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SynopsisThis paper argues for the development of syntheti
 approa
hes towardsthe study of brain and behavior as a 
omplement to the more traditionalempiri
al mode of resear
h. As an example we present our own work onlearning and problem solving whi
h relates to the behavioral paradigms of
lassi
al and operant 
onditioning. We de�ne the 
on
ept of learning in the
ontext of behavior and lay out the basi
 methodologi
al requirements amodel needs to satisfy, whi
h in
ludes evaluations using robots. In addition,we de�ne a number of design prin
iples neuronal models should obey to be
onsidered relevant. We present in detail the 
onstru
tion of a neural modelof short- and long-term memory whi
h 
an be applied to an arti�
ial behav-ing system. The presented model (DAC4) provides a novel self-
onsistentimplementation of these pro
esses, whi
h satis�es our prin
iples. This mod-el will be interpreted towards the present understanding of the neuronalsubstrate of memory.
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1 Introdu
tionThe systemati
 investigation of animal learning and problem solving start-ed about one hundred years ago with the work of Thorndike and Pavlov[44, 33℄. These studies introdu
ed two paradigms whi
h have sin
e thendominated the �eld; operant and 
lassi
al 
onditioning. Operant, or instru-mental, 
onditioning des
ribes tasks where animals learn on the basis of the
onsequen
es of their own a
tions. Thorndike used a, so 
alled, \puzzle box"(Figure 1.A), where an animal, a 
at or dog, had to learn a spe
i�
 sequen
eof a
tions in order to es
ape from the box. Using these examples of trial anderror learning Thorndike showed that performan
e, as measured by time toes
ape, improved over trials. The paradigm of 
lassi
al, or Pavlovian, 
on-ditioning refers to learning phenomena where initially neutral, 
onditionedstimuli (CS), su
h as lights and bells, be
ome through their 
orrelated p-resentation with motivational, un
onditioned stimuli (US), like footsho
ksor food, able to trigger a 
onditioned response (CR). In the early work ofPavlov this involved the indu
tion of 
onditioned salivation (CR) to a bell(CS), using food as an un
onditioned stimulus (Figure 1.B).Insert �gure 1 about hereThorndike's resear
h is an early example of 
omparative psy
hology,where the di�eren
es between human and animal problem solving were in-vestigated. Thorndike's goal was to pla
e this line of resear
h on a �rm em-piri
al footing as opposed to the more ane
dotal approa
h of his prede
essors(i.e. [37℄). He aimed at isolating the laws that govern the learning pro
ess.His most famous proposal is the so 
alled Law of E�e
t, whi
h states that3



asso
iations develop a

ording to the out
ome of a
tions; rewarded a
tionsstrengthen asso
iations while punished a
tions weaken asso
iations. In 
aseof Pavlov the fo
us was on the neuronal me
hanisms underlying the form-s of learning he initially observed while investigating the digestive system.Both in
uential paradigms have over the last 
entury led to an extendedprogram of resear
h in psy
hology, ethology, and neuros
ien
e. They havealso formed the driving for
e behind the behaviorist revolution of the twen-ties and thirties, with its emphasis on a stri
tly empiri
al approa
h towardsthe study of behavior. The restri
tion to \observables" imposed by this ap-proa
h1, however, together with the development of 
omputing ma
hineryindu
ed a shift to a more integrative, multidis
iplinary approa
h, 
ognitives
ien
e [12℄. The aim of 
ognitive s
ien
e was to open the bla
k box whi
h in-tervened between the stimuli and responses manipulated by the behaviorists.Today, the study of mind, brain, and behavior is a strongly multidis
i-plinary �eld, also known as 
ognitive neuros
ien
e. Properties of the brainand behavior are des
ribed over a wide range of levels: from mole
ules, ion
hannels and 
ells to 
ir
uits and systems. These di�erent levels of des
rip-tion have been progressively investigated by more and more resear
hers,who have be
ome in
reasingly spe
ialized. The 
olle
tive database of theire�orts has taken on enormous proportions. An immediate 
onsequen
e ofthis spe
ialization is an unpre
edented fragmentation of knowledge whi
h
an be seen as one of the main limiting fa
tors in our understanding ofmind, brain, and behavior. This problem is not unique for this domain.1although it needs to be emphasized that this is 
ertainly not true for many resear
hersof this period (e.g. [16℄) 4



Similar observations have been made in biology, where Strohman [41℄ inter-prets this as a sign of a s
ienti�
 
risis, and in psy
hology, where Newell[31℄, identi�es the \great psy
hologi
al data puzzle" and proposes that asyntheti
 approa
h, arti�
ial intelligen
e, 
an alleviate this situation.As an illustration of the fragmentation of s
ienti�
 knowledge we 
an
onsider the issue of learning, the subje
t of our own studies. The 
on
ep-t of learning traditionally designates long-term 
hanges in the behavior ofa system. Psy
hologists have a

umulated a large amount of observation-s on the behavioral regularities that 
an be observed under spe
i�
, oftenrather arti�
ial, 
onditions over a wide range of animal spe
ies, from snail toman [23, 11℄. Neuros
ientists have added to this set observations on e�e
t-s whi
h are dependent on parti
ular lesions or pharma
ologi
al 
hallenges.Alternatively they have reported on 
orrelations between physiologi
al mea-sures and performan
e [24℄. Other neuros
ientists have investigated thesub
ellular 
hanges asso
iated with learning, for instan
e using the popularparadigms of long term potentiation and depression [2℄. These investigationsare often based on the 
ommon assumption that the substrate of learningis provided by synapti
 plasti
ity. Others, however, would argue that theneuronal substrate of learning needs to in
lude more general 
hanges inneuronal morphology and inter
onne
tivity patterns (e.g. [14℄). These ap-proa
hes are further 
omplemented with explorations at a geneti
 level [5℄.At the ma
ros
opi
 level of 
omplete systems novel imaging te
hniques haveopened up a window on the pro
esses involved in learning and memory inthe human brain [40℄. The above demonstrates the wealth of methods and5



te
hniques. The guiding prin
iple of how these are employed, however, isin general to dete
t a 
orrelation between a parti
ular manipulation of thebehaving system and brain derived measures. An added 
ompli
ating fa
torin su
h an approa
h is that not only di�eren
es between spe
ies, but alsofor instan
e between strains, gender, age, and the 
ir
adian rhythm need tobe 
onsidered [1, 10℄. Given the tremendous advan
es in the te
hnologiesavailable the spa
e of possible 
orrelations must be 
onsidered pra
ti
allyin�nite. Given this wide range of perspe
tives on learning, the question 
anbe raised, whether the same phenomenon is studied in all these approa
h-es. Although the 
ognitive revolution might have opened the bla
k box, thepie
es presently appear to us in a highly disordered manner. The need fora blueprint of the underlying design prin
iples is evident.We do not want to 
laim that no proposals are available on the prin
i-ples of behavioral and neural organization, whi
h underly the phenomenades
ribed in the 
olle
tive neuros
ienti�
 database. For instan
e, in the
ase of 
lassi
al 
onditioning the model of Res
orla and Wagner [36℄ (see[27℄ for a review), provides a good des
ription of many behavioral regulari-ties observed in this learning paradigm. The basi
 assumption behind thismodel is that the e�e
t of reinfor
ement, derived from a US, on the asso
i-ation between a stimulus (CS) with the un
onditioned response is not onlydependent on the properties of that parti
ular stimulus but also upon theproperties of the other stimuli known to the system; learning is based onthe violation of expe
tations. The model aimed spe
i�
ally at a

ountingfor the phenomena of blo
king and overshadowing [17, 18℄, whi
h demon-6



strated that learning does not seem to follow Thorndike's Law of E�e
t, butdepends on \previous knowledge" of the organism. Although this modelhas in turn been 
riti
ized on various grounds (see [23, 11, 48℄) it makesa

urate predi
tions on the behavioral 
hanges whi
h 
an be observed in
lassi
al 
onditioning.Given the overwhelming amount of data, and the relative la
k of hypoth-esis on underlying prin
iples, we need to 
onsider whether a pure empiri
alinvestigation of the phenomenon of learning, or any other 
onstru
t appliedto neuronal fun
tion for that matter, will help us to understand the basi
prin
iples of neuronal organization, whi
h �nd their expression in this myri-ad 
olle
tion of resear
h paradigms. There is no reason to admit defeat, butthis situation 
an be taken as a 
hallenge to re
onsider the basi
 approa
hesfollowed. In this paper we want to demonstrate how a syntheti
 approa
h
an provide a resear
h strategy whi
h is 
omplementary to the empiri
almode of resear
h, 
ommon in the brain and behavioral s
ien
es. A syn-theti
 approa
h, for example using 
omputer simulations, 
an fa
ilitate thedevelopment and exploration of s
enarios on the prin
iples of neuronal or-ganization. Before elaborating on the methodologi
al 
onsiderations behindsu
h a proposal we want to further de�ne the 
on
ept of learning.Following earlier proposals [35℄ we assume that behavior serves to guar-antee the integrity of the behaving system [46℄. In the 
ontext of this as-sumption we propose that learning is a response of biologi
al systems to a
ertain type of unpredi
tability [45℄. Indeed, the genomi
 plan of an organis-7



m has to address two types of unpredi
tability: somati
 and environmental.Somati
 unpredi
tability results from the various ways the body plan 
anbe realized, depending on the highly nonlinear and 
omplex intera
tions be-tween the genes, the phenotype and the environment. Environmental unpre-di
tability means that biologi
al systems, spe
i�
ally vertebrates, will haveto deal with an environment whose 
ru
ial properties are a priori unknown.Despite this un
ertainty they su

eed in performing a wide variety of tasks.The knowledge required to a

omplish these tasks 
an be a
quired, essen-tially be
ause the world has some regularities that 
an be learned. Hen
e,we 
all learning any stru
tural 
hange to a behaving system, that 
apturesregularities of its intera
tion with an environment that were not predi
tedby its genome, as to allow these regularities to be exploited in its behavior.Biologi
al systems that express learning are able to deal with a wider rangeof tasks and environments than systems that do not. The paradigms of
lassi
al and operant 
onditioning re
e
t adaptations to 
onditioned stimulithat 
an be a priori of any kind (they are only 
onstrained by the propertiesof the sensors) and they illustrate this versatility.A syntheti
 approa
h is based on the 
onstru
tion of models. Givenpresent day 
omputer te
hnology we have the unique opportunity to realizethought experiments on s
enarios representing prin
iples of neural organiza-tion. These realized thought experiments, however, a
quire s
ienti�
 mean-ing only through their intera
tion with the domain of empiri
al observation.It is important to 
onsider in more detail the methodologi
al 
onsiderationsbehind a syntheti
 approa
h. On one hand, the aim of a model needs to8



be 
onsidered. Models allow us to summarize large numbers of observation-s on a 
ertain phenomenon in a rather 
on
ise way in terms of assumedunderlying variables and parameters. This fa
ilitates 
ommuni
ation andevaluation. On the other hand we need to be 
on
erned with the validityof a model. In general a model tries to des
ribe a 
ertain input-output re-lationship, response fun
tion, in terms of a transfer fun
tion f: output =f(input). The observations whi
h express the input-output relationship will
onsist of a number of points in some multidimensional spa
e. A model
an be seen as a means to draw a 
ontinuous line through these points. Asan example we 
an 
onsider the model of Res
orla and Wagner, dis
ussedearlier, whi
h makes predi
tions on learning 
urves, whi
h are measured interms of the fra
tion of observed CRs after a 
ertain number of learningtrials. These types of des
riptive models, however, are 
onfronted with afundamental problem. In prin
iple an in�nite number of lines 
an be drawnthrough the observed response fun
tion. This problem of indeterminan
ywas �rst pointed out by Moore in 1956 [28℄.The only way to answer this 
hallenge is by imposing additional 
on-straints on the set of possible transfer fun
tions. However these additional
onstraints are taken from other levels of des
ription; 
onvergent validation[47℄. This implies, however, that a model needs to be de�ned as a generativemodel where the transfer fun
tion be
omes a ma
ros
opi
 variable of thede�ned system, while its 
entral parameters are de�ned at its mi
ros
opi
level. As an example we 
an 
onsider the in
uential model of Hodgkin andHuxley [15℄, whi
h des
ribes how the ma
ros
opi
 property of axons to ini-9



tiate and propagate a
tion potentials 
an be a

ounted for in terms of theintera
tion of a number of mi
ros
opi
 
omponents; a sodium, potassium,and leak 
ondu
tan
e, whi
h 
hange depending on the ion 
on
entration andan ele
tri
al gradient. Hen
e, in order to address the problem of indeter-minan
y, models should ne
essarily be required to be generative, satisfying
onstraints from multiple levels of des
ription; i.e. anatomy, physiology, andbehavior. The 
ombination of our 
on
eptualization of learning and thesemethodologi
al 
onsiderations 
onstitutes a program of syntheti
 epistemol-ogy [54℄; the study of learning by biologi
al systems following a multilevelsyntheti
 approa
h based on large s
ale 
omputer simulations and real-worlddevi
es; robots.1.1 RobotsIs there a di�eren
e between a brain, a robot and a 
omputer? What we
all a robot is an arti�
ial behaving system that 
an intera
t with an envi-ronment. There is no reason to believe that natural brains are intrinsi
allyable to perform operations una

essible to 
omputers. But our previous def-inition implies that learning is possible in natural or arti�
ial systems onlyif they intera
t with an environment. Hen
e, models that in
lude roboti

omponents 
an approa
h the study of the prin
iples of neural organizationin a more powerful way than methods that restri
t themselves to internal
omputations, sin
e they 
an a

ount for the various intera
tions betweena behaving system and its environment. The \knowledge" developed by abehaving system (natural or arti�
ial) through a learning pro
ess depends�rst on the properties of its 
ontrol stru
ture. However, another limiting fa
-tor is the 
omplexity of its environment, whi
h generates the stimuli. Sin
e10



learning implies that some regularities exist in the world, 
omplex learnedabilities need, in order to emerge, a world with 
omplex properties.Robots 
an be real-world devi
es, but it is also possible to simulate be-having agents and their environment using 
omputer programs. In our re-sear
h we use both approa
hes [30℄. Using real-world devi
es 
an ensure thatthe 
omplexity of the environment will not be a limiting fa
tor of learning.However, simulated robots allow a systemati
 evaluation of all the parame-ters that are relevant for the learning pro
ess, and guarantee repeatabilityof the experiments.In our further analysis, we will present our work on learning and problemsolving as an example of a syntheti
 approa
h based on the above method-ologi
al and 
on
eptual 
onsiderations. Sin
e the aim of the present paperis to provide an illustration of the potential of this approa
h we will fo
uson des
ribing relevant examples from our own work. In parti
ular, we willdes
ribe in more detail the development of a fully neurally realisti
 systemof short and long-term memory whi
h is evaluated in the 
ontext of arti�
ialbehaving systems. This serves to illustrate the di�erent aspe
ts of a syn-theti
 multilevel approa
h towards the study of mind, brain, and behavior.Given these aims we will not provide an exhaustive 
omparison with theexisting literature relating to the details of the presented models.
11



1.2 The learning hypothesisIn order to explain the forms of learning revealed through the experimentalparadigms of 
lassi
al and operant 
onditioning, we assume that they 
anbe des
ribed by di�erent, but intera
ting, levels of 
ontrol. First, un
on-ditioned responses 
an be derived from a rea
tive 
ontrol stru
ture. Thisstru
ture implements prewired relationships between US events and URs,and will re
exively respond to immediate events. Sin
e the set of un
ondi-tioned stimuli is derived from genomi
 information, these stimuli must besimple and based on low 
omplexity sensors, in general proximity sensors.Un
onditioned responses re
e
t a
tions of a behaving system in response tospe
i�
 events. For instan
e, a burning hot 
onta
t on the hand triggers a
ontra
tion of the arm. Rea
tive 
ontrol provides the behaving system witha basi
 level of 
ompeten
e to deal with its environment and prevents itsdisintegration.Se
ond, the tuning of the responses of an organism to non-spe
i�
 events
an be a

ounted for by an adaptive 
ontrol stru
ture. Sin
e non-spe
i�
events are a priori unknown, this stru
ture will need to develop representa-tions of events that are relevant (the CS). The 
riterion of relevan
e is the
orrelation of CS events with un
onditioned stimuli, or previously a
quired
onditioned stimuli. The representation of CS events is 
onstru
ted at thelevel of adaptive 
ontrol. This level of 
ontrol approximates relations be-tween CS and US events through instantaneous 
orrelative measures, andtriggers 
onditioned responses to 
onditioned stimuli. At the level of anadaptive 
ontrol stru
ture the detailed properties of a UR, su
h as its onset12



and duration, 
an be 
hanged to 
reate a CR (spe
i�
 learning).Third, 
orrelations between stimuli that are not instantaneous 
an be
aptured by forming sequential representations of sensorimotor events. Alevel of 
ontrol forming sequential representations (
ontextual 
ontrol) allowsthe behaving system to a
quire \plans" involving its future a
tions and theexpe
ted stimuli resulting from these. For instan
e, in Thorndike's puzzlebox, a 
at had to perform several a
tions in a pre
ise order, for it to es
apefrom the box.Our hypothesis is that these three levels of 
ontrol are suÆ
ient to a
-
ount for both 
lassi
al and operant 
onditioning phenomena. DistributedAdaptive Control (DAC) are a series of models that implement these threelevels of 
ontrol using arti�
ial neural networks. They are evaluated in the
ontrol of behavior using robots [49, 50, 46, 30, 51, 53℄.1.3 Prin
iples of neural designGiven our in
omplete knowledge of the biologi
al me
hanisms of learningand problem solving, it is ne
essary to 
onstrain our 
hoi
es of implemen-tation. In this 
ase we want to parti
ularly emphasize the 
onstraints im-posed on information transfer in biologi
al systems. A neuron 
an only usethe information that is lo
ally available, through synapses or other forms of
hemi
al transmission. In parti
ular, it is not possible to move a pattern ofa
tivity from one population of neurons to another using a supervisor thatwould pi
k the information somewhere in the network and move it to anoth-13



er pla
e. This 
onstitutes a prin
iple of lo
ality. This prin
iple is true forspa
e (spatial lo
ality) but also holds for time; if a pattern of neural a
tivityhas not 
hanged the stru
tural properties of the substrate, (e.g. synapses,
ell morphology), it 
annot be re
onstru
ted later (temporal lo
ality). It isfundamental to respe
t these prin
iples in the design of 
ontrol stru
tures, ifone doesn't want to violate the obvious fa
ts known about biology. A thirdprin
iple guiding model development is to minimize the 
omplexity of thenetwork. This is not only based on 
ommon sense (O
kham's razor), butalso on the observation that in 
ase the testable 
omponents of a model areprovided by its assumptions, starting a model based on a super-powerfuldes
ription method would pre
lude any further validation [25℄.2 MethodsThe behavioral task we use to study our models of 
ontrol is a foragingtask, where an agent has to avoid 
ollisions with obsta
les while lo
atingtargets dispersed in its environment. Experiments are performed either in asimulation environment, BugWorld [13℄, or using a real-world robot (Khep-era, K-team,Lausanne) with the IQR421 distributed simulation environment[52℄.
Insert �gure 2 about hereBugWorld is a two-dimensional environment 
ontaining obsta
les, tar-gets, and 
ir
ular robots. The body of a simulated robot is 
alled the soma(�gure 2.A). BugWorld robots have proximal and distal sensors. Their dis-tal sensors respond to the distan
e to surfa
es in their �eld of view. The14



proximal sensors are target and 
ollision sensors. The target sensors arepla
ed at 90o and �90o from the axis of the soma. They dete
t a signalemitted by the targets, whi
h is a de
reasing fun
tion of the distan
e to thetargets. For the Khepera robot (�gure 2.B), the targets are light sour
es.The proximal sensors of the Khepera robot are infrared (IR) sensors, withwhi
h the immediate proximity of IR re
e
ting surfa
es 
an be dete
ted,or ambient light levels 
an be measured. Its distal sensor is a 
olor CCD
amera.In DAC, proximal sensors generate un
onditioned stimuli (US) whiledistal sensors generate 
onditioned stimuli (CS). The un
onditioned stimuli
an be of two types: aversive (US-) or appetitive (US+). Appetitive stim-uli 
ome from the targets and the asso
iated re
exes are approa
h a
tions.Aversive stimuli are 
ollisions with obsta
les, and the asso
iated re
exes areavoidan
e of the obsta
le.3 The Distributed Adaptive Control series3.1 DAC0: The rea
tive 
ontrol stru
tureDAC0 is our implementation of a rea
tive 
ontrol stru
ture. It is fullyprewired and its 
ontrol 
onsists of basi
 re
exes or stereotypi
 behavioralpatterns.The 
ontrol ar
hite
ture DAC0 
onsists of 3 types of neurons2 (�gure 3):� Internal state units (IS) re
eive inputs from the US sensors. They
an be of two types: aversive (IS�) or appetitive (IS+). The IS�2What we mean with neuron is an approximation of a biologi
al neuron, that sums itsinputs and gives an output value whi
h is a nonlinear fun
tion of this sum.15



group gets inputs from the 
ollision sensors while the IS+ group get-s inputs from the target sensors. The IS 
ells are a
tive when the
orresponding 
ollision sensor element is a
tivated.� A
tions are triggered by a group of motor units (UR). UR re
eivesits inputs from the IS 
ells. The inputs re
eived from IS+ triggerapproa
h a
tions while the inputs from IS� trigger avoidan
e a
tions.� An inhibitory unit I is ex
ited by aversive events (IS�) and inhibit-s the appetitive 
ells IS+. This provides the agent with prioritiesbetween approa
h and avoidan
e behaviors; 
on
i
t resolution.Insert �gure 3 about hereA traje
tory of DAC0 
onsists of typi
al events (�gure 4). The behavingagent 
an move forward, turn to the right or to the left. In the absen
eof any stimulus, it moves forward, whi
h 
onstitutes exploration. Startingat position 0, DAC0 explores its environment (translational movements).In positions 1,2 it 
ollides with obsta
les and ea
h 
ollision indu
es a turnto the left (avoidan
e a
tion). At lo
ation 3 the target A is dete
ted andan approa
h behavior is indu
ed. Another 
ollision o

urs at lo
ation 4,triggering a turn to the left. In lo
ation 5, the soma follows the gradient ofthe signal until the target is found.Insert �gure 4 about here3.2 DAC2: Adaptive 
ontrol stru
tureThe adaptive 
ontrol stru
ture, DAC2, learns to 
orrelate CS events (distalsensor) with internal states (IS). It is an implementation of the non-spe
i�
16




omponent of 
lassi
al 
onditioning. DAC2 in
ludes the rea
tive 
ontrol ofDAC0. Initially, the behavior of DAC2 is entirely made up of the un
on-ditioned re
exes triggered by its rea
tive 
ontrol stru
ture. This rea
tivestru
ture 
onstrains any subsequent learning pro
ess.
Insert �gure 5 about hereWe propose that a 
entral element of 
lassi
al 
onditioning is CS iden-ti�
ation. Thus, DAC2 has another population of units, CS, whi
h re
eivetheir inputs from the distal sensors (�gure 5). Learning at the adaptive lev-el 
onsists in \
ategorizing" the CS events and 
lassifying their 
orrelationswith US events. Categorization means that a prototypi
al representation ofthe CS is 
onstru
ted from the input CS. Learning leads to the 
ontrol ofthe UR 
ells by the CS population; In 
ase a relevant CS event is re
og-nized, the a
tivity of the CS 
ells is propagated to the IS units whi
h inturn a
tivate the motor units through the prede�ned 
onne
tions betweenIS and UR.Learning the 
onne
tions between CS and IS 
ells is based on a re
on-stru
tion: First, ex
itatory 
onne
tions from CS to IS translate the a
tivityof CS into a pattern of a
tivity in IS. Then, inhibitory feedba
k 
onne
-tions from IS to CS propagate a prototype of the CS, dependent on ISa
tivity, whi
h is subtra
ted from the a
tivity of the CS 
ells. The di�er-en
e between the a
tual CS and the CS prototype is 
alled re
onstru
tionerror. The modi�
ations of the symmetri
 synapti
 weights are proportionalto this error. 17



The a
tivity vi of unit i in the IS population is:vi =Xj wijuj + 
i (1)where 
i is the 
omponent that depends on the US, uj is the a
tivity of unitj in CS, and wij is the synapti
 weight between i and j. The IS populationin turn inhibits the CS population, generating a prototype. The prototypeve
tor p is de�ned by: 8j; pj =Xj wijvi (2)where pj is the predi
ted a
tivity of CS unit j given the a
tivity in IS. Afterthis feedba
k, the a
tivity of 
ell j of the CS population, u0j, is de�ned asu0j = uj � pj , whi
h 
orresponds to the re
onstru
tion error. The weightsof the 
onne
tions between CS and IS are updated a

ording to a Hebbianlearning rule: 8i; j;�wij = �viu0j (3)where � is a learning rate.This learning rule is de�ned on the basis of a number of observationsderived from our roboti
 experiments. In [49℄ it was shown that in orderto a
quire and retain CS-US asso
iations in a behaving devi
e a 
orrelationbased learning rule needs to in
lude an a
tivity dependent depression ter-m. This renders a learning rule equivalent to the, so 
alled, Oja learningrule [32℄. It was demonstrated, however, that this solution be
omes unstableover long periods of time. The observed instability of this lo
al learning rule,prima
y and overgeneralization, was solved by embedding the pro
ess regu-18



lating synapti
 eÆ
a
y in a re
urrent 
ir
uit [50℄, and was further developedin [53℄.Figure 6 shows the representations of CS events expressed in the strengthof the synapses between the CS and IS populations of a real-world agent.The environment of �gure 6.A has regular properties; di�erent US events are
orrelated with the presen
e of pat
hes of di�erent 
olors that are dete
tedby the visual system of the robot. This system uses 36 
ells, 12 for ea
h 
olor(red, green and blue). Ea
h 
ell 
overs a unique 45x30 pixels region in the640x480 image from the 
amera (see [53℄ for details). In this environment,the robot learned to asso
iate parti
ular 
olors with parti
ular US events.Figure 6.B displays the time evolution of the synapti
 weights of the adaptive
ontrol stru
ture, after 1, 1.5 and 2 hours. Not only are the 
orrelationspresent in the environment a

urately re
e
ted in the inter
onne
tivity, butindividual 
ells in IS� and IS+ develop unique representations of parti
ular
ollision or target events. For instan
e, the white re
tangle in the se
ondrow, �rst 
olumn of the \red { IS�" matrix shows that the 
ollision dete
tornumber 2 was 
orrelated with the presen
e of red in visual region number 1(upper left 
orner), resulting in a high synapti
 weight. Comparing the threedisplays we observe that the invariants extra
ted from the environment byDAC2 remain stable over an extended period of time (�gure 6.B).Insert �gure 6 about hereLearning in this 
ontrol stru
ture is, however, limited to immediate 
or-relations between CS and US events. The result is that the behavior ofDAC2 entirely depends on 
urrent sensory inputs. The agent 
an exploreits environment and extra
t some general properties, but 
annot learn tem-19



poral relations between multiple events.3.3 DAC3: A 
ontextual 
ontrol stru
tureThe aim of the third level of 
ontrol is to allow the a
quisition of sequen-tial representations of events, to retain them in a memory, and to expressthem in behavior. In a task of sequen
e learning, the response (output) of asystem does not only depend on the immediate input, but also on the 
on-text provided by previous inputs; temporal 
ontext [56℄. An agent providedwith this third level of 
ontrol is able to 
hoose its a
tions based on both thetemporal 
ontext and on its experien
e. This level is 
alled 
ontextual 
ontrol.A sequen
e 
onsists of sensorimotor events; segments. A segment is a
ouple 
onsisting of a CS prototype, 
onstru
ted by the adaptive 
ontrolstru
ture (eq. 2), and an asso
iated motor a
tion (UR).A 
ontextual 
ontrol stru
ture will need to sele
t 
ertain sensorimotor se-quen
es, among the whole set of behaviors generated by the adaptive 
ontrolstru
ture. Sequen
es that need to be sele
ted for a
quisition are those thatlead to a modi�
ation of an internal state. For instan
e, in our foraging task,we use the 
ontextual 
ontrol stru
ture in order to �nd targets. In this spe-
i�
 task, a sequen
e of a
tions that leads to a target is a rewarding sequen
e.Insert �gure 7 about hereIn order to a
quire a sequen
e, it is ne
essary to remember the senso-rimotor events that have pre
eded the modi�
ation of the internal state.20



Sin
e we do not know what the out
omes of our a
tions are, it is ne
essaryto have a me
hanism that 
ontinuously stores events and is able to retainthem; short-term memory. It should be emphasized that sin
e we have noa priori knowledge of what events will later trigger a 
hange in the internalstate, like the delivery of a reward, the short-term memory needs to keeptra
k of any event at any time.In order to modify the behavior, sequen
es that pre
eded a modi�
ationof an internal state have to be stored in a sele
tive memory that keeps tra
kof these events over a longer period of time than the short-term memory.For the present dis
ussion, we refer to this 
omponent as long-term memory.This de�nition is more restri
tive than the de�nition of long-term memorygenerally used in psy
hology, whi
h designates all long-term 
hanges [42℄.For instan
e, learning at the DAC2 level is a form of long-term memory butfor our present dis
ussion it is 
onsidered as a separate me
hanism. Whilethe agent explores its environment it 
ompares its sensory inputs with the
ontent of its long-term memory in order to use its learned behaviors. Ifthe 
urrent CS prototype and the 
urrent 
ontext mat
h a learned situa-tion, then the agent exe
utes the 
orresponding motor a
tion stored in itslong-term memory.In our foraging task, rewarding sequen
es are a
quired during stimula-tion periods where targets emit a signal. The expression of learned behaviors
an be observed during re
all periods where the signal emitted by the targetshas been suppressed. 21



For our implementation we make an additional distin
tion between de-fault and non-default a
tions. During the stimulation periods, the signalfrom the targets (US+) 
an trigger approa
h a
tions of the adaptive stru
-ture, or suppress avoidan
e a
tions, if the in
uen
es of the US+ and theUS- are balan
ed. A
tions that depend on the US+ are 
alled non-defaulta
tions. If no US+ is dete
ted, default a
tions are generated by the adaptive
ontrol stru
ture. Sin
e we want to use the 
ontextual 
ontrol stru
ture inorder to �nd targets during re
all periods, only the non-default a
tions needto be 
onsidered in the sequen
e learning task.DAC3 is our �rst implementation of an agent with 
ontextual 
ontrol[46℄. Its 
ontextual 
ontrol stru
ture is built on top of the same adaptive
ontrol stru
ture as DAC2. The short-term memory of DAC3 is a ring bu�erthat stores the last sensorimotor events. Ea
h time a target triggers a non-default a
tion, a CS-UR 
ouple is stored in this bu�er. The stored CS event
orresponds to the prototype that has been derived from the stimulus, theUR event 
orresponds to the triggered motor a
tion. If a target is found thenthe sequen
e 
ontained in the short-term memory is stored in the long-termmemory. Hen
e, the long-term memory is a list of sequen
es of sensorimotorevents.During exploration the a
tual CS prototype (equation 2) is 
ompared tothe prototypes in the segments of the long-term memory. This 
omparisonis followed by a sele
tion; the best-mat
hing unit (winner), if its prototype22



is 
lose enough to the a
tual CS prototype, indu
es an a
tion by a
tivatingthe UR units. This sele
tion, however, is biased sin
e the winner unit willenhan
e the likelihood that the next segment of its sequen
e will win the
ompetition in the future. This bias allows the a
tions of the agent to bedependent on 
ontext (
haining).Preliminary experiments showed that DAC3 is able to display stru
turedbehaviors, su
h as stable traje
tories between targets [46℄. In [53℄, we haveshown that the 
ontextual 
ontrol stru
ture allows DAC3 to �nd more tar-gets than DAC2 during re
all periods, when the signal from the targets issuppressed.4 DAC4: A neural implementation of a 
ontextual
ontrol stru
tureThe prin
iples underlying the 
ontextual 
ontrol stru
ture of DAC3 are 
om-petition between simple units and sele
tion. These me
hanisms are funda-mental prin
iples in unsupervised training of neural networks, and theirrole has been 
onsidered in natural systems, [4, 21℄. So far, however, forthe short-term and long-term memory stru
tures of DAC3 we made use ofring bu�ers and 
hained lists. In this way the implementational issues wereside-stepped in order to investigate the fun
tional properties of a 
ontextual
ontrol stru
ture. These preliminary investigations established that sequen-tial learning 
ould be explained in these terms [53℄. The question whetherthe same fun
tional properties 
ould be implemented in a biologi
ally plau-sible way raises some important 
hallenges.
23



DAC4 is our �rst fully neural implementation of a 
ontextual 
ontrolstru
ture. It is 
onsistent with the prin
iples of lo
ality presented in theintrodu
tion; it does not violate the obvious knowledge that we have of bi-ologi
al pro
esses of learning. Addressing the issue of the neural design ofthis 
ontrol stru
ture allows the investigation of the 
onstraints imposed onnatural nervous systems, in terms of a
quisition, retention and expressionof information. These are fundamental questions that 
annot be addressedby the 
lassi
al approa
h of designing neural networks that perform isolatedtasks, given the relationship between a 
ontrol stru
ture, the properties ofthe soma and of the environment we showed earlier.4.1 RequirementsBefore we present the model we want to spe
ify in detail some fun
tionalrequirements of a neural stru
ture that a
quires, retains and expresses se-quential information.4.1.1 Sequen
e learning with ANNsA 
ontextual level has to a
quire sequen
es of sensorimotor asso
iations.Sequen
e learning means that the responses generated by the network aremore than simple asso
iations between inputs and outputs, but also dependon the temporal 
ontext provided by its previous inputs [56℄.Sequen
e learning with neural networks has been investigated in variousways [9℄, [34℄, [19℄. A robust 
lass of methods use networks with re
urren-t 
onne
tions, so that the pattern of a
tivity of the 
ells in the re
urrent24



loop depends on the temporal 
ontext of past events, thus having units rep-resenting 
ontext [8℄. Most of these models, however, use the supervisedba
kpropagation of an error signal in their learning rule, and this error term
ontains nonlo
al information. In addition these models fa
e diÆ
ulties inthe representation of temporal 
ontexts with long-term dependen
ies [3℄.(Dominey et al, 1995) showed that sequen
e learning is also possible witha re
urrent network, using only lo
al information [7℄. This network is madeof two inter
onne
ted populations, State and Context, and an output pop-ulation. The synapti
 weights of the re
urrent 
onne
tions between Stateand Context are randomly 
hosen, and not plasti
. Sequen
es are learnedusing a Hebbian learning rule between units of State and units of the outputlayer (asso
iative memory). In this 
ase, the temporal 
ontext is representedby the pattern of a
tivity in State and Context; the a
tivities of the 
ellsin these populations depend on the temporal 
ontext. This representationis prede�ned by the random 
onne
tions. This network has been applied tothe study of 
orti
ostriatal plasti
ity, and the dynami
s of prefrontal 
ortex[7, 6℄. Sin
e it does not violate the prin
iples of lo
ality and has the ro-bustness of re
urrent networks, we tried to adapt it to our task of sequen
elearning.4.1.2 The short-term memoryCan we use a re
urrent model like the one presented in [7℄ for the short-termmemory? This model is in general not able to learn a sequen
e using onesingle presentation, be
ause it uses an asso
iative memory. A short-term25



memory, however, needs to a
quire sequen
es immediately. Consider the
ase of a network that needs several presentations of a sequen
e in orderto su

essfully store it. In order to fun
tion as a short-term memory, su
ha network would need to a
quire sequen
es at the moment when they arepresented by the external environment, and not at moments that dependon internal 
onstraints imposed by the network. For instan
e, if two pre-sentations of a rewarding sequen
e are separated by an interval of one day,then this network would have to maintain the preliminary sket
h of learningfor one day before it 
ould be re�ned. However, as we dis
ussed earlier,the short-term memory needs to keep tra
k of any event. Therefore, all theevents that happen within this day would have to be a
quired in the sameway, without erasing the �rst preliminary sket
h of learning. Sin
e the out-
ome of a
tions 
annot be known in advan
e, su
h a memory would have tostore an ex
essive amount of information and thus need a giganti
 
apa
ity.Therefore, a

ording to the de�nitions of short-term and long-term memo-ries given in se
tion 3.3, it is ne
essary that the short-term memory a
quirespotential rewarding sequen
es after one single presentation. In this 
ase, its
ontent 
an be retrieved for long-term storage when there is a modi�
ationof an internal state, or erased during foraging.4.1.3 The long-term memoryCan we use the same re
urrent neural network for the short-term memoryand for the long-term memory? In the model of (Dominey et al, 1995) [7℄ therepresentation of 
ontext is prede�ned by the random 
onne
tions. A

ord-ing to our de�nition, the task of a short-term memory is limited to storage26



and restitution of sensorimotor sequen
es. For this a prede�ned representa-tion of 
ontext is not a problem, as long as the sequen
e of events 
an beretrieved. However, a long-term memory has to do more than storage andretrieval of information. As a physi
al system, it will have a �nite 
apa
ity.However, sin
e it will have to learn a virtually in�nite set of sequen
es, along-term memory needs to build 
ategories and perform generalization.A prede�ned representation of temporal 
ontext 
annot perform generaliza-tion and would restri
t the set of possible 
ategories. This means that therepresentation of 
ontext used by a long-term memory needs to adapt itselfto the data rather than be �xed.Another requirement of long-term memory 
an be 
alled identi�ability:In the 
omparison of 
urrent events with the 
ontent of the long-term mem-ory, all the elements of any sequen
e are potentially relevant. Thus, theyall need to be a

essible at every moment. This favors representations ofdistin
t prototypes by distin
t units, instead of 
omplex patterns that areattra
tors of the dynami
s of a re
urrent networks [53℄.4.2 The modelGiven the above 
onsiderations, we 
hoose to implement the long-term mem-ory and the short-term memory stru
tures using two di�erent neural net-works. These separate networks satisfy the above requirements. The follow-ing se
tions are a general presentation of these networks. For a 
ompletedes
ription, see the appendix.
27



4.2.1 The short-term memoryMost models of sequen
e learning with a neural network need several p-resentations of a sequen
e in order to learn it. But as argued above theshort-term memory of a 
ontextual 
ontrol needs to a
quire sequen
es afterthe �rst presentation. Insert �gure 8 about hereIn order to solve this problem, we modi�ed the model of Dominey [7℄,adding a new population of 
ells, 
alled Segments (see �gure 8). The popu-lations of the re
urrent network for the short-term memory are 
alled Stateand Context. Units of Segments get inputs from the State population andasso
iate State a
tivities to sensory prototypes (in the CS population) andmotor a
tions (in the UR population). At ea
h time step, a 
ompetitionsele
ts a new unit of Segments whi
h learns the asso
iation between the
urrent pattern of a
tivity in State, resulting from past events, and the
urrent pattern of a
tivity in CS and UR. The 
ells in Segments haveextremely plasti
 synapses; sele
ted 
ells learn the asso
iation immediately.The 
ounterpart of this plasti
ity is that the information retained in theSegments population might be erased qui
kly when new asso
iations areformed. We use a 
ompetition me
hanism that favors units whi
h have notbeen sele
ted for a long time, in order to prevent qui
k overwriting of a
-quired asso
iations. What prevents sequen
es to be forgotten on a longertime s
ale is their retention in long-term memory.
28



4.2.2 Transfer from short-term memory to long-term memory:Retention, ReplayThe 
hoi
e of having two separate populations of 
ells implementing theshort-term and long-term memories implies that the information a
quiredby the short-term memory needs to be retained in the long-term memory;physi
ally moved to another stru
ture. In order to do this, our prin
iple ofspatial lo
ality allows one possibility, whi
h is to rea
tivate the sensory andmotor 
ells 
orresponding to a sequen
e in order to modify the long-termmemory synapses. It is during this \replay" that sequen
es are stored in thelong-term memory.This raises another question: How will sequen
es be replayed? Sequen
esare made of sensorimotor events, but it is not obvious whether one needs toreplay them in the order of a
quisition or not. They 
ould also be replayedin a reverse order, or in a random order. We 
hoose to replay events in thesame order as they were a
quired, be
ause the long-term memory relies ona re
urrent representation of temporal 
ontext whi
h re
e
ts the order ofevents. The other possibilities, however, 
annot be ex
luded a priori (seedis
ussion).In order to replay a sequen
e a
quired by the short-term memory, a �rstunit of Segments needs to be sele
ted (�gure 8), whi
h initiates the replay.The sele
ted 
ell does not 
hange its plasti
ity, but ex
ites 
ells in the sen-sory population 
orresponding to the CS and the asso
iated motor units.Motor a
tions are inhibited during this phase. The sensory a
tivation ispropagated in the re
urrent network of the short-term memory, State and29



Context, whi
h triggers a representation of the 
ontext 
orresponding to thenext sensorimotor 
ouple of the sequen
e, and to the sele
tion of the next
orresponding Segments unit. This loop allows to replay events in theirorder of a
quisition. The result of this replay is the rea
tivation of sensori-motor units in the order of the sequen
e.4.2.3 Initiating the replayThe 
hoi
e of replaying sequen
es leads to an additional problem: Our re-
urrent network is able to retrieve a sequen
e starting from its beginning, orfrom any point of the sequen
e, but needs to be put in the state of a
tivity
orresponding to the starting point of the replayed sequen
e. However, atthe moment the replay is initiated, the previous patterns of a
tivity of thenetwork are lost. Given the 
onstraint of temporal lo
ality, the short-termmemory has to \retrieve" this starting point by translating a set of synapsesinto a pattern of a
tivity. In addition, the \starting point" of the rewardingsequen
e is a priori not de�ned for the network. Thus, how shall the replaybe initiated?A possibility 
ould be to use an additional system that a
ts as a super-visor. This system would store 'salient' events in order to use them later asstarting points for the replay. This solution would add 
omplexity to thenetwork, and raise multiple problems su
h as: \what are salient events?",\when should they be forgotten?", et
. For this reason, we did not use thisoption. Our solution 
onsists in adding a random perturbation to the a
tiv-ity of the 
ells in State and Context, in order to sele
t the unit in Segments30



whi
h initiates the replay. Sin
e this pattern of a
tivity results from a ran-dom perturbation, it is not sure yet whether the network will replay eventsin the order of the a
quired sequen
e. The evolution of a perturbation of are
urrent network is linked to properties of its internal 
onne
tions, of theresponses of neurons, and to the time 
onstants used. In parti
ular, thereis a set of 
onditions for whi
h the stored sequen
es are attra
tors of thedynami
s (su
h a system is 
alled Lyapunov-stable). In this 
ase, the ampli-tude of the perturbation de
reases during the replay, allowing for a replayof the segments in their order of a
quisition. We use su
h a set of 
onditionsfor the re
urrent network made of State and Context. Thus, during thereplay pro
ess a learned sequen
e will be retrieved, whi
h is an attra
tor ofthe dynami
s.This does not guarantee that the replayed sequen
e will 
orrespond ex-a
tly to the events that led to the reward. However, depending on the num-ber of units in Segments, and on the amplitude of the random perturbation,one 
an in
uen
e the probability to replay the relevant events.4.2.4 The long-term memory; retention, expressionInsert �gure 9 about hereWe mentioned the need to have an adaptive representation of 
ontext inthe long-term memory.The layers of the re
urrent network used for the long-term memory areSTATE and CONTEXT (see �gure 9). Instead of having prede�ned 
on-ne
tions, as in [7℄, units in STATE learn to respond to the 
oin
iden
e of a31



sensory stimulus and a 
ontext represented in CONTEXT . The a
tivity inCONTEXT depends only on the previous a
tivities in STATE. (A detaileddes
ription of the learning rule used is provided in the appendix). Units inSTATE learn to eÆ
iently represent sequen
es that are often presented,and are less able to represent situations that are rarely present in the explo-ration task. On ea
h time step, the unit of STATE whi
h has the highestresponse a
tivates the motor units, if its response is above a given threshold.This prin
iple allows a high 
exibility in the exe
ution of sequen
es; the
ells of STATE respond to the stimulus and also to the state of advan
e-ment of the behavioral plan that has been started. This allows to adapt thebehavior of the agent when events in the world do not 
orrespond to thelearned sequen
e.Not all the 
omponents of a sequen
e have to initiate an a
tion, but therepresentation of 
ontext has to be maintained at all time, in order to allowthe 
ontinuity of the exe
uted plan. As in DAC3, we make the distin
tionbetween default and non-default a
tions. In order to redu
e the sequen
elearning task to the ne
essary non-default a
tions, the representation of tem-poral 
ontext in CONTEXT depends on the nature of the 
urrent a
tion:Between two non-default a
tions, the a
tivity of the 
ells of the CONTEXTlayer slowly de
ays. This makes the 
ells in STATE learn how mu
h timesteps have elapsed between the sensory events 
orresponding to non-defaulta
tions. So the system also learns to let the same time elapse when thesequen
e has to be exe
uted. 32



Unlike the short-term memory, this re
urrent network will need severalpresentations of a sequen
e in order to learn it. For the long-term memory,this is not a problem sin
e it is possible to replay the same sequen
e severaltimes. Alternatively, the agent may have to �nd the target several times ifthe sequen
e is replayed only on
e ea
h time a reward is found.
Insert �gure 10 about hereFigure 10 shows an example of a su

essfully learned sequen
e. In a �rstpresentation (10.1) the signal from the target is dete
ted. When the signalis removed (10.2) the agent does not �nd the target anymore. After severalpresentations and replays of the sequen
e, the target 
an be found withoutthe signal (10.3). Note that in 10.3 the motor sequen
e is not exa
tly thesame as in 10.1. They 
an be made identi
al with further presentation-s. More generally, experiments showed that the behavior of DAC4 is verysimilar to the behavior of DAC3; both are implementations of the same
ontextual 
ontrol. This demonstrates that the prin
iples of 
ontextual 
on-trol explored by DAC3 
an be implemented in a 
onsistent way obeying theprin
iples of spatial and temporal lo
ality.5 Dis
ussionThis paper aimed at 
onveying a need to �nd approa
hes whi
h 
an helpus to explore prin
iples of neural organization. We propose that synthet-i
 methods, for instan
e based on digital simulation, provide an exampleof su
h an approa
h whi
h is 
omplementary to the more traditional em-33



piri
al mode of resear
h in the study of brain and behavior. A syntheti
approa
h, however, needs to follow a methodology whi
h we summarizedunder the notion of 
onvergent validation. This means that models need tosatisfy 
onstraints taken from multiple levels of des
ription. As an exam-ple of su
h an approa
h we have reviewed our own work on learning andproblem solving, Distributed Adaptive Control. In this 
ontext, learning isstudied from a perspe
tive that in
ludes the environment, the phenotype,and the detailed properties of its 
ontrol stru
ture (brain). We 
onsider ourown work as providing a theoreti
al framework whi
h at this point in time isself-
onsistent, it obeys the prin
iples of lo
ality and 
onne
ts prin
iples onphysi
al stru
ture to regularities in behavior whi
h have shown to be validin the real-world in real-time. It would be naive, however, to sti
k parti
ularanatomi
al labels to the sub
omponents of our models. They do provide,however, a perspe
tive in whi
h observations on properties of the neuralsubstrate 
an be interpreted. In our example we will restri
t ourselves tothe further interpretation of DAC4.Re
ently, the replay of neuronal �ring patterns during sleep, in the sametemporal order as during exploration, has been des
ribed in the rat hip-po
ampus [39℄, [38℄. Although these results have been questioned [29℄, theexisten
e of two separate learning systems in the hippo
ampal loop and inthe neo
ortex is well established [43℄. The role of these separate learningsystems has been investigated in abstra
t terms [26℄, but these investiga-tions are limited sin
e they do not rely on a model of learning whi
h 
anbe evaluated in the 
ontext of a behavioral task. A syntheti
 approa
h, as34



demonstrated in this paper, allows su
h an evaluation. However, the modelpresented here is not inspired by the anatomy, physiology or neuropsy
holo-gy of hippo
ampus and 
ortex, but addresses the general problem of 
ommu-ni
ation between di�erent neural stru
tures, in the 
ontext of behaviorallyrealisti
 tasks and well evaluated models of learning.We established that a system that is able to immediately a
quire 
om-plex sequen
es and that 
an learn general properties of these sequen
es 
anbe de�ned obeying the prin
iples of lo
ality, using two separate networks.The fun
tional properties of these two networks are a priori not 
ompat-ible and a priori not implementable in one homogeneous neural network.We demonstrated that a system relying on replay 
ould 
ombine the abovefeatures in a fun
tionally valid way; this method is 
onsistent with the fun
-tional requirements imposed by the external world, as dis
ussed in se
tion 4.An interesting impli
ation of the prin
iple of lo
ality is the use of re-play; we use two di�erent neural stru
tures that des
ribe the same sensoryinput and that need to ex
hange information. This ex
hange of informationmust be performed by synapti
 transmission in order to respe
t the prin
i-ple of lo
ality. A system that would a

omplish this ex
hange using dire
t
onne
tions, without using replay, would have to de�ne a \
ode" for thistransmission of information. De�ning su
h a 
ode, however, is unne
essarysin
e the information en
oded would des
ribe the same sensory reality forboth systems. Hen
e, replay provides a less 
omplex solution, in whi
h aninternal 
ode is not ne
essary. 35



However, using replay has some important impli
ations for a neural sys-tem; during this phase, the neural populations in whi
h sequen
es are re-played 
annot be used for pro
essing other inputs. This implies that thesepopulations need to work in two ex
lusive modes; an intera
tive-open mod-e that allows sensory 
ategorization, generation of a
tion, a
quisition ofsequen
es by the short-term memory, and expression of sequen
es by thelong-term memory, and a passive-
losed mode where the neural populationshave to be isolated from sensory inputs whi
h would perturb the replay, inorder to allow retention of the sequen
es.It is obvious that an organism working with these two distin
t modes isstrongly weakened during the passive mode. One 
an wonder, however, whybiologi
al systems display 
ir
adian rhythms involving a
tive and passivephases. If one assumes that a passive mode is ne
essary to a given biologi-
al pro
ess, like in our 
ase the replay of a
tivity patterns, then this mode
an also be exploited by other pro
esses, su
h as metaboli
 pro
esses. Theresult of su
h a situation would be that these other me
hanisms exploitingthe passive mode, would in turn be
ome dependent on it. Hen
e, it wouldbe diÆ
ult to know a posteriori whi
h pro
ess originally required a passivemode. Today, it is not 
lear whether replay is used in the brain [29℄, whetherthe 
orresponding passive mode is sleep, and whether sleep is ne
essary toother metaboli
 pro
esses, like 
ell regeneration [22℄.The modeling series presented in this paper is by no means 
omplete36



and is still under a
tive development. It does illustrate, however, that asyntheti
 approa
h 
an provide insights in possible prin
iples of neuronalorganization and pla
e them in relation to the overall behaving system, as-suming that a number of 
on
eptual and methodologi
al 
onsiderations aremet. It 
an provide a 
ompensation for the more redu
tionisti
 methodsfollowed in neuros
ien
e with its impli
ations of knowledge fragmentation.The validity of our own traje
tory through the spa
e of possible modelsneeds to be s
rutinized 
ontinuously and as su
h 
onstitutes only an exam-ple of this approa
h. We do feel, however, that the problem of knowledgefragmentation does deserve the full attention of the �eld.
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6 Appendix: Detailed spe
i�
ations6.1 The short-term memoryDAC4 is based on an earlier model of sequen
e learning whi
h uses lo
allearning rules [7℄. Following this model the temporal 
ontext of short-termmemory is represented by two neural populations, State and Context, whi
hare re
urrently 
onne
ted. The integrated input, 
i, of unit i in Context attime t + 1 depends on its input at t and on the input re
eived from unit iin State, s0i: 
i(t+ 1) = (1� �) 
i(t) + � s0i(t) (4)where � is a 
onstant. The a
tivity, 
0i, of unit i in Context, is a fun
tionf of its integrated input: 
0i(t) = f(
i(t)), where f is a sigmoidal fun
tion.Next to inputs from Context units in State also re
eive external input fromthe CS population. The total input, si, of unit i in State is de�ned as:si(t) = NCXj=1wCij 
j(t) + NCSXk=1 wCSik CSk(t) (5)where wC and wCS are random �xed synapti
 weights. NC and NCS denotethe size of populations Context and CS respe
tively, and CSk is the a
tivityof 
ell k in CS. The a
tivity s0i of unit i in State is a sigmoidal fun
tion fof its total input: s0i(t) = f(si(t)).The short-term memory uses a third population 
alled Segments. Ea
hof its units stores a sensorimotor 
ouple in its synapti
 
onne
tions withpopulations CS and UR, while its re
eptive �eld is a pattern of a
tivity inState. The a
tivity g0i(t), of unit i in Segments, is a Gaussian fun
tion ofthe Eu
lidean distan
e gi(t) between the a
tual pattern of a
tivity in State,38



s0(t), and its synapti
 weights:gi(t) = 0�NSXk=1(wSik � s0k(t))21A1=2 (6)where wSi represents the ve
tor of synapti
 weights from State to unit i inSegments and NS is the number of units in State, and:g0i(t) = exp ��(gi(t)=�i)2� (7)where �i is the width of the Gaussian response of unit i. After updatingthe a
tivities in Segments a winner take all 
ompetition sele
ts the unit, k,with the highest a
tivity: g0k(t) = maxi2Segments g0i(t) (8)This me
hanism involves non-lo
al information. However, 
ompetition with-in a neural population 
an be lo
ally implemented using lateral inhibition[21℄ and 
annot be seen as a violation of our prin
iple of lo
ality.The winning unit k in Segments updates its synapti
 
onne
tions withState, CS and UR. This update is one-trial learning: the pattern of a
-tivity in State is immediately asso
iated to the 
urrent sensorimotor 
ouplethrough unit k. The new weight ve
tor from State to k is: wSk (t+1) = s0(t).In addition, the weight ve
tors wG�CSk and wG�URk between the winning u-nit k in Segments and the CS and UR populations are modi�ed a

ordingto: 8i 2 1:::NCS ; wG�CSki (t) = CSi(t) (9)8i 2 1:::NUR; wG�URki (t) = URi(t) (10)39



where URi denotes 
ell i in UR. This one-step learning implies that thesele
ted unit will loose a possible previous asso
iation. However, it is ne
es-sary to 
ontrol how forgetting takes pla
e in the short-term memory, be
ausere
ently learned asso
iation need to be retained suÆ
iently long to allow re-tention by the long-term memory. The parameter �i in equation (7) 
ontrolsthe spe
i�
ity of the response of unit i. A large value of �i means that unit iwill respond to a wide range of stimuli. Modulation of this parameter allowsthe 
ontrol of forgetting in the short-term memory. At ea
h time step, �i isin
reased for all the units of Segments:�i(t+ 1) = � �i(t) (11)where � > 1 is an in
rease rate. In addition, for the winner unit k, this widthis reinitialized: �k(t) = 1. The loss of spe
i�
ity (equation 11) ensuresthat units that have not been sele
ted for a long time will have a higherprobability to be sele
ted in the future. In 
ontrast, the probability that are
ently sele
ted unit will be sele
ted again is low. This prevents disorderedre
ruitment of the units in Segments.6.2 ReplayShort-term memory patterns are retained in long-term memory through re-play. During replay units in Segments are updated a

ording to equations(7) and (8). The resultant winning unit in Segments will a
tivate a new CSprototype. This will, in turn, lead to new a
tivity in State and Context,and allows the next Segments unit to be sele
ted (
haining). In this 
asethe rate �, and the parameter �i of ea
h 
ell, remain at 1. In addition duringreplay units in Segments are able to a
tivate units in UR.40



6.3 The long-term memoryThe long-term memory is implemented by a re
urrent network, made oftwo populations, STATE and CONTEXT . As in the 
ase of the short-term memory, units of STATE send one-to-one proje
tions to the units ofCONTEXT . They re
eive inputs from the CS and CONTEXT popula-tions. The 
onne
tions from CONTEXT to STATE are updated as well asthe 
onne
tions from CS to STATE. The learning rule used is derived fromthe so 
alled Self-Organizing Map algorithm [20℄. In this 
ase, however, itis applied to a re
urrent network. This provides an adaptive representationof 
ontext [55℄.The populations STATE and CONTEXT are two-dimensional. Thisallows to de�ne the distan
e between two units. The internal a
tivity, Si,of unit i in STATE depends on both the a
tivity ve
tors CS(t) in CS, andC(t) in CONTEXT :Si(t) = exp ��(ajjWCSi � CS(t)jj+ bjjWCi � C(t)jj)2� (12)where WCSi is a ve
tor representing the weights from CS to unit i ofSTATE, WCi the weights from CONTEXT to i, a and b are real num-bers, and jj:::jj denotes the Eu
lidean norm. The 
ell l of STATE that hasthe highest a
tivity is then sele
ted:Sl(t) = maxi2STATE Si(t) (13)During replay, ea
h unit i of STATE has its synapti
 weights updated,a

ording to: WCSi (t+ 1) =WCSi (t) + 
gil(CS(t)�WCSi (t)) (14)41



WCi (t+ 1) =WCi (t) + Ægil(C 0(t)�WCi (t)) (15)where 
 and Æ are learning rates, and gil is a Gaussian fun
tion of thedistan
e between units i and l. In addition, during replay, the 
urrent motorpattern is stored in the weights WUR between the winner unit l in STATEand the UR population: WURl (t) = UR(t) (16)During exploration, any 
ell of STATE 
an a
tivate the UR population ifits a
tivity is above a threshold. However, the learning rules de�ned in e-quations (14) and (15) 
hange the re
eptive �elds of the winning unit, butalso of its neighbors. Therefore it is ne
essary to prevent units in STATEfrom a
tivating the UR population if their re
eptive �eld does not 
orre-spond to a learned sequen
e; the re
eptive �eld may have been modi�edmore re
ently (equations 14, 15) than the output 
onne
tions (equation 16).In this 
ase, we limit the output a
tivity of the 
ell so that it 
annot ex
itethe motor units, using a term ei(t) 
alled ex
itability of unit i. Thus, theoutput a
tivity of unit i of STATE is de�ned as:S0i(t) = Si(t) ei(t) (17)If the output a
tivity S0l of the winner unit l is above a threshold, then itpropagates its a
tivity to the UR 
ells, indu
ing a motor a
tion. Duringreplay, the ex
itability el of the winner unit l is updated: If the replayedevent 
orresponds to a non-default a
tion, then this ex
itability is reset toone, el = 1, otherwise it de
ays, el = (1� �) el, with (0 < � < 1).The a
tivities of the 
ells in CONTEXT depend on the nature of the42




urrent a
tion. If a non-default a
tion is generated, then:Ci(t+ 1) = (1� �) Ci(t) + � Si(t) (18)where � is a 
onstant. In the 
ase of a default a
tion the a
tivity inCONTEXT de
reases, independently of the a
tivity in STATE:Ci(t+ 1) = (1� �) Ci(t) (19)This latter me
hanism ensures that the pattern of a
tivity in CONTEXT
ontinuously 
hanges between two non-default a
tions. Therefore, unitsin STATE, that trigger non-default a
tions, 
an learn to respond after a
ertain time interval following the last non-default a
tion triggered.
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A BFigure 1: A: Experimental setup used by Pavlov. B: Thorndike's puzzlebox.
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Target sensor Collision sensor array

Range finder field BFigure 2: A:The soma of the simulated robot: Target sensors are pla
ed onea
h side. The front side is 
overed with 
ollision sensors and distal sensors.Arrow indi
ates the primary dire
tion of motion. B: The Khepera robot.The CS is the image from the 
olor CCD 
amera mounted on top. The US
omes from light and IR sensors pla
ed at the lower 
ir
umferen
e of thebase. The Khepera robot is 
ir
ular with a diameter of 3 
m and 8 
m high,in
luding the 
amera.
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Figure 3: The rea
tive 
ontrol stru
ture. Collision sensors and target sensors(US) modify the internal state (IS). The IS populations trigger rea
tivemotor a
tions. An inhibitory unit de�nes the priority between the two ISpopulations.

Figure 4: A traje
tory of the soma generated by a rea
tive 
ontrol stru
ture.A 
ollision triggers an avoidan
e rea
tion (US�) (1,2,4). Targets in A,B,C,Demit a signal that 
an be dete
ted by the sensors (appetitive un
onditionedstimulus, US+). These 
an trigger approa
h a
tions (3,5).
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Figure 5: The adaptive 
ontrol stru
ture. A re
urrent loop with inhibitoryfeedba
k 
onne
tions allows to learn how to 
ategorize the CS events. TheCS modi�es the internal states (IS), triggering 
onditioned re
exes.
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A

B

Figure 6: A: An environment used for the Khepera robot. Blue and green
olor pat
hes are dispersed on the 
oor (light and dark gray respe
tively onthe �gure), and the environment is delimited by a 
ir
ular wall on whi
h redpat
hes are atta
hed. Red was 
orrelated with 
ollisions (US-) while greenand blue were 
orrelated with the presen
e of a light sour
e (targets-US+)pla
ed over the middle of the environment. A traje
tory of the robot is plot-ted, whi
h lasted 4 minutes and was re
orded after one hour of exploration.B: Synapti
 
onne
tions between the 
olor responsive CS 
ells and the ISpopulations. Ea
h 
olumn represents the set of 
ells of CS responsive to aspe
i�
 
olor, red, green, and blue respe
tively. The �rst row of matri
esrepresents the 
onne
tions between the 
ells of the IS� population and the
olor 
ells. The lower row displays the strength of the 
onne
tions betweenIS+ and the 
olor sensitive 
ells. The �rst display shows the 
onne
tivitypattern after 1 hour of learning the subsequent displays relate to the 
on-ne
tivity after 1.5 and 2 hours. Ea
h row in a sub-matrix 
an be interpretedas the re
eptive �eld of the IS neurons. The top row in ea
h sub-matrix
orresponds with the sensor pla
ed at 90o of the 
enter of the robot. Ea
hfollowing sensor is pla
ed at -30o from the previous one. The last two rows
orrespond with the sensors pla
ed at the ba
k of the robot.51
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Figure 7: The 
ontextual 
ontrol stru
ture of DAC3. 1: The UR populationre
eives inputs from the IS population of the adaptive 
ontrol stru
ture. 2:If a non-default a
tion o

urs, the CS prototype and the UR a
tivity arestored as a segment in the short-term memory. 3: The 
urrent CS prototypeis mat
hed against prototypes of the segments in the long-term memory.4: If a CS prototype in the long-term memory mat
hes the 
urrent CSprototype, then then 
ontextual 
ontrol stru
ture indu
es a motor a
tion.5: If a sequen
e is sele
ted, the segments in the short-term memory arestored in long-term memory.
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Figure 8: The short-term memory of DAC4. The CS, IS, UR, State,Context, and Segments populations are represented. The re
urrent 
on-ne
tions between State and Context are symbolized by the double framelabeled \State". A 
ell of the Segments population asso
iates a patternof a re
urrent network with the sensorimotor events of the next time step.A,B: Exploration. In A, the state of the re
urrent network that depends onthe 
urrent 
ontext (CS1, and before), is asso
iated with the stimulus andthe motor a
tion of the 
urrent time step (CS2, UR2). C: A target is found,this will trigger replay to allow retention in LTM. D: Replay was initiatedby Segments unit 1. During the replay, the sele
ted 
ell of Segments (unit1) a
tivates the CS population with the asso
iated CS events (CS2), in or-der to generate the next pattern in the re
urrent network (State2). The URpopulation is also a
tivated in order to allow its a
quisition by the long-termmemory. Motor a
tions are inhibited during replay.
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Figure 9: Long-term memory of DAC4: A 
ell of STATE has a doublere
eptive �eld, one part 
orresponding to the temporal 
ontext (A) and theother part to the stimulus (B). The 
ontext layer CONTEXT is in turn a
-tivated by STATE. A 
ompetition in STATE sele
ts the 
ell responding toboth the input (CS prototype) and the 
ontext represented in CONTEXT .

Figure 10: A sequen
e su

essfully learned by the 
ontextual 
ontrol ofDAC4. 1: (Stimulation period) The soma starts from (A). The target in theright lower 
orner emits a signal whi
h attra
ts the soma at lo
ation (B),until the target is found (C). 2: (Re
all period before learning) The signal
oming from the targets has been removed. The soma of DAC4, started from(A) does not �nd the target (D). 3: (Re
all period after learning) The long-term memory of DAC4 expresses the sequen
e. The soma starts from (A).In (B') the 
ontextual 
ontrol stru
ture engages approa
h a
tions learned in(1), and the target is found in (C').
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