
FLOATING GATE ANALOG MEMORY FOR

PARAMETER AND VARIABLE STORAGE IN A

LEARNING SILICON NEURON

P. H�aiger and C. Rasche

Institute of Neuroinformatics ETHZ/UNIZ, Whinterthurerstrasse 190, CH-8057
Z�urich, Switzerland, tel: ++41 1 635 30 23, e-mail: haiger@ini.phys.ethz.ch

Abstract

Retention of parameters and learnt synaptic
weights is a central problem in the construc-
tion of neural networks. We have applied
analog oating gate technology to solve these
problems in the context of biologically real-
istic `silicon neurons'. Parameters are stored
on a novel oating gate array, and synaptic
weights are retained by a oating gate learn-
ing synapse, that performs on-chip learning.
The latter can emulate a form of long term
potentiation (LTP) and long term depression
(LTD) as observed in biological neurons.

1 Introduction

CMOS aVLSI technology is being used to im-
plement bio-inspired neuronal circuits [5, 7].
However there are limits on how closely re-
searchers can approximate relevant neuronal
properties. Two such limits are addressed and
solved in this paper: the limit in numbers of
analog parameter voltages, and the problem of
retaining the values of variables of adaptation
and learning.

The need for many analog parameter volt-
ages has limited the sophistication of analog

chips in general, and of neuromorphic hard-
ware in particular. Unlike digital circuits, ana-
log ones require analog biases. The number of
chip pins used to limit the number of these
parameters. An alternative is to store the
analog parameters on-chip, using volatile ca-
pacitive storage, and access them via a few
address lines. This method requires refresh-
ing, e.g. via an external digital memory and
a digital-analog converter (DAC). This ap-
proach has the disadvantage that the refresh
and the switching of the digital control line
induce noise in the analog values. Static digi-
tal on-chip storage of these parameter voltages
reduces these problems but with a desired res-
olution of 10 bits, the basic circuit requires 20
transistors for an ADC and a further 60 tran-
sistors for 10 storage ip ops and so occupies
too large an area.

We used the oating gate (FG) memory cell
proposed by Diorio and colleagues [2] to con-
struct a FG analog random access memory
(aRAM). A similar memory with sequential
access has been introduced by Harrison et al.
[4]. FGs are isolated conductances that can be
charged by Fowler-Nordheim Tunneling and
discharged using hot electron injection. Since
the charge cannot escape through the insula-



tion, it is retained thereafter. A FG-aRAM
needs few pins, no refresh and not so much
space. Most importantly the memory's con-
tent is retained even when the power supply is
o�. A disadvantage is the necessity of a high
voltage bias (about 33V) the handling of which
requires some precautions. That voltage can
be reduced by using non-standard and more
expensive CMOS production processes.

Even more demanding is the permanent
storage of analog variables that are changed
according to an on-chip adaptation circuit
(e.g. weight storage in on-chip learning). We
use FG memory cells in our silicon neuron for
analog synaptic weight storage; using a partic-
ular learning synapse we can emulate a form
of biological long term potentiation (LTP) and
long term depression (LTD).

2 The silicon neuron

The silicon neuron in this work consists of a
single compartment soma with a leakage con-
ductance, sodium and potassium spike con-
ductances, a high-threshold calcium conduc-
tance and a calcium-dependent potassium con-
ductance [7, 5]. Almost all parameters (28)
are set by cells in the FG-aRAM (with the ex-
ception of four that draw more current than
our cells could provide) and represent analog
values for setting the time and voltage depen-
dence of the ionic conductances.

Additionally, the soma has four learning
synaptic conductances. They are simple exci-
tatory synaptic conductances and we will call
them AMPA synapses [7]. One of the AMPA
synapses' parameters sets the amplitude of its
EPSP. We will call that parameter the synap-
tic weight. The learning mechanism described
in section 4 controls these four parameters
which are stored on four FG memory cells.

3 Storing parameters for a

silicon neuron

Our memory permits the retention of analog
voltages for years. This storage is achieved
using oating gates: totally isolated capaci-
tances. By means of tunneling and hot elec-
tron injection one is able to change their
potentials which otherwise remain constant.
This technique has been used for many years
in a digital manner in electrically erasable pro-
grammable read-only memories (EEPROMs),
but only lately for analog purposes. The basis
of a single memory cell consists of such a oat-
ing gate and a high gain ampli�er and has been
proposed by Diorio [2]. We added address-
ing logic and a read line to an array of single
cells to make an aRAM. Due to the presence
of a high voltage switch per cell, their volt-
ages can be moved up and down individually.
Four biases are needed to operate the mem-
ory, two of them above 5V (�33V,�20V). A
total of 12 chip pins are needed for 32 param-
eters (4 parameters, read out, up and down,
5 address bits). The actual layout area of
the whole block is 343 x 1865 �m2 in the
2�m bi-CMOS process used. Full layout can
be obtained via the �rst authors homepage
(http://www.ini.unizh.ch/~haiger).

Changing a cell's value is very slow, in the
order of 100mV per second. However, in
our application, speed is not important. The
memory cells are used like the potentiome-
ters they replace: voltages are adjusted up
and down by hand with switches or automat-
ically via a computer with digital I/O lines
for switching and addressing and an ADC for
comparison to a target voltage (we use a NI
LabPC card).

Standard deviations of the oating gate
memory cells' contents during a 12 hour
recording and after one week during which the
chip was turned o�, were in the same order of



accuracy as in our measuring setup (�3mV).
This corresponds to a resolution of at least 10
bits. That accuracy proved to be perfectly suf-
�cient for our requirements. The neuron oper-
ated stably during 2 days of testing and again
after a one week interval.

4 Regulation of synaptic

e�cacy
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Figure 1: Schematics of our learning mecha-
nism in the AMPA synapse [7]. Digital pulses
from simple positive edge triggered monosta-
bles [3] (pulse widths controlled by fall for
trigger 1 and corr for trigger 2) make the
synaptic weight (controlling the EPSP ampli-
tude) in a FG memory cell increase or de-
crease. tau corr, reset corr, increment corr,
rise and fall are �xed parameter voltages.
nlearn down and nap falling are active low
pulses triggerd by the action potential, the
�rst by the rising, the other by the falling edge.

The learning synapse is a descendent of our
earlier version with volatile weight storage,
that we modelled to approach the 'modi�ed
Riccati rule' (MRR) [3]. It is a local learning
rule, sensitive to temporal correlations of the
spike inputs and the output of the cell imple-
mented by 24 transistors, one capacitance and

a core memory cell (as used in the aRAM) per
synapse. The change in synaptic weight mod-
ulates the EPSP amplitude of the four AMPA
synapses. So we approximate the behavior ob-
served in [6, 1] (�gure 2).

5 Conclusion

Limits in the number of parameter voltages
on aVLSI chips are no longer given by the
number of pins. Floating gate on-chip ana-
log memory can overcome that restriction in
a space-e�cient way, which is especially con-
venient in analog hardware emulating biologi-
cal processes in detail. Also non-volatile dy-
namic variables can be colocalized with the
adaptation circuitry, which makes for space-
and energy-e�cient designs. Furthermore the
chip's state (e.g. in learning) is preserved
even if the chip is switched o�. Learning or
other adaptation processes that permanently
change an aVLSI circuit's behavior can be im-
plemented using this technique. For example,
learning silicon AMPA synapses can emulate a
form of LTP and LTD resulting in permanent
changes in synaptic e�cacy as demonstrated
in this paper.
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Figure 2: Stimulation patterns used on our AMPA synapse and their e�ect on subsequent
excitatory post synaptic potentials (EPSPs). A and B show two stimulation patterns that
lead to LTP and LTD respectively. The presynaptic spikes (dashed lines) are digital pulses
delivered to one of the learning synapses, whereas the silicon neuron's output (solid lines)
resembles closely biological action potentials (AP). The postsynaptic APs have been forced
by stimulating a non-learning synapse that produced single EPSPs that were large enough
in amplitude to make the silicon neuron �re. We ensured that the learning synapses EPSP
remained below the soma's �ring threshold, even when it was increasing. Similarly to [6] we
stimulated pre- and post-synaptically with bursts of four spikes with 50ms spacing. We applied
15 such bursts with 200ms inter-burst intervals. The pre- and postsynaptic spikes were shifted
by 10ms against each other. When the presynaptic spike preceded the postsynaptic spike (A)
the subsequent EPSPs were higher in amplitude (C, dot-dashed line) and if the presynaptic
spike followed the postsynaptic one (B), the synaptic e�cacy decreased (C, dashed line). Before
the experiments the synaptic weight was always brought to the same baseline (C, solid line).
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