
Complex  Spiking Behavior from Noise -Driven  
Neuron  Interaction 

Ruedi Stoop 

Institut fSr Neuroinformatik INI, 
Swiss Fed. Inst. of Technology and Univ. of Ziirieh, ETHZ/UNIZH, 
CH-8057, Z/irich-Irchel 

A b s t r a c t .  A model of noise-driven biological neocortical networks which is based 
directly on rat neocortical in vitro recordings is introduced. Assuming only binary 
interaction, the model shows how complex spiking behavior is generated through 
the noise and gives a full description of the emerging spiking patterns. Mathematical 
universality properties predict that these patterns are independent of the individual 
neurons. These properties furthermore imply the observability of these patterns in 
in vivo neocortical networks, in the form of a complex background activity on top 
of which the processing of "real" data is performed. Interspike interval histograms 
are derived from this model and compared with the corresponding experimental 
histograms. Considerable agreement is found, which is notably expressed by the 
fact that both distributions are long-tailed. 

1 I n t r o d u c t i o n  

Neocortical circuits are formed of recurrently connected neurons. These neu- 
rons are of two basic types, inhibitory and excitatory, which are reciprocally 
coupled in monosynapt ic  or polysynaptic  arcs. The possible roles of these 
connections have been the subject of many  experimental  and theoretical anal- 
yses. Little at tention has been given to the effect of recurrent coupling on the 
global pat terns  of activity generated in extended recurrent circuits of spiking 
neurons. Prel iminary evidence from combined optical and single unit record- 
ings in the pr imate  visual cortex indicate that  single unit responses occur 
within complex global pat terns  of activity [1]. However, the nature  of this 
activity in large populations of neurons is not well understood. 

The suggestion that  cortical networks may  become chaotic in some cir- 
cumstances [2] is particularly interesting in view of our recent demonst ra t ion  
tha t  when recurrent excitatory-inhibitory connections are activated experi- 
mentally,  individual neurons exhibit bo th  regular and chaotic firing pa t te rns  
[3]. In these experiments,  regularly firing cortical neurons recorded in vitro ex- 
hibit chaotic firing pat terns  when inhibitory pulses are applied with a part ic-  
ular frequency relationship to the regularly firing neuron. In this contr ibution 
I show how a simplifying limit of the network interaction yields analytical  re- 
sults and mathemat ica l ly  safe s ta tements  about  the complexity and stabil i ty 
of spiking pat terns  in neocortical networks. 
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2 N o i s e - d r i v e n  n e o c o r t i c a l  i n t e r a c t i o n  

The noise-driven model of neocortical interaction that  I am proposing is 
based on experimentally measured neuronal behavior. Neurons in the cortex 
receive input from other neurons and, when the firing threshold is reached, 
fire an action potential  (the "spike"). Although synaptic output  is released 
in quantals, neurons receive inputs of different orders of magnitude: 

- Small-scale noisy input (e.g., from remote synapses) drives the neuron 
towards regular spiking with well-defined periodicity 

- Strong input from next neighbors (neurons or a group of synchronized 
neurons) arrives at the neuron as a simple, ideally periodic, structure in 
time 

- Medium-size interactions that may reflect specific conditions in the neigh- 
borhood of the neuron 

Due to the enormous number of synaptic contacts, a large number of 
small-scale synaptic inputs can be expected to arrive at the neuron [4]. As- 
suming a Gaussian central limit theorem behavior of the arriving input, the 
neuron receives an almost constant inflow of charge that  can be represented 
by a constant driving current. This point of view is in accordance with the 
mathematical  idealization made in the cable model of the neuron [5], where 
the random walk aspects, generated by the random arrival of excitatory and 
inhibitory input, are completely neglected and the regular spiking neuron is 
described by a limit cycle solution of the associated oscillator equations. In 
addition to the small-scale noise, information from other neurons arrives in 
the form of substantial packages of spikes, received within a certain small 
t ime interval. In my model, the level of noise together with strong synaptic 
inputs carry the information to be processed in the neocortex. In the math-  
ematical description, strong inhibitory or strong excitatory synaptic inputs 
correspond to a perturbat ion of the limit cycle solution. This configuration 
is the starting point for our approach that  is directly based on experimental  
measurements. It allows the complete determination of the spiking patterns 
that  emerge under strong binary synaptic interaction. 

In our experiments with real neurons, slices of rat  neocortex were prepared 
for in vitro recording. Following standard techniques, individual pyramidal  
neurons in layer 5 of barrel cortex were intracellularly recorded with sharp 
electrodes. To induce regular firing, a constant current was injected into the 
neurons [4,6-7] The regular firing neuron was periodically per turbed by a 
strong extracellular stimulation of a synaptic input to the neuron. Excita- 
tory perturbations were generated by the stimulation of adjacent white or 
gray mat ter  by means of bipolar electrodes, inhibitory perturbations were 
generated when fast excitatory transmission was blocked pharmacologically 
by application of DNQX and AP5 while regular current pulses were applied 
to a fiber making a synaptic contact with the regularly firing neuron. In the 
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context of in vivo neurM networks, these perturbat ion paradigms can be re- 
garded as representations ofsynapt ic  input from strong synaptic connections, 
see, e.g., Ref. [6]. Reyes ~: Fetz (1993) describe in detail similar experiments.  
In fact, our approach can be seen as an extension of their work. 

To investigate the effect by perturbat ion to the limit cycle, the techniques 
originally put forward by Glass and Mackey [7] are useful. Of interest is 
the typical response of an intrinsically regularly spiking neuron to synaptic 
perturbat ion of another regularly spiking neuron. Measurements reveal tha t  
the response of the targeted neuron has strongly nonlinear characteristics 
[8]. At fixed perturbation strength, the effect of the per turbat ion depends 
on the phase ¢ (with respect to the neuron's own regular spiking) at which 
the perturbat ion is applied. This property is captured by the phase response 
function g(¢), which returns the quotient between the per turbed interspike 
interval length to the intrinsic (i.e., unperturbed) interval length as a function 
of ¢. The phase response function g is obtained from a suitable fit through 
the experimental da ta  points. The phase response and phase return function 
are related through 

fn  : ¢2 = ¢1 + I 2 -  g(¢) (mod l ) ,  (1) 

where the parameter  I2 is the quotient of the intrinsic interspike t ime To of 
the targeted neuron divided by the interspike time Ts of the targeting neuron 
[7]. 

On the basis of experimental results, we are able to explicitly include the 
dependence of the phase response function on the stimulation strength K [8]. 
This functional dependence has the form 

gn,K(¢) = gn,Ko(¢ -- 1)K + 1. (2) 

The involved reference curve ga,Ko was measured at 75% of the maximal  per- 
turbat ion of the curve. The physical stimulation strength was, to reasonable 
accuracy, proportional to the perturbat ion of g, expressed by means of K.  
Investigation of the returned periodicities as a function of I2, K results in typ- 
ical Arnol 'd tongue structures [9], see Fig. 1. For each periodicity p, there are 
different Arnol~d tongues which comprise areas in the $2, K parameter  space 
having solutions of the same periodicity p. Note that  all periodicities appear, 
according to the Farey-tree, but  with ever smaller basins of attraction. For 
the different areas, the stability properties of the solutions, which can be 
measured by the Lyapunov exponent )~a,K [9], are of interest. Zooming in on 
the Arnol 'd tongues reveals tha t  for inhibition, chaotic behavior is possible 
()~n,g > 0), at least from the numericM point of view. However, large input  
strengths are needed to generate this response. Analytic investigations prove 
that  chaotic behavior indeed occurs on a nonzero set in the relevant param- 
eter space [8]. Excitatory stimulations always yield invertible phase return 
maps on the biologically meaningful parameter  space and, as noninvertibility 
is required for chaotic response, fail to produce chaotic behavior. 
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Fig. 1. Topological response of perturbed neurons, for perturbation strength t ( .  
Gray levels indicate the value of the periodicity p E {1, ..,9, > 10}. Largest areas 
correspond to p -- 1 (dark gray) and p = 2 (light gray), a) inhibitory, b) excitatory 
case. Stability of neuron response to perturbation measured by Lyapunov expo- 
nents: c) inhibitory, d) excitatory case. Chaos is possible above K ,,- 0.95, but only 
for inhibition. 

3 Towards realistic biological networks 

Since the approach is directly based on biological measurements, the question 
is relevant how much the obtained results depend on experimental  variability 
and on the choice of the fit to the experimental da ta  points. The appropriate 
mathematical  question is answered by the circle-map class property [10]. If 
f a  is varied, but  still continues to belong to the circle-map class, then the 
universality principles of this class imply that  all qualitative results remain 
unaffected, where "qualitative" comprises all topological properties of the re- 
sults, e.g., the structure of periods. However, metric properties, for example, 
may differ. Fortunately, the criteria for belonging to the circle-map class are of 
a general nature, enclosing, e.g., piecewise linear approximations to the da ta  
points as well as (bad) polynomialfits.  Surprisingly, the very strong universal- 
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ity features of the circle map class imply that  very accurate measurements of 
phase response functions do not contribute as much to the understanding of 
the spiking mechanism as might be expected (However, as a possible benefit, 
a comparison between phase response functions from biophysical simulations 
and from experimentM measurements can determine with accuracy some of 
the various simulation parameters that  are otherwise inaccessible). 
In realistic cortical networks, the ideal conditions for observing the predicted 
spiking behavior are as follows: 

- no change in the intrinsic firing rate or in the excitability of the neurons 
- sufficiently stable limit cycle behavior 
- fast (exponential) decay of interaction between the neurons as a function 

of nearest-neighboring order 

The last property should restrict strong interaction to nearest neighbors. 
Notably, information can only be encoded in terms of phases, not firing rates, 
under these ideal conditions. Real networks, however, are not ideal. Consider 
how critical the above-mentioned assumptions are in the case of real networks. 
The implications by the first condition for the processing of neocortical in- 
formation will be discussed at the end of this paper. For the statements on 
continued perturbations it is essential that  the neuron is completely reset 
after firing. This required stability of the limit cycle can be checked by com- 
paring model predictions to experimental results. In continued perturbat ions 
of the rat neurons, periodic spiking behavior up to period 8 was found, at 
the predicted values of a2 for intermediate stimulation strength [11]. This 
shows that  the required stability property is satisfied with good accuracy. 
Higher periods have small basins of attraction that  are unresolvable due to 
the experimental noise. Whereas our experimental pulse-perturbations show 
traces of the experimental noise, the nonlinear dynamics approach is able 
to describe the noise-free situation! The strength of the experimental  noise 
can be estimated by adding Gaussian colored noise to Eq. 1. A smearing of 
the bifurcation structure that  is monotonic with the strength of the added 
noise is observed. This effect is in excellent agreement with the results on ex- 
perimental continued perturbations when the noise level is about  5% of the 
signal. Because safe mathematical  grounds exist to ensure qualitatively sim- 
ilar characteristics for ternary and higher interactions [12], our most critical 
assumption is the separation of scales of the input as a function of the next- 
neighboring order. Such a separation is generated by the different types of 
synaptic input in a network (-strong input, caused by the strongest connected 
next-neighbor neuron or by a group of synchronized neurons; -medium size 
input of longer periodicity or of chaotic nature; -small-scale, diffuse, decorre- 
lated input, obeying the Gaussian law of large numbers). Expressed in terms 
of the maximally applicable experimental stimulation strength (i.e., 4/3K0), 
we estimate these inputs to be of the order 10-1, 10-a and 10 -4, respectively, 
which would be consistent with our theoretical approach. Unfortunately, tit- 
tle is known about the goodness of this separation of scales in real networks. 
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The effect of a medium-size per turbat ions on the binary interactions can 
again be est imated by numerical simulations. To this end, Eq. 1 is gener- 
alized to f~,K,fZ : ¢~+1 = ¢~ + 12 -- K(g(¢~)  - 1) + 1 - /~sin(w~), with 

w,~+l = w~ + w0, where w0 = 0.1 and /~" = 0.05 are fixed. In this way, the 
s trength K of the secondary per turbat ion was of the order of 10% of the 
average of K ,  and orbit  points were identified if they differed by less than  
10 -2. Again, the Arnol 'd  tongue structures were calculated; the results imply  
tha t  our approach indeed may  provide a good approximat ion  to real cortical 
networks. 

As a result, the following behavior of real noise-driven cortical networks 
is suggested: locally, low-periodic spiking behavior may  be expected in abun- 
dance, by the interaction of otherwise freely spiking neurons. This  periodic 
response is organized along Arnol 'd tongues and obeys the circle-map class 
universality. As a consequence, the network is able to respond locally with 
any desired periodicity. While for weak local interaction the local spiking 
behavior  is dominated by a wealth of different periodicities, for stronger in- 
teraction, there is a tendency for the response to settle towards more simple 
and more stable spiking patterns.  These spiking pat terns  are in sharp con- 
t ras t  to the chaotic response which exists for strong inhibition on a nonzero 
Lebesque measure of the parameter  space. This means tha t  chaos should be 
observable, or tha t  systems could be tuned to this state. However, it is note- 
worthy that  chaos requires comparat ively  strong strengths of s t imulat ion and 
only occupies a small portion of the parameter  space. Using the universality 
principles of the circle-map class, we are able to prove tha t  our exper imental  
observations do not depend on artificial preparat ion,  but are "generic" for our 
set-up. We propose that  in less ideal networks the described behavior  plays a 
role similar to the unstable periodic orbits in chaotic systems. They  provide 
the backbone for the complex structure hidden in the seemingly intractable 
chaotic motion.  

From an information-theoretic point of view, the emergence of stable pe- 
riodic firing pat terns  of all periods is a remarkable proper ty  of the per turbed 
neuron. The usual chaos control paradigm for the transmission of information 
[13] starts  from a chaotic ground state and then applies control techniques to 
arrive at a desired periodicity. The symbol  to be t ransmi t ted  is then encoded 
in terms of this periodicity, similar to the encoding by the ASCII  table. In 
our case, both  excitation and inhibition, can perform the same task with 
ease, s imply through a variation of the frequency or the s t imulat ion strength 
of the sender, or by adjustment  of the excitability of the receiver. In this 
interpretation,  changes in the firing pat terns  which only affect the value of 
12 can be interpreted as rate-coding mechanisms, while changes mainly  into 
the direction of I (  can be seen as synchronization effects. 
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4 L o n g - t a i l e d  i n t e r s p i k e  i n t e r v a l  h i s t o g r a m s  

Experimentally, network interactions are mostly studied by looking at indi- 
vidual neuron interspike interval distributions. A common belief is that  these 
distributions are approximately Gaussian or Poissonian. I believe that  mod- 
els of long-tailed distributions are more appropriate. The reasons for this 
belief come from measured interspike distributions of in vivo experiments, 
and from models based on in vitro experiments. Our next aim is to mimic 
the interaction with the quasistatic next-neighboring neuron and also to in- 
clude dynamic interactions. We therefore perform an average over the Arnol 'd 
tongue structure, with respect to the Lebesgue measure in the relevant re- 
gion of the K, ~-space. We start with a unit interval and perturb it by a 
random number of randomly excitatory or inhibitory perturbations of differ- 
ent strengths. From this process, analogous to the experimental set-up, an 
interspike interval distribution is generated. A typical result is shown in Fig. 
2 (left) in comparison to the experimental result (right). As can be inferred 
from this figure, almost perfect long-tail behavior is displayed in both cases, 
along with a behavior towards zero that  can be expected from the theory 
of random processes. The histograms show L6vy-type behavior [14], with a 
power-law exponent of a ~ 1.8. The histogram from simulations was ob- 
tained by restricting excitabilities to a range of strengths K E [0.005, 0.255], 
measured in units of the maximally applicable perturbation strength. These 
values of K are biologically reasonable and significant for close-to- equilib- 
rium states of the brain. Choosing higher ranges of excitabilities yields less 
evident L~vy behavior. This is partly due to the appearance of a phenomenon 
which is widely known to the experimentalists as the "second frequency'", a 
phenomenon that  consists of an additional wiggle in the interspike interval 
density, obstructing the formation of a clean power-law decay. In our ap- 
proach, these wiggles emerge in a systematic way, and a large (in principle, 
infinite) number of such high order frequencies should be observable, given 
a sufficient resolution of the data. In this way, they are characteristic for a 
fractal aspect of the measured interspike signal that  has earlier been claimed 
by Teich [15]. 

5 P h a s e - c o u p l i n g  m e c h a n i s m s  

Synchronization is an important  effect in cortical function, especially in con- 
nection with feature binding. Unfortunately, synchronization beyond binary 
interaction is not possible in the presented model. However, synchronization 
is known to be a prominent feature of coupled map lattices. In biological 
neocortical networks, phase-coupling can be thought to be realized by elec- 
trotonic coupling or transmitter spill. I want to explore the view that  a lattice 
[16-17] of binary interactions on which medium-size input is represented by 
diffusive coupling [17], is the appropriate description. In this refined model of 
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Fig. 2. Long-tailed interspike interval histograms. Left: from the theoretical model. 
Right: from a complex-type neuron in cat striate cortex. This histogram contains 
the neuron's combined responses to five, 4 sec. presentations of a spatiotemporally 
optimized sine wave grating at 40% contrast. 

neocortical interaction, the coupling strengths are chosen at r andom under 
the constraint  of a given overall coupling strength k2. As synchronization can 
be associated with characteristic returning phase pat terns,  the si te-averaged 
difference ~ between an initial configuration of the network and its nearest 
return after a given evolution t ime should provide an approximate  measure 
of synchronization. Simulation results of the refined model clearly show tha t  
inhibition, compared to excitation, has a tendency towards synchronization. 
Fig. 3a displays these findings as a function of the different network pa ram-  
eters. If inhibition can generally be associated with stronger synaptic  inputs  
than excitation, this may provide a partial ,  though not conclusive explana- 
tion of our findings. Fig. 3b also shows the dependence of 5 as a function of 
the coupling strength k2. Observed tha t  around k2 ~-" 1, the network behavior  
changes f rom local chaos to global chaos of " turbulent"  characteristics, along 
a paradigm tha t  is well- understood. The  " turbulent"  behavior is similar 
to the "synchronized chaos" observed by Hensel and Sompolinski [18]. The  
Lyapunov exponents of the network corroborate these findings. As soon as 
the phase-coupling interaction is turned on, instability is impor ted  into the 
system tha t  can only be controlled for k2 "-~ 1. Around this working condi- 
tion, the network could be synchronized by pure phase-coupling mechanisms.  
Conceivably, recurrent inhibitory connections in biological cortical networks 
are efficient enough to establish such conditions. In order to control wide ar- 
eas of synchrony, however, it may  be more efficient to globally modula te  the 
activity of the involved neurons. 
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Fig. 3. Left: Pattern deviation per site 5 as a function of I(, k2 and percent- 
age P of inhibitory connections. From top: Dashed lines: /t" = 0.05 (too low), 
k2 = 0.1,0.2, and /~ = 0.55, k2 = 0. Full lines: /~" = 0.15, k2 = 0.1,0.2; and 
/~" = 0.55, k2 = 0.1, 0.2, 0.4, 0.8. Bottom, dashed: /t" = 1.15, k2 = 0.1, 0.2. 
Right: ~ as a function of k2 for P = 0.2. Beyond k2 "-~ 1, the characteristics change 
from local chaos to global, turbulent, chaos. 

6 Informat ion-process ing  features  

If  we insist on the constraint  of fixed excitabilities of the individual neurons, 
the network nevertheless may  be able to process information.  In a refined 
model of phase-coupling, a learning-type algori thm is applied to the connec- 
tion strengths between lattice sites. Those connections which are in phase are 
increased in strength, while out-of-phase connections are suppressed. Simu- 
lations of this model show a quick convergence towards stabilized connection 
strengths, within a few steps of iteration. Surprisingly, it is seen tha t  dif- 
ferent border pat terns  induce very localized changes in the phase pa t t e rn  of 
the more central par ts  of the network. The locations of the affected lattice 
sites (called "coding sites") are specific to the applied patterns.  More similar 
border pat terns  trigger more similar pat terns  of coding sites. These results 
suggests tha t  the described paradigm could be a very efficient way of pro- 
cessing neural information,  Although such computat ionM processing may  be 
difficult to detect in real neocortical networks, the observation seems worthy 
of further investigations. 

7 Conclus ion  

Simple principles (binary interactions and phase-coupling) may  be responsi- 
ble for periodic and aperiodic spiking behavior in biological neural networks. 
For binary neuron interaction, topological and metric  properties of the emerg- 
ing spiking behavior have been formulated in terms of ma themat i ca l  existence 
and uniqueness theorems. In the regime where the neural network activity is 
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dominated by noise and binary next-neighboring neuron interaction, this led 
to a full explanation of experimentally observed spiking behavior of neurons. 
Moreover, under these conditions a quanti tat ive description of the natural  
abundance of the different periodic spiking patterns and of their stability 
properties can be given. Simulations and theory show that  this quanti tat ive 
description is valid for binary neuron interaction in a generic way. 

My model shows how binary neuron interaction may emerge locally within 
more general noisy neocortical networks. My numerical evidence indicates 
that  the influence of medium-size input may be treated as a per turbat ion of 
dominant  binary neuron couplings. This evidence allows the conclusion that  
the patterns generated by binary interaction should be observable during in 
vivo experiments of the neocortex, as relatively simple subsystems embedded 
in the whole network. Moreover, this observation also led to a straightfor- 
ward explanation of particularities of experimental in vivo interspike inter- 
val distributions. In the future, our insight into the generic effects exhibited 
by periodically perturbed regularly spiking cortical cells could be essential 
for hardware implementations of cortical cell response. For a successful im- 
plementation, it will be important  to bet ter  understand how "real" da ta  is 
processed on top of the complex activity that  we have shown to emerge in 
simple noise-driven networks. More experiments on real and experimental  
noise-driven neural networks are needed to understand this impor tant  aspect 
of neocortical network processing. 

I thank K.A.C. Martin and R. Douglas for enthusiasm towards this project.  
Special thanks go to John Allison for providing the data  from cat striate cor- 
tex and for editorial help. 
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