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Neuroscience is progressing vigorously, and knowledge at different lev-
els of description is rapidly accumulating. To establish relationships be-
tween results found at these different levels is one of the central chal-
lenges. In this simulation study, we demonstrate how microscopic cellu-
lar properties, taking the example of the action of modulatory substances
onto the membrane leakage current, can provide the basis for the percep-
tual functions reflected in the macroscopic behavior of a cortical network.
In the first part, the action of the modulatory system on cortical dynamics
is investigated. First, it is demonstrated that the inclusion of these bio-
physical properties in a model of the primary visual cortex leads to the
dynamic formation of synchronously active neuronal assemblies reflect-
ing a context-dependent binding and segmentation of image components.
Second, it is shown that the differential regulation of the leakage current
can be used to bias the interactions of multiple cortical modules. This
allows the flexible use of different feature domains for scene segmenta-
tion. Third, we demonstrate how, within the proposed architecture, the
mapping of a moving stimulus onto the spatial dimension of the network
results in an increased speed of synchronization. In the second part, we
demonstrate how the differential regulation of neuromodulatory activity
can be achieved in a self-consistent system. Three different mechanisms
are described and investigated. This study thus demonstrates how a mod-
ulatory system, affecting the biophysical properties of single cells, can be
used to achieve context-dependent processing at the system level.

1 Introduction

Elucidating the relation of results found at different levels of description
is one of the central challenges of the neurosciences, which spans subdis-
ciplines ranging from molecular biology to ethology. The problem is ag-
gravated by the fact that no single level provides complete information.
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Theoretical studies are therefore useful to investigate the implications of
assumptions made in the description of the system at each level and es-
pecially to use the description available at other levels for cross validation
(Verschure, 1998).

Using a simulation of primary visual cortex, we demonstrate that the bio-
physical properties of cortical neurons can play a decisive role in the binding
and segmentation of visual stimuli. Basic properties of neurons, described
by the membrane time constant and electrotonic length constant, are de-
termined by the capacitance and conductance of the membrane (Rall, 1969,
1977; Connors, Gutnick, & Prince, 1982; McCormick, Connors, Lighthall, &
Prince, 1985; cf. Llinas, 1988; Amitai & Connors, 1995; Yuste & Tank, 1996).
These constants (e.g., the membrane conductance) are not fixed, but can be
influenced by a multitude of factors. First, the potassium leakage current
is a major constituent of the membrane conductivity and can be affected
by neuromodulatory substances such as acetylcholine (ACh) acting via the
muscarinic receptor (the Im current) (McCormick, 1992; Wang & McCormick,
1993; Wilson, 1995; cf. McCormick, 1993). Second, synaptic input itself can
increase the membrane conductance and thus increase the total electrotonic
length of a dendrite (Bernander, Douglas, Martin, & Koch, 1991). Third,
active conductances can have a profound influence on the properties of
dendritic signal transduction, which, however, can no longer be described
by Rall’s classical equations (Softky, 1994). Thus, dynamic dendritic proper-
ties, which influence the propagation of any postsynaptic potential toward
the soma, can play a pivotal role in signal integration.

Within the context of a neuronal circuit, these microscopic biophysical
properties can have pronounced effects on the spatiotemporal interactions
of neurons, in particular on the synchronization and desynchronization of
neuronal activity. These macroscopic phenomena are a focus of current re-
search. Experimental evidence shows that in the mammalian cerebral cortex,
synchronization of neuronal activity reflects Gestalt laws of grouping indi-
vidual components of the visual scene into objects (Singer & Gray, 1995;
König & Engel, 1995). These observations support earlier hypotheses that
these phenomena are the basis of binding and segmentation of visual scenes
(Milner, 1974; von der Malsburg, 1981; Shimizu, Yamaguchi, Tsuda, & Yano,
1986). Individual objects are represented by assemblies of neurons firing
synchronously. Different objects, in turn, are represented by distinguished
neuronal assemblies, whose activities have no systematic temporal relation-
ship.

Experimental evidence shows that the synchronization of neuronal activ-
ity is mediated by tangential connections in the cortex (Engel, König, Kreiter,
& Singer, 1991; Löwel & Singer, 1992; König, Engel, Löwel, & Singer, 1993;
Nowak, Munk, Nelson, James, & Bullier, 1995). These connections effec-
tively implement the Gestalt laws describing image segmentation
(Koffka, 1922; Köhler, 1930). Their effectiveness, however, is influenced by
the dendritic integration of the postsynaptic potentials. In particular, se-
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lecting different subsets of afferent synapses by changing the electrotonic
properties of the dendritic tree leads to changes in the effective connectivity
and spatiotemporal interactions in the neuronal circuit.

Here we demonstrate, first, that the spatial scale of synchronization and
desynchronization can be modulated to achieve context-dependent bind-
ing and segmentation of input stimuli. Second, we show that the strength
of modulatory input, acting on the leakage current, can be used to bias the
interactions of multiple cortical modules. This facilitates the flexible use of
different feature domains for scene segmentation. Third, we demonstrate
how, within the proposed architecture, the movement of a visual stimulus
over time is mapped onto the spatial dimension of the neuronal network,
resulting in a near-instantaneous binding. Fourth, three different mecha-
nisms for closed-loop control of the level of ACh release are described and
results reported.

Thus, this study relates several effects on the macroscopic scale to their
underlying microscopic mechanisms. It demonstrates how a modulatory
system acting on the biophysical properties of single cells can adapt the
system to the global properties of input stimuli leading to their context-
dependent processing. Parts of the results have been published previously
in abstract form (König & Verschure, 1995).

2 Methods and Results

In this study the interaction of large numbers of model neurons is inves-
tigated under a variety of stimulus conditions. The system incorporates
excitatory, inhibitory, and modulatory connections. The modeled interac-
tions were chosen to reflect the action of several neurotransmitters and re-
ceptor types; glutamic acid and the AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid) receptor, GABA (γ -aminobutyric acid) and the
GABA A and GABA B receptors, and ACh and the muscarinic receptor. As
a naming convention the simulated populations of cells will be identified
in terms of the transmitter or receptor they employ in signaling. We present
the equations governing the dynamics of the individual units, followed by
the description of the connectivity of the full network.

2.1 Neuronal Model. The behavior of a neuron is modeled through state
variables describing the dynamics of the underlying currents, receptors, and
channels. The leaky integrate-and-fire unit will generate a spike when its
membrane potential exceeds its spiking threshold. The activity of unit i at
time t, Si(t), is given by:

Si(t) = H(Vi(t)− θ), (2.1)

where H is the Heaviside function, Vi(t) represents the membrane potential
of cell i at time t, and θ is the firing threshold. Thus, Si(t) is a binary vari-
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Table 1: Properties of the Modeled Cell Populations.

Name Size θ ε Ac β

Glutamate 400 0.99 0.75 2 2
GABA A 400 0.40 0.75 1 0.70
GABA B 100 0.50 0.80 – 0.05

Note: Size gives the number of units used in each module of
the simulation. θ is the firing threshold; ε determines the decay
constant of the membrane potential; Ac is the default attenu-
ation of the dendrite; β represents the strength of the afterhy-
perpolarization after a spike is generated.

able indicating the presence or absence of an action potential at time t. In
case an action potential is generated, the membrane potential Vi is reset by
subtracting a fixed hyperpolarization value β (see Table 1).

The membrane potential of cell i, Vi, is determined by the integrated
synaptic input and the passive decay toward the resting potential of 0. The
excitatory and inhibitory input to cell i are integrated at the soma accord-
ing to

Vi(t+ 1) = εVi(t)+
Ni∑

j=1

Sj(t− τij)Wije−Ai(t)Dij . (2.2)

ε determines the speed of the passive decay of the membrane potential and
as such reflects the integration time constant. Subscripts j and i refer to the
pre- and postsynaptic units, respectively; Ni is the total number of excitatory
and inhibitory inputs to unit i. The polarization at the soma due to the input
is determined by the integral over the time-delayed, τ , afferent activity, S,
weighted by the respective synaptic efficacy, W, and attenuated according
to the distance of the synapse to the soma, D, and the log-attenuation factor,
A, of the dendrite.

The modulatory input has no direct influence on the membrane potential,
but affects the dendritic integration of excitatory and inhibitory signals. The
dendrite of each unit is modeled as an equivalent cylinder as given by Rall
(1969). The attenuation of postsynaptic potentials propagating toward the
soma is characterized by the log-attenuation factor Ai(t) (Zador, Agmon-
Snir, & Segev, 1995) and the distance of the synapse from the soma Dij. The
electrotonic length of neuron i, and thus the attenuation of postsynaptic
potentials, Ai, is influenced by the modulatory afferents:

Ai(t) = Ac −
Mi∑
j=1

Sj(t− τij)Wij. (2.3)
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Figure 1: A simplified scheme of the effects of ACh on the propagation of synap-
tic potentials. Excitatory and inhibitory synapses are placed at varying distances
from the soma. The modulatory system is assumed to act via the muscarinic re-
ceptor and the Im current, reducing an outward potassium current, K+ (box). The
local depolarization due to the stimulation of a distal synapse is not affected by
the activity of the modulatory system (upper panel). However, it influences the
attenuation of a postsynaptic potential toward the soma. If the modulatory sys-
tem is not active, the effective contribution of a distal postsynaptic potential to
the membrane potential as measured at the soma will be strongly attenuated
(lower panel, dashed line). In contrast, if the modulatory units are highly active,
the neuron is electrotonically compact, and the postsynaptic potentials of the
distal and proximal parts of the dendritic tree are conducted to the soma with
little attenuation (lower panel, solid line). The spike train plotted on the axon
(duration approximately 300 ms) is representative of the activity of a simulated
excitatory neuron.

where Ac is the baseline value of the attenuation, and Mi denotes the num-
ber of modulatory inputs. The value Ai(t) determines the set of effective
synapses and thus which part of the afferent input is integrated (see Fig-
ure 1).

In the simulated unit, the effect of an afferent action potential is inde-
pendent of the current value of the membrane potential. In real neurons,
however, the presynaptic transmitter release acts on the membrane conduc-
tance by opening or closing synaptic channels. The synaptic current and the
change in membrane potential it induces, in turn, depend on the current
value of the membrane potential. This effect can lead to a saturation of the
dendritic membrane potential and sublinear summation of postsynaptic
potentials (Mel, 1994). This mechanism is employed in our investigation
of the closed-loop control of ACh release described in section 2.7. In gen-
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eral, however, the inclusion of voltage-dependent channels may cancel or
even reverse this effect (Softky, 1994). Furthermore, because the somatic
membrane potential, the variable modeled here, has an upper limit at the
threshold for the generation of action potentials below the reversal potential
of the mixed currents due to excitatory input, the effect of postsynaptic satu-
ration of excitatory postsynaptic potentials is limited. The reversal potential
of inhibitory currents, in contrast, is in the range of the resting membrane
potential or slightly lower. This opens the possibility that inhibition acts in a
multiplicative fashion and not in a subtractive one, as assumed here. Never-
theless, detailed simulations have shown that in active neurons of this type,
inhibition is effectively subtractive (Holt & Koch, 1997). In summary, given
the level of detail of this simulation, the assumption that the postsynaptic
effect of afferent action potentials is independent of the current value of the
membrane potential seems to be a reasonable and useful approximation.

2.2 The Module. Systems consisting of one or more modules are in-
vestigated. Each module consists of five different populations of units: ex-
citatory, fast and slow inhibitory, modulatory, and input (see Table 1 and
Figure 2). One of the five maps, Input, is used to supply sensory input
to the excitatory units of population Glutamate. Because the actual gen-
eration of feature selectivity is not within the scope of this article and is
investigated elsewhere (Ferster & Koch, 1987; Douglas, Koch, Mahowald,
Martin, & Suarez, 1995; Somers, Nelson, & Sur, 1995), the input was prepro-
cessed to reflect the distribution of local features in the visual scene. In the
simulations described below each population is mapped onto an idealized
cross-section through an ice cube model (Hubel & Wiesel, 1998). Thus, one
axis of the two-dimensional map represents different values of the feature,
while the other axis corresponds to the spatial position of the receptive field.
These afferents, however, constitute only a small part of the total number of
synapses within the module. The actual responses of the units can be, and
are, affected by the internal connectivity, which consists of local inhibitory
and long-range excitatory interconnections. Both types of inhibitory units
project to a local neighborhood of topographically corresponding excita-
tory units. Excitatory projections to both types of inhibitory populations, in
turn, contact a local neighborhood of topographically corresponding units.
Excitatory projections within population Glutamate have a wide arboriza-
tion.

A central feature of the model is the placement of connections on the den-
dritic tree. The distance of synapses originating and terminating in popula-
tions Glutamate or GABA A is dependent on the distance between presy-
naptic and postsynaptic neurons (see Table 2). Synapses connecting nearby
neurons—those with similar receptive fields and feature selectivities—are
placed relatively proximal. Connections between neurons farther apart, i.e.,
with dissimilar receptive fields and/or feature selectivities, are placed pro-
gressively more distal on the dendritic tree. Postsynaptic potentials from
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Figure 2: Simulated module. Each module consists of five populations of units
represented as inclined squares: input, glutamate, GABA A, GABA B, ACh. Each
population is arranged in a two-dimensional map with topographic connections
within and between maps. The quantitative parameters of all connections are
given in Table 2.

these synapses are subject to a varying amount of attenuation depending
on the state of the modulatory system. This arrangement allows the trans-
lation of different sets of effective synapses, selected by the modulatory
system, into variations of the range of tangential coupling.

Within a network with a fixed anatomy, a change in the electrotonic
properties of excitatory and inhibitory units leads to a change in the effective
connectivity between those units. Depending on the values of Dij,AGlutamate,
and AGABA A these arrangements can be characterized by four major types
of interactions:
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Table 2: Properties Synapse Types Used.

Efferent Afferent Size Arborization W Range τ D
Population Population (Width:height) (Min:max) (Offset:1) (Offset:1)

Input Glutamate 400 1:1 1.0:1.0 0:0 0:0
∗Glutamate Glutamate 59136 15:15 0.0:0.2 0:1 1:1
∗Glutamate GABA A 2560 1:7 0.45:0.45 1:1 0:1
Glutamate GABA B 841 3:3 0.1:0.1 1:0 0:0
∗GABA A Glutamate 2560 1:7 -0.225:-0.675 1:1 0:0.5
GABA B Glutamate 3136 3:3 -2.25:-2.25 0:0 0:0

ACh Glutamate 400 1:1 4.0:4.0 0:0 0:0
ACh GABA A 400 1:1 4.0:4.0 0:0 0:0

Note: The parameters defining connections marked with ∗ are initialized
dependent on the distance between connected cells. In this case the actual
strength of a synapse, Wij, is defined by min+dn

ij(max−min), where dn
ij repre-

sents the distance between cells i and j normalized for the maximum distance
possible given the arborization width and height. The transmission delay, τij,
and the distance of synapse j, Dij, are defined by Offset +dij1. In this case dij

is defined as the Cartesian distance between cells i and j.

1, when AGlutamate and AGABA A remain at their initial values of 2 and
1 respectively, the interactions within population Glutamate and between
Glutamate and GABA A will be restricted. Thus, most of the postsynaptic
potentials onto a cell will be strongly attenuated. This mode of interaction
will be referred to as “uncoupled.” In this case, the activity of cells in popula-
tion Glutamate will be dominated by the excitatory postsynaptic potentials
generated by activity in population Input.

2, when a small modulatory input to populations Glutamate and GABA A
is provided, nearest neighbors can interact. This condition is referred to as
“local.”

3, at a medium range of modulatory input, AGABA A will approach 0
while AGlutamate will approximate 1. In this case, all postsynaptic poten-
tials onto cells in population GABA A will be effective; also, the inhibitory
postsynaptic potentials onto Glutamate will barely be affected by den-
dritic attenuation. However, the excitatory postsynaptic potentials gener-
ated in population Glutamate, due to interactions within this population
will still be affected by AGlutamate. The behavior of cells in Glutamate will
now be dominated by both the excitatory postsynaptic potentials gener-
ated by population Input, the inhibitory postsynaptic potentials generated
by cells in population GABA A, and to a limited extent by the lateral inter-
actions within population Glutamate. This condition will be referred to as
“column.”

4, with a further increase of the modulatory input, the cells in population
Glutamate will become fully compact. In this case, all excitatory postsynap-
tic potentials generated by interactions within population Glutamate will
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contribute to the depolarization of these cells. In this condition, referred to
as “global,” the firing of cells in Glutamate will reflect the contribution of
population Input, the inhibition received from population GABA A, and the
excitatory postsynaptic potentials generated by interactions within popu-
lation Glutamate.

2.3 Data Analysis and Simulation Environment. The interaction be-
tween different units has been investigated with cross-correlation analysis.
The count of spikes of two units occurring at a particular time lag was
normalized with the geometric mean of the total number of spikes of the
respective units. This normalization makes the resulting cross-correlogram
independent of the level of activity and allows the computation of measures
like contribution, efficiency, effect on activity, and effect on timing (Levick,
Cleland, & Dubin, 1972; Neven & Aertsen, 1992; König, Engel, & Singer,
1995).

Simulations were performed using the environment IQR421, developed
by Verschure (1997). It supports a graphical programming language, based
on X-Motif, to define large-scale heterogeneous neural systems. It includes
tools for real-time presentation of stimuli and the analysis of the dynamics
of the network. Furthermore, it allows continuous logging of all variables,
analysis, and documentation.

The simulation environment has been developed using C for a UNIX
environment. Computations can be performed in a distributed fashion using
the TCP/IP protocol. Our simulations were performed on a SUN Ultra 1 and
a cluster of PentiumPro PCs.

2.4 Context-Sensitive Segmentation. In accounts of binding by syn-
chronization, it is assumed that neurons representing features (e.g., orien-
tation, disparity, or color) relating to the same object in the visual scene are
synchronized. However, what is considered similar is not a static property,
but a function of the overall context. For a visual scene with nearly constant
hue, minor variations in color can lead to a segmentation of figure from
background. If the range of colors represented is large, minor variations in
color are not that salient and will not affect segmentation (Nothdurft, 1994).
Such a flexible range of segmentation is difficult to achieve in a network
with fixed connectivity.

Here, context-sensitive segmentation was investigated using visual scenes
containing different ranges of color values (see Figure 3). The first case con-
sidered consists of colored rectangles with small local variations in color
but large global variation (see Figure 3A). The Gestalt laws of perception
would predict that this scene should be segmented into two groups con-
sisting of the four left and the four right rectangles. For the second case, the
local variability of the color of the rectangles is identical to the previous one
(see Figure 3B). However, the global range of colors represented is reduced.
Thus, the visual scene should be segmented into an interdigitating pattern
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of four units, each representing identical colors, irrespective of their spatial
distance.

This task requires different spatial scales of interactions in the network,
which is achieved by the modulatory system coupled to the total electrotonic
length of the simulated cortical neurons. In this section we focus on the effect
of one element of the whole loop, the action of the modulatory system on the
effective neuronal interactions in the cortical network. Hence, we are using
an externally set level of ACh activity. For the visual scene containing a large
range of color values, it is chosen to operate in condition column. This leads
to a strong coupling of units representing identical and similar colors (see
Figure 3A, dashed and solid lines). Units representing very different colors
show no consistent phase relationship (dotted line). Thus, this visual scene
is segmented into two components, consisting of the four patches to the left
and the four patches to the right.

In contrast, for the second stimulus (see Figure 3B) the global range of
colors represented is reduced. Thus, the network is operated under condi-
tion local. This leads to a synchronization of units representing identical
colors, irrespective of their spatial distance (dashed and dotted lines). Units
representing similar but not identical color values, however, are not syn-
chronized (solid line). Thus, a segmentation into two interdigitated groups
of four patches is observed.

In both experiments, the left part of the visual scene is identical. How-
ever, the active units are either grouped together or segmented into an
interdigitated pattern, expressing global properties of the visual scene. This
context-sensitive segmentation is determined by the activity of the modu-
latory system. Thus, the modulatory system can tune the effective coupling
within the network to fit the global properties of the input stimulus and in
this way affect the segmentation constructed by the network.

2.5 Interfeature Domain Segmentation and Binding. An important
property of the visual system is the flexibility with which different fea-
ture domains can interact to achieve binding and segmentation of visual
stimuli. In a real-world scene, for instance, disparity is an important cue for
scene segmentation. Even in the absence of all other cues, as in a random dot
stereogram, segmentation based solely on disparity is possible. However,
when a scene is presented as a two-dimensional photograph, the identical
disparity across the image should create a strong, misleading cue. Never-
theless, segmenting visual stimuli presented as photographs usually does
not pose any particular problems to human observers.

In this experiment, a visual scene is investigated that contains segmen-
tation cues in one feature domain only. The network consists of three mod-
ules, each identical to the one described before, representing orientation,
disparity, and color, respectively (see Figure 4). The connections between
the modules are reciprocal and similar to the long-range projections within
a module and are implemented by projections between the excitatory maps.
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Figure 3: Single module context-sensitive segmentation. (A) The top part shows
the mapping of the visual scene onto the two-dimensional network. Different
colors in the stimulus are represented using a gray scale. The lower panel shows
the normalized cross-correlation functions for all pairs representing identical
colors (indicated in gray scale, dashed lines), similar colors (solid lines), and
dissimilar colors (dotted lines). The error bars give the standard deviation of
the cross-correlation at zero time lag over the respective set of pairs of neurons.
The numbers in circles indicate the segmentation of the visual scene generated
by the module into two components. (B) The second stimulus used (top) has
a smaller variability in the color domain. The correlation patterns (bottom) for
pairs of units representing identical colors either neighboring (dashed line) or
distant (dotted line) or similar colors (solid line) are shown. The error bar for the
pairs of neurons with similar feature preferences but far apart (dotted line) has
been shifted to the left for clarity. All data have been averaged across 10 trials.
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Figure 4: Connectivity of the multiple module system. Each module consists of
five classes of units represented by the stacks of squares as shown in Figure 2.
In each module, one dimension represents space, and the second dimension
represents either color, disparity, or orientation, as indicated by the icons to the
left of the respective stack. Connectivity between modules is solely defined by
excitatory connections. These connections cover the complete feature dimension
in the target module but are restricted in the spatial dimension.

The connectivity between modules was restricted to spatially overlapping
receptive field positions, but not restricted in the feature dimension. Fur-
thermore, the connections between different modules are symmetric, each
module projecting to the other two in the described fashion. The modu-
latory system projects independently to all three modules. This implies a
topographic specificity of these projections. The topographic organization
of basal forebrain projections has been studied in many different species,
and an ordered projection has consistently been found (Ruggiero, Giuliano,
Anwar, Stornetta, & Reis, 1990; Baskerville, Chang, & Herron, 1993). Fur-
thermore, the size of an individual cholinergic axonal arbor is rather limited.
Thus, any inhomogeneity of the activity level in the basal forebrain nuclei
results in an inhomogeneous cholinergic innervation of the cortical network
similar to the one assumed in the model presented here.

The dynamics of neuronal interactions within and between the three
modules was investigated with stimuli that generated different activity pat-
terns in the three modules. The color module was stimulated with a pattern
similar to the one used in Figure 3B. This module is operated in condition
column and is referred to as the dominant module. The two other modules
received a homogeneous input pattern. Because the variability of the stim-
ulus in these two modules is low, they are operated in condition local, and,
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Figure 5: Dynamics in the multiple module system. The three modules repre-
senting color, orientation and disparity, as indicated by the icons, are represented
by stacks of four squares each. For clarity, population Input has been omitted.
Optimally stimulated units are shown as inclined squares. The averaged cross-
correlation coefficient at zero-phase lag of neuronal activity is shown for several
classes of pairs: (A) units representing identical colors and units representing
different colors in the dominant module, (B) units representing the same spatial
location in different modules and units representing spatial neighboring but
not identical locations in different modules, and (C) units of the nondominant
orientation or disparity modules, where the matching locations in the color mod-
ule received identical stimuli and units representing orientation and disparity
where units in the color module at matching locations received different stimuli.
The color module was operated in condition column, the two other modules in
condition local. (D) The average cross-correlation of units in isolated modules
with homogeneous stimuli operated in condition local.

they are referred to as the nondominant modules. This input configuration
reflects the properties of a visual scene that contains only segmentation cues
in one of several feature domains.

In Figure 5 the resulting pattern of zero-phase-lag correlations is shown.
The cross-correlation at zero time lag between units representing identical
colors is high (A: 0.57); the cross-correlation of units representing different
colors, however, is not significantly different from zero (A: n.s.). Thus, the
stimulus is segmented correctly in the color module, although it is coupled
to two other modules receiving homogeneous stimuli. Furthermore, this
synchronization pattern is imposed onto the two other modules. Units in
different modules representing identical spatial positions are strongly cor-
related (B: 0.36), irrespective of the associated feature values, while those
at neighboring positions do not show any coupling (B: 0.03). This demon-
strates a segmentation of the stimulus in the nondominant orientation and
disparity modules following the dominant color module. This is further
exemplified by the coupling shown of units representing the respective fea-
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tures at locations corresponding to bound units in the color module (C: 0.33),
irrespective of their spatial distance. In contrast, units representing orien-
tation and disparity values at locations where the color in the dominant
module is not identical are not correlated (C: 0.02). This difference is even
more remarkable because this case includes pairs of directly neighboring
units.

In a control simulation of isolated modules, operated in condition lo-
cal, as the nondominant modules above, a homogeneous stimulation leads
to a strong correlation of all active units (D: 0.75). This demonstrates that
the segmentation derived in the nondominant modules is induced by the
dominant module. However, this does not imply that the intermodule con-
nections lead to a transfer of feature selectivity. In fact, because the connec-
tions between modules are not feature specific, units in the orientation and
disparity module cannot be selective with respect to color.

In summary, the input stimulus is segmented into two assemblies, each
spanning all three modules. Each assembly comprises units representing
identical color in one module and all active units in the other modules at
corresponding spatial locations. The active units in the two nondominant
modules are segmented into an interdigitated pattern as determined by the
dominant module. Thus, by including the dynamic regulation of dendritic
integration, the interaction between different cortical modules can be bal-
anced to reflect the relative contribution of individual feature domains to
the segmentation task at hand.

2.6 Binding of Moving Stimuli. In many physiological experiments
dealing with the fast dynamics of neuronal activity, simple moving geo-
metric patterns are used as visual stimuli, since these stimuli effectively
activate cortical neurons. Due to the movement of the stimulus, the acti-
vated region is moving through the cortex. This implies that the interactions
among units separated in space, mediated by the tangential connections, are
now mapped onto interactions in time. Therefore, the behavior of the model
was investigated under these conditions.

The dynamics of synchronization were compared between a smoothly
moving and a static rectangle. The activity and cross-correlation of six im-
mediately neighboring units along the spatial axis was monitored. Figure 6
shows the comparison between the two stimulus conditions for both the
onset and steady-state response.

In the case of a moving stimulus, both the steady-state and the response
onset cross-correlation show the same degree of synchronization (see Fig-
ure 6A). In contrast, the first spikes elicited by the static stimulus are not
synchronous (see Figure 6B).

The enhanced coherence in the response to moving stimuli can be ex-
plained by the induction of subthreshold oscillations in the membrane po-
tential of cells neighboring the active units. Thus, compared to static stimuli,
this leads to a faster synchronization. In fact, the first spike, triggered by the



Role of Biophysical Properties 1127

Figure 6: Binding moving stimuli. (A) Cross-correlation functions of unit activ-
ity for the moving stimulus, averaged over all combinations of cell pairs, taking
into account the first spike of each unit only (solid line) and all spikes (dashed
line). Note that the synchronization of the first spike is approximately as strong
as the average over all spikes. (B) Cross-correlation functions obtained using a
static stimulus. Note that the first spikes are not synchronized in this condition.
Data were gathered over 10 trials, and the network was operated in condition
column.

appearance of the stimulus in the receptive field of a unit, was already syn-
chronous (see Figure 6A).

2.7 Closing the Loop. In the simulations described above, the activity of
the modulatory system is set as an external parameter. For a self-contained
system like the real brain, however, it needs to be a function of the system’s
own activity. An important element of such a self-contained regulatory sys-
tem should be that its complexity is lower than that of the main processing
circuitry itself. Given this constraint, a self-contained regulatory system can
be defined in several ways.

First, statistical information on the input pattern can be used. Measures
like the total activity level and the variance of features present in the stimu-
lus can be defined using highly convergent connections and does not require
detailed global information. In this case, a single readout unit receives con-
vergent connections from all units in population Glutamate of one module.
Here we exploit the fact that afferents targeting the same dendritic segments
may lead to saturation of the postsynaptic potential and thus to a sublinear
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increase of the induced synaptic currents (Mel, 1994). Maintaining the topo-
graphic relationship of the projecting neurons in the placement of synapses
on the dendritic tree allows the postsynaptic unit to measure the variability
of the feature distribution in the projecting population. The readout unit, in
turn, forms excitatory projections on the respective ACh units, thus forming
a positive feedback loop. It regulates the activity of ACh and the resulting
dendritic attenuation in populations Glutamate and GABA A with the vari-
ability of the feature distribution of the represented stimuli. Because the
activity in the sending module builds up very quickly, the time constant of
this type of feedback loop can be very short. In our simulations a steady-
state level of ACh was reached after about 10 ms. We tested this mechanism
with the input stimuli shown in Figures 3A and B and the input pattern of
the nondominant modules shown in Figure 5. These patterns are examples
of activity distributions, which have high, medium, and low feature vari-
ability. Using these stimuli, the positive feedback induces a level of ACh
activity of 0.78, 0.41, and 0.16 respectively. This compares well with the val-
ues used in the open-loop simulation above (0.8, 0.4 and 0.2). Because the
closed loop leads to a nontrivial dynamics of the ACh level, the segmen-
tation of the stimulus shown in Figure 3B was further analyzed. Similar
to the results shown in Figure 3B, units representing identical colors were
significantly correlated (0.09), while the correlation of those units represent-
ing different colors was not significantly modulated. Thus, this simple and
straightforward mechanism exploits statistical properties of the input stim-
ulus to produce a rough estimate of the appropriate ACh level very quickly,
leading to a context-sensitive segmentation using positive feedback and the
distribution of features in the stimulus while ignoring spatial and temporal
properties.

An alternative method is to measure the level of synchronization in a
module and use it to down-regulate the level of ACh. To explore this nega-
tive feedback circuit, a readout unit was defined that acts as a coincidence
detector and receives input from all excitatory units in a module. This unit
in turn inhibits the respective ACh units. In the case of global synchrony in
the projecting population, the input to this unit is phase locked and reaches
high levels. This implements a negative feedback loop relating the level of
synchrony within a module to the ACh influence on it. The dynamics of
this type of closed loop is somewhat slower because some time is needed
to “measure” the degree of synchrony. In our simulations the characteristic
timescale was of the range of 100–200 ms (no attempt was made to probe the
lower limit). We tested this mechanism with the input stimulus shown in
Figure 7A. The ACh level starts out high, at a maximum of 0.97, and is then
subject to the dynamics of the closed loop as soon as the stimulus appears.
Initially global synchronization is observed, involving pairs representing
identical colors (see Figure 7B) as well as pairs representing different colors
(see Figure 7C). Within a few hundred milliseconds the ACh level reaches
the range of 0.6 to 0.7, where it stabilizes (average of 0.63). By this time, the
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Figure 7: A self-regulatory system. (A) Stimulus used for the investigation of
a regulatory mechanism based on the readout of the level of synchrony in a
module. Cross-correlation functions of units representing (B) identical features
or (C) different features. The dotted lines give the cross-correlation functions
averaged over the first 500 ms after stimulus presentation. The solid lines show
the correlation during the interval from 500 ms to 1000 ms after stimulus pre-
sentation. At 500 ms, the ACh activity had already reached a steady-state level
roughly equivalent to condition column.

correlation of those units representing different features is desynchronized,
and those representing identical features are still synchronized. Thus the
synchronization pattern observed is qualitatively similar to the simulation
described above (see Figure 3B) where a fixed level of ACh activity was
used. This mechanism exploits the statistical properties of the temporal dy-
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namics within a module to form a negative feedback loop but ignores spatial
and feature information.

The formation of a synchronization pattern in a module is not the last
step in the processing of sensory events; it needs to be read out by other
areas. In these areas, neurons might have more complex receptive fields
and invariance properties. This allows a third type of closed loop to be
defined. The activity level in a module on a higher level of the hierarchy
establishes the negative feedback loop that inhibits the ACh activity at the
preceding level. This ensures the formation of synchronization patterns that
have some interpretation within the framework of the processing hierarchy.
This mechanism can be seen as complementary to lateral inhibition. As op-
posed to reducing weakly activated representations, it sorts out the input
pattern and reduces cross-talk in those situations by allowing a favorable
segmentation to arise. The modulatory control exploits the complexity of
the cortical network itself and can be kept surprisingly simple. This type of
closed-loop regulatory system is subject to current investigation. Prelimi-
nary results show that it is the most robust mechanism, but also the slowest
of those considered (Verschure & König, unpublished data).

In summary, all three methods seem to be workable solutions to close the
loop between the modulatory system and the dynamics of neuronal activity
within a module. The first two mechanisms exploit statistical properties
of the activity pattern, one concentrating on the feature distribution, the
other on temporal properties. Therefore, the circuit of the closed regulatory
loop can be kept simple. The third mechanism relies on the complexity of
the cortical network. Therefore, all three regulatory mechanisms are much
simpler than the system they regulate. Furthermore, their properties are
complementary, the fastest mechanism providing a rough estimate only and
the most sophisticated mechanism being the slowest, while contributing
high-level information. Thus, a combination of all three mechanisms seems
to be the most viable approach.

3 Discussion

The task of scene segmentation has been addressed in many simulations
(von der Malsburg, 1995). In these studies, temporal coding has been used
for binding sets of active neurons into coherent assemblies. In most cases,
however, a fixed effective anatomy was used. Therefore, due to the pre-
specified interactions, only limited sets of stimuli could be successfully seg-
mented. The model presented here addresses several problems that arise
in these fixed architectures and links the dynamic scaling of cortical in-
teractions to a modulatory system acting on the biophysical properties of
neurons. First, it establishes a mechanism for regulating the degree of co-
herence and the segmentation of sensory input on different spatial scales.
The implemented system reflects some properties of the cholinergic system
of the basal forebrain. Second, the interaction of several modules containing
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independent cues for scene segmentation was studied. In a previous inves-
tigation (Schillen & König, 1994), a system with fixed effective interaction
was proposed. This system, however, was limited to stimuli suitable for the
spatial scale of the implemented interaction, and the scene was segmented
according to a majority vote of all modules. In our investigation, the modula-
tory system allows emphasizing the modules containing segmentation cues.
In this way a flexible contribution of each module to scene segmentation
is achieved, which scales favorably with an increasing number of modules.
Third, the segmentation of moving stimuli was explored. The tangential
interactions in the neuronal network not only lead to a synchronization of
active neurons, but also speed up binding of assemblies of neurons that are
just becoming activated by the moving stimulus by inducing subthreshold
oscillations in the membrane potential of neighboring cells. This will bias
the timing of the response of the cell once a stimulus appears in its receptive
field. Thus, the proposed dynamic regulation of dendritic integration by a
modulatory system seems to be important for the development of a system
that can flexibly adapt to a wide range of stimuli. Fourth, multiple ways
were investigated of closing the loop between the modulatory system and
the activity of units in a module. The loop can be closed using both a positive
and a negative feedback loop. In all cases, the circuitry of the regulatory loop
is of a much lower complexity than the connectivity of the simulated cortical
module. Remarkably, it is possible to tap into the machinery made available
by the hierarchy of modules in a sensory system to define a sophisticated
control using a simple circuit.

3.1 Assumptions and Predictions of the Model.

3.1.1 Finite Electrotonic Length of Cortical Neurons. In the presented
model, we made the assumption that the attenuation of postsynaptic poten-
tials varies in a range equivalent to a total electrotonic length of the neuron
between 0 and 4. Available studies using intracellular recording techniques
give values in the range of 1 to 2 (Bindman, Meyer, & Prince, 1988). These
studies are supported by estimates of the electrotonic structure of cortical
neurons based on anatomical data (Tsai, Carneval, Claiborne, & Brown,
1994). However, several recent studies indicate that the electrotonic length
of cortical neurons might be larger. First, experiments using the patch clamp
technique seem to indicate a higher internal resistance of the core conductor
(Spruston, Jaffer, Williams, & Johnston, 1993), which would increase the esti-
mates of the electrotonic length by a factor of 2 to 4. Second, background ac-
tivity can increase the membrane conductance and thus increase attenuation
of signals propagating in the dendrite considerably (Bernander et al., 1991).
Third, the electrotonic structure of a neuron as seen from the soma is often
compact. However, as seen from a synapse placed on the dendritic tree, the
electrotonic structure of a pyramidal neuron often resembles the anatomical
structure, that is, sites on the distal apical dendritic tree are electrotonically
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quite remote (Zador et al., 1995). Fourth, the measurements cited above re-
fer to the attenuation of steady-state signals. However, the attenuation of
transient signals, which are the important events in the present context, is
stronger (Rall, 1977; Agmon-Snir & Segev, 1993). Thus, measurements of the
electrotonic length of cortical neurons using steady-state signals underes-
timate the true attenuation. Taken together, these studies indicate that the
electrotonic structure of cortical neurons leaves a large dynamic range for
the modulation of signals from the apical dendritic tree and that a value for
the electrotonic length in the range of 0 to 4 is a reasonable choice.

3.1.2 Spatial Distribution of Synapses. In our model we assume that the
distribution of synapses on the dendritic tree is dependent on the similar-
ity of receptive field properties of the pre- and postsynaptic neurons. Due
to the topographic order in the cortex, this implies a dependence on the
physical distance as well. This assumption is supported by physiological
and anatomical studies. Current source density measurements have shown
that after an electric shock to the optic chiasm, activity flows sequentially
from layer 4 to lower layer 3 and from there to long-distance connections
terminating in layer 2 (Mitzdorf & Singer, 1978). These delays increase for
sites located closer to the cortical surface. This study also showed that the
synapses between distant neurons are formed in the distal dendritic tree.
Furthermore, anatomical studies indicate that the position of synapses on
the dendritic tree is an increasing function of the distance between the soma
of the pre- and postsynaptic neurons (Thomson & Deuchars, 1994). Thus,
several lines of research indicate that the placement of synapses on the den-
dritic tree of cortical neurons is not random. Actually, we view the proposi-
tion made here of a monotone relationship between the similarity of recep-
tive field properties of two connected neurons and the electrotonic distance
from the soma of the respective synapse as a particularly simple example
of a specific wiring and expect that combined anatomical and physiologi-
cal studies will uncover more specific and complex properties of synaptic
placement on the dendritic tree in the future.

3.1.3 The Interactions Between Binding and a Modulatory System. The model
presented in this article goes beyond available experimental data in several
respects. First, the basic effect of context-sensitive synchronization can be
deduced from the published hypothesis of binding by synchronization. Yet
stimuli of this complexity have not been used extensively in physiological
experiments. Therefore, we propose not only a concrete mechanism that
can explain such a performance, but also predict that the suppression of
the modulatory system or manipulation of its site of action should interfere
with the binding and segmentation of such stimuli. Second, our modeling
study suggests that the dynamic balancing of modules processing different
feature domains is critically dependent on the modulatory system. Thus,
maintaining high activity of the modulatory system in those modules that
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receive homogeneous stimuli should lead to a change of the synchroniza-
tion pattern in the module that receives structured input, that is, to global
synchronization similar to the isolated module with homogeneous stimula-
tion. A test of these two predictions seems to be within the reach of existing
experimental techniques.

3.1.4 Simplifications Made. Even in a model of considerable complex-
ity, many simplifications have to be made. Although this work investigates
the relation of a particular biophysical mechanism with macroscopic prop-
erties, no attempt was made to use a biologically realistic model neuron.
Thus, many known properties—and, of course, all the unknown as well—
have been ignored—most notably, the active properties of dendrites. In re-
cent years many interesting results on voltage gated channels and active
propagation of action potentials in dendrites have been found. The effect of
voltage-dependent channels is of particular interest since they may boost
weak currents (Ca++ channels) or attenuate them (K+ channels). The precise
interaction between modulatory system and these channels depends on the
sequence of their actions. If, for example, similar to the effect of dopamine in
neurons in prefrontal cortex (Seamans, Gorelova, & Yang, 1997), these chan-
nels are located in the proximal dendrite, it acts like a threshold, increasing
the differential effect of the modulatory system. Voltage-dependent potas-
sium channels counteract this effect and introduce a temporal component
to these interactions. Depending on the precise density and location of these
channels, many different scenarios are possible. However, given the current
state of research, a very large number of parameters are not known. It could
be argued that including voltage -dependent channels with slower kinetics
interferes with the proposed mechanism. For instance, the NMDA channel
is best known for its role as a sort of coincidence detector. For its activation,
it needs not only the binding of transmitter molecules but also a postsynap-
tic depolarization to release the Mg++ block. Although transmitter binding
is a slow process, the release of the Mg++ block is fast, and thus the re-
sulting postsynaptic current has a fast dynamics. Due to the attenuation of
postsynaptic potentials, this mechanism would be dependent on the spatial
specificity of synaptic placement. Although its role in changing synaptic
efficacy is well studied, many questions regarding its distribution and the
function under in vivo conditions are currently not resolved. In summary, to
investigate the effects of active dendritic processes seems to be a promising
field of research; however, including a myriad of unknown parameters in a
modeling study could easily obscure its results.

More directly related to the model presented here are other sources af-
fecting membrane properties that have been neglected. This applies to the
increased membrane conductance due to synaptic input as well as the effect
of voltage-dependent channels. The properties of these two mechanisms are
partly similar and partly complementary. For example, a stimulus with a
small variation in feature properties (like the one shown in Figure 3, lower
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panel) leads to a larger input via the tangential connections than a stimulus
comprising widely different feature values (like the one shown in Figure 3,
upper panel). Thus, the increased input would lead to a stronger increase
in membrane conductance, similar to the effect of the modulatory system in
that simulation. On the other hand, changes in the strength of the afferent
input interfere with this mechanism, but not necessarily with a modula-
tory system, as described in this study. Similar arguments can be made for
the effect of, for instance, voltage-dependent potassium channels. For this
reason we decided to demonstrate the feasibility of dynamic modulation
of neuronal interactions in a minimal system. To combine these different
mechanisms in a single model to increase the biological realism as well as
its performance will be an interesting future study.

3.2 Modulatory Systems. In biological systems many different forms of
modulation are known (Katz & Frost, 1996). Here we call an effect modu-
latory if it does not by itself activate or inhibit a neuron. Furthermore, the
action of a modulatory system is typically not on a fast timescale. It can be
thought of as setting the appropriate working range for the fast dynamics
on a timescale of a few dozen milliseconds. This study involves an exter-
nal set of neurons that influence the properties of dendritic integration of
neurons in a whole area and do not have receptive fields comparable to
cortical neurons. These properties are inspired by the nucleus basalis mag-
nocellularis (NBM) of Meynert, the main source of cholinergic projections
to the cerebral cortex. This region has been shown to contain a large number
of cells responsive to visual stimuli (Santos-Benitez, Magarinos-Ascone, &
Garcia-Austt, 1995). The arborization patterns of the cholinergic projections
arising in this region, and terminating in the cerebral cortex, have shown to
be topographically specific (Baskerville, et al., 1993). The termination pat-
tern of these subcortical projections is mainly on dendritic shafts. These
modulatory systems in general affect the excitability of the target neurons
and influence their signal-to-noise ratio (Foote & Morrison, 1987). A possi-
ble sensory interface for this region can be found in the amygdala, which
receives abundant cortical and subcortical inputs conveying sensory events
and projects to the NBM. Hence, our model study proposes that areas such
as NBM play a more active role in sensory processing than traditionally
believed.

In this study, the effect of ACh on the K+ current was considered, through
which dendritic integration in cortical neurons can be regulated. In partic-
ular, closing channels that support a leak current leads to a decrease of
the membrane conductivity and thereby to a more efficient transmission of
postsynaptic potentials from the distal dendritic tree to the soma. The posi-
tion of the muscarinic receptors at the dendritic shafts of cortical cells puts
them in a prime location to control the dendritic integration of the postsy-
naptic potentials generated by cortico-cortical interactions. Actually, recent
studies found an influence of the activation of the parabrachial nucleus on
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the synchronization of cortical neurons (Munk, Roelfsema, König, Engel, &
Singer, 1996). Furthermore, Steriade, Dossi, Pare, & Oakson (1991) show an
enhancement of gamma band activity by stimulation of the mesopontine
cholinergic nuclei. Thus, the modulatory system as used in the simulation
resembles the properties of the cholinergic system.

4 Conclusions

In this article we explored the relationship between the biophysical prop-
erties of cortical neurons and their collective dynamics at the system level.
In particular, we proposed that a modulatory system, acting on the mem-
brane leakage current of cortical neurons, influences the electrotonic length
and thus the properties of dendritic integration. We demonstrated that such
a mechanism can support the segmentation and binding of visual stimuli
at varying spatial and temporal scales. To evaluate the performance of the
proposed model, we described four experiments. The first demonstrated
that by regulation of the dendritic space constant, input stimuli could be
segmented on a varying spatial scale dependent on the stimulus context.
The second set of experiments investigated the interaction of different fea-
ture domains in a system consisting of multiple modules. We showed that
by a differential regulation of the dendritic space constant, a segmentation
derived in one feature domain could be superimposed onto other feature
domains. The third experiment showed the effect of the modulatory sys-
tem onto the dynamics of binding moving stimuli. It demonstrated that
by enhancing the excitability in cortical circuits, the coherence of a bound
subassembly could be preserved while it moved through the map. In the
last set of simulations, we considered three different methods to relate the
ACh activity to the dynamics in the processing modules. The feasibility of
a closed regulatory loop was demonstrated and some of the complemen-
tary properties of the different methods explored. In conclusion, this study
establishes that the microscopic biophysical properties of cortical cells can
play a decisive role in the perceptual functions reflected in the macroscopic
properties of cortical circuits.
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