16)

During exploration, any cell of STATE can activate the UR population if
its activity is above a threshold. However, the learning rules defined in e-
quations (14) and (15) change the receptive fields of the winning unit, but
also of its neighbors. Therefore it is necessary to prevent units in STATE
from activating the UR population if their receptive field does not corre-
spond to a learned sequence; the receptive field may have been modified
more recently (equations 14, 15) than the output connections (equation 16).
In this case, we limit the output activity of the cell so that it cannot excite
the motor units, using a term e;(¢) called excitability of unit 4. Thus, the

output activity of unit ¢ of STATF is defined as:
Si(t) = Si(t) ei(t) (17)

If the output activity S; of the winner unit [ is above a threshold, then it
propagates its activity to the UR cells, inducing a motor action. During
replay, the excitability e; of the winner unit / is updated: If the replayed
event corresponds to a non-default action, then this excitability is reset to

one, ¢; = 1, otherwise it decays, ¢, = (1 — €) ¢;, with (0 < e < 1).

The activities of the cells in CONTEXT depend on the nature of the
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current action. If a non-default action is generated, then:

Ci(t+1) = (1 = B) Ci(t) + B Si(t) (18)

where [ is a constant. In the case of a default action the activity in

CONTEXT decreases, independently of the activity in STATE:

Ci(t+1) = (1 - ) Ci(t) (19)

This latter mechanism ensures that the pattern of activity in CONTEXT
continuously changes between two non-default actions. Therefore, units
in STATE, that trigger non-default actions, can learn to respond after a

certain time interval following the last non-default action triggered.
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A Range finder field

Figure 2: A:The soma of the simulated robot: Target sensors are placed on
each side. The front side is covered with collision sensors and distal sensors.
Arrow indicates the primary direction of motion. B: The Khepera robot.
The CS is the image from the color CCD camera mounted on top. The US
comes from light and IR sensors placed at the lower circumference of the
base. The Khepera robot is circular with a diameter of 3 cm and 8 cm high,
including the camera.
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Figure 3: The reactive control structure. Collision sensors and target sensors
(US) modify the internal state (I.S). The IS populations trigger reactive
motor actions. An inhibitory unit defines the priority between the two IS
populations.

1

Figure 4: A trajectory of the soma generated by a reactive control structure.
A collision triggers an avoidance reaction (US™) (1,2,4). Targets in A,B,C,D
emit a signal that can be detected by the sensors (appetitive unconditioned
stimulus, US™). These can trigger approach actions (3,5).

49



Distal sensors

US+
Proximal
Sensors
Effectors
— Inhibiory —  Fixed
—=> Excitatory - - - - Plagtic Q WTA

Figure 5: The adaptive control structure. A recurrent loop with inhibitory
feedback connections allows to learn how to categorize the CS events. The
CS modifies the internal states (1.9), triggering conditioned reflexes.
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Figure 6: A: An environment used for the Khepera robot. Blue and green
color patches are dispersed on the floor (light and dark gray respectively on
the figure), and the environment is delimited by a circular wall on which red
patches are attached. Red was correlated with collisions (US-) while green
and blue were correlated with the presence of a light source (targets-US+)
placed over the middle of the environment. A trajectory of the robot is plot-
ted, which lasted 4 minutes and was recorded after one hour of exploration.
B: Synaptic connections between the color responsive CS cells and the IS
populations. Each column represents the set of cells of CS responsive to a
specific color, red, green, and blue respectively. The first row of matrices
represents the connections between the cells of the I.S— population and the
color cells. The lower row displays the strength of the connections between
15+ and the color sensitive cells. The first display shows the connectivity
pattern after 1 hour of learning the subsequent displays relate to the con-
nectivity after 1.5 and 2 hours. Each row in a sub-matrix can be interpreted
as the receptive field of the I.S neurons. The top row in each sub-matrix
corresponds with the sensor placed at 90° of the center of the robot. Each
following sensor is placed at -30° from the previous one. The last two rows
correspond with the sensors placed at the back of the robot.
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Figure 7: The contextual control structure of DAC3. 1: The UR population
receives inputs from the IS population of the adaptive control structure. 2:
If a non-default action occurs, the CS prototype and the UR activity are
stored as a segment in the short-term memory. 3: The current CS prototype
is matched against prototypes of the segments in the long-term memory.
4: If a CS prototype in the long-term memory matches the current CS
prototype, then then contextual control structure induces a motor action.
5: If a sequence is selected, the segments in the short-term memory are

stored in long-term memory.
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Figure 8: The short-term memory of DAC4. The CS, IS, UR, State,
Context, and Segments populations are represented. The recurrent con-
nections between State and Context are symbolized by the double frame
labeled “State”. A cell of the Segments population associates a pattern
of a recurrent network with the sensorimotor events of the next time step.
A,B: Exploration. In A, the state of the recurrent network that depends on
the current context (CS1, and before), is associated with the stimulus and
the motor action of the current time step (CS2, UR2). C: A target is found,
this will trigger replay to allow retention in LTM. D: Replay was initiated
by Segments unit 1. During the replay, the selected cell of Segments (unit
1) activates the CS population with the associated CS events (CS2), in or-
der to generate the next pattern in the recurrent network (State2). The UR
population is also activated in order to allow its acquisition by the long-term
memory. Motor actions are inhibited during replay.
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Figure 9: Long-term memory of DAC4: A cell of STATE has a double
receptive field, one part corresponding to the temporal context (A) and the
other part to the stimulus (B). The context layer CONTEXT is in turn ac-
tivated by STATE. A competition in ST ATFE selects the cell responding to
both the input (CS prototype) and the context represented in CONTEXT.

Figure 10: A sequence successfully learned by the contextual control of
DAC4. 1: (Stimulation period) The soma starts from (A). The target in the
right lower corner emits a signal which attracts the soma at location (B),
until the target is found (C). 2: (Recall period before learning) The signal
coming from the targets has been removed. The soma of DAC4, started from
(A) does not find the target (D). 3: (Recall period after learning) The long-
term memory of DAC4 expresses the sequence. The soma starts from (A).
In (B’) the contextual control structure engages approach actions learned in
(1), and the target is found in (C’).
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