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Recent neurophysiological results indicate that changes in synaptic efficacy are depen-
dent on co-occurrence of a pre and a postsynaptic spike at the synapse [11, 7]. There
are only a few models of parts of the nervous system that use temporal correlation of
single spikes in learning [3]. In most artificial neural networks neurons communicate
by analog signals representing frequencies, and their learning rules are also defined
on these continuous signals. Timing of single spikes is not used, nor is it represented.
This simplification has proven useful in many applications and it makes simulations in
software simpler and faster. Spiking systems have been avoided because they are com-
putationally more difficult. However, by implementing spiking and learning neurons in
analog VLSI it is possible to examine the behaviour of these more detailed models in
real time. This is why we and others [1] have started to use silicon models of spiking
learning neurons. We have formulated one possible mechanism of weight normaliza-
tion: a Hebbian learning rule that makes use of temporal correlations between single
spikes. We have implemented it on a CMOS chip and demonstrate its normalizing
behaviour.

1.1 INTRODUCTION

Recentin vitro experiments in young rat neocortex have shown that the relative timing
of excitatory postsynaptic potential (EPSP) and action potential (AP) is a main factor
in determining changes in synaptic efficacy [11, 7]. It seems that a causal relationship
between a pre- and a postsynaptic spike strengthens the synapse whereas presynaptic
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spikes that follow a postsynaptic action potential weaken it. Following this rule,
synapses that contributed directly to the generation of an AP get enhanced.

Such rules are like Hebbian learning rules that are sensitive to temporal correlations
of single input and output spikes rather than simply activity correlations. Gerstner
et al. in [3] used such a rule to tune artificial neurons, sensitive to azimuthal sound
localization, in their simulation of the Barn Owl’s auditory system. Schultz and Jabri
in [9] proposed a circuit, that uses such temporal correlations, to achieve biologically
realistic Short Term Potentiation. We too presented a spike based learning rule, the
Modified Riccati Rule (MRR), and showed that it preferes temporally correlated input
spike-trains over uncorrelated ones, even if there were no differnces in their average
frequencies [4].

For these learning rules to function, the information as to when the cell has produced
an action potential must be known at the synapse. In biology this information may be
carried by the AP traveling back through the dendritic tree [10]. Furthermore the back-
propagating postsynaptic AP is a shared signal among all synapses and could therefore
lead to some coordinated behaviour among them. In the MRR [4] for instance, we
exploited this property to achieve approximate weight vector normalization. Similarly
Akers et al. [1] have implemented Oja’s Rule1 on a CMOS chip. Since this rule is
more complicated than the Riccati Rule, it needs a more sophisticated implementation:
their chip uses external phase signals to compute the average and square of the output
frequency. Like the original Oja’s Rule, it is sensitive to average frequencies of input
and output and not to temporal correlations of single spikes.

At NIPS ’96 [4] we introduced a preliminary chip that implemented a learning rule
that is slightly different to the MRR and shows no normalizing behaviour. Now we
have an analog VLSI (aVLSI) implementation of the MRR in hand that is sensitive
to temporal correlations and performs approximate weight vector normalization. To
achieve this normalizing property no phases need to be imposed on the chip nor is
there any average explicitly computed.

1.2 A SPIKE BASED LEARNING RULE

The learning rule we briefly describe here has been proposed by us in [4]. It is inspired
by biological findings and the Riccati Equation, a learning rule formulated for rate
coded input and output [5]. We call it the Modified Riccati Rule (MRR). Although it
is purely artificial, it has some interesting features in common with those observed in
biological synapses:

1. The information that an AP has been generated is shared among the input
synapses.

2. Temporal correlations between pre- and postsynaptic spikes determine the
changes in synaptic efficacy.
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Figure 1.1 A snapshot of the simulation variables involved at one synapse. � =

0:8306sec.The correlation signal corresponds to c in (1.1), the synaptic weight to w.
The pre- and postsynaptic spikes determine the events ti;j , where i numbers the postsy-
naptic spikes and j counts occurrences of presynaptic spikes after the last postsynaptic
spike. If the weight is increasing or decreasing with a postsynaptic spike depends on
its present size and on the size of the correlation signal at that moment (see (1.1)).
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3. Causal relationships lead to an increase in synaptic efficacy whereas ’anti-causal’
relationships weaken the connection.

In order to detect the temporal correlations between input and output spikes, the
synapse must keep track of the recent events. In nature, calcium dynamics seem to be
involved in this [12]. In our learning rule a simulation variablec, which we named
correlation signal, plays this role. It stores information about the recent presynaptic
activity: every presynaptic spike incrementsc by one and it decays in time with a time
constant� . In our rule, weight updates happen whenever an output spike is released
and their signs and magnitudes are dependent on this correlation signalc.

1.2.1 Definition

The following rule defines the function of one synapse:

c(tm;0) =

(
e�

tm;0�tm�1;s

� c(tm�1;s) if s > 0

0 if s = 0

c(tm;1) = 1

c(tm;n) = e�
tm;n�tm;n�1

� c(tm;n�1) + 1

if

n > 1

tm;n � tm+1;0

s = maxfv : tm�1;v � tm;0g

(1.1)

w(tm;0) = w(tm�1;0) + �c(tm;0)� �w(tm�1;0) (1.2)

wherew is the weight at this synapse,tm;0 is the time of them’th postsynaptic spike
andtm;n (n > 0) is the time of then’th presynaptic spike after the m’th postsynaptic
spike. s is the number of presynaptic spikes between the(m � 1)’th and them’th
postsynaptic spike, sotm�1;s is the last event (presynaptic or postsynaptic spike)
before them’th postsynaptic spike;� and� are parameters influencing the learning
speed and the weight vector normalization (see (1.5)) and� is the time constant for the
correlation signal’s decay.

If � approximates infinity, so that the decay can be neglected, it can be shown that
this rule becomes equivalent to the Riccati Equation as described in [5]:

�

�t
~w = �~I � � ~wO (1.3)
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whereO is the neuron’s output frequency and~I is the vector of input frequencies.
The equivalence of the MRR to the Riccati Rule becomes clear, if the correlation

signal c is thought of as an input spike counter. With every output spike,w is
incremented by�c. After one second the sum of all those increments is�I , with I

being the average input frequency arriving at this synapse. Becausew is decremented
with every output spike by�w, the sum of those decrements during one second will
be�wO.

The Riccati Equation is a non-Hebbian learning rule that normalizes the weight
vector, and sets its direction to be the same as the input vector’s direction.

With � <1 we gain the following features:

1. MRR is a Hebbian learning rule.

2. MRR considers temporal correlations between input and output spikes and
favours synapses that received input shortly before an AP occurs.

If the inputs do not show temporal correlations, the MRR behaves as a normal,
frequency based, weight normalizing, Hebbian learning rule. We used it in that manner
in unpublished Matlab simulations to solve some small-scale problems, for instance
learning direction sensitivity in an array of neurons that are connected excitatorily
to their neighbours with temporal delays; and letting two inhibitorily interconnected
neurons become pattern selective, by presenting them two alternating input patterns.

If however the inputs do show temporal correlations of single spikes, the MRR
reacts differently: In [4] we showed (in simulation) its ability to choose two input
spike-trains with 40% coincident spikes over two uncorrelated ones, even if all were
firing with the same average frequency.

1.3 IMPLEMENTATION IN ANALOG VLSI

We have fabricated a chip, in 2�m CMOS technology, which simulates this learning
rule in analog hardware. Figure 1.2 is a block diagramm of the whole neuron. Figure
1.3 shows a repeatedly used component in the circuits: The so called trigger circuit
produces digital pulses of adjustable width given a rising edge as input. Figure 1.4
describes the soma, and figure 1.5 shows a learning synapse, of which our silicon
neuron has three. Figure 1.6 is an example of data from the chip, produced by the
trigger circuits to time different events at the synapses.

We tried to make this implementation as compact as possible and to match it closely
to the theoretical learning rule. Since we had to find a compromise between these two
criteria, the chip differs in some points from the theory. In particular, the influence
of the correlation signal on the weight increases is exponential rather than linear. By
adapting the range of the correlation signal with the parameterstau anddelta to a
small ’piece’ of this exponential one can make this influence as ’linear’ as possible.
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Figure 1.2 A block diagram of the whole neuron. We equipped it with five synapses,
3 of which are learning and two non learning. The synpases send a postsynaptic
current (PSC) to the soma when stimulated and receive a pulse back whenever an
action potential (AP) is produced. This figure demonstrates that the only information
shared among the learning synapses is the moment of the occurance of an AP. That
is enough for this local learning rule to coordinate the growth of the weights such that
weight vector normalization is achieved.
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Figure 1.3 This ’trigger circuit’ produces a digital pulse of adjustable width as response
to a rising edge. Later in this paper we will use its icon (in the upper left). The circuit
is made up of a NAND gate and two inverters. The NAND and one inverter form a
AND gate. The input signal is given directly to one input of the AND and delayed and
inverted to the other. fall determines that delay and therefore the width of the trigger
circuits output pulse. rise being slightly smaller than V dd ensures that the falling edge
of the signal does not produce a glitch.
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Figure 1.4 The circuit for the soma: It contains three trigger circuits. The two lower
ones provide timing information to the synapses about the rising and falling of the
action potential (os rising, os falling). The third embedded in the top circuit, tuned
by fall slow to produce wider pulses, provides the action potential. It is activated as
soon as the soma voltage (inverted sense compared to nature) falls below a threshold
(ap thold). A differential pair, a current mirror and a simple amplifier change that
information into a rising voltage. The rising edge then triggers the trigger circuit. The
soma is resetted to Vdd by os falling.
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Figure 1.5 The circuit for one synapse: It first captures an incoming spike with a
trigger circuit and translates it to a pulse of well defined width (ps rising). This pulse
opens a gate which allows a current (EPSC) to flow from the soma to ground, by
an amount given by the synapse’s weight (The polarity of the membrane voltage is
opposite to that observed in nature). It also decreases (increase in theoretical formula)
the correlation signal limited by the voltage delta. alpha and beta as in the formula
set the amount of the weight change at a AP-event. Further control over the theoretical
values � and � is provided by the length of the os rising pulse. (see the circuit for
the soma in figure 1.4). The correlation signal’s decay and its lower limit is controlled
by the parameter tau. os rising, os rising and os falling are signals generated
in the cells AP. and are summarized in figure 1.2 as ’backpropagating AP’. They could
also have been produced locally at the synapses but since they are needed at every
synapse it is more economical in chip area to produce them once at the soma and to
distribute them. os rising and os rising cause a weight update and os falling

resets the correlation signal.
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Figure 1.6 Scope traces of internal timing signals3, taken from a longer recording
sequence. When os rising is high the weights get updated and then when os falling

is low, soma and corr are reset. A presynaptic spike also produces a similar timing
signal (ps rising, not shown here). ps rising allows synaptic current to flow to the
soma and increments the correlation signal corr.
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1.4 NORMALIZATION

We define normalization as a mechanism to maintain the length of the weight vector
constant. This prevents the synaptic weights from growing infinitely, which is a danger
in more basic Hebbian learning rules, especially in recurrent networks. On the other
hand it also prevents the case that all synapses of one neuron become ineffective. It
keeps the gain of a neuron constant:O = k~wkk~Ik if ~I is an optimal stimulus.

In many learning rules this normalization is performed as an extra step after the
weights have been adjusted. In other cases, like the Riccati or the related Oja’s rule,
the normalization is included in the learning rule and the extra step is not required. The
MRR is inspired by the Riccati rule and has inherited an approximate weight vector
normalization from it.

To see how this is achieved one can view the output spikes as an adaptive clock. A
bigger input load accelerates this clock and if there is less input to the cell the clock
slows down. The clock rate normalizes the input load, which makes it a lot easier to
formulate a learning mechanism that normalizes the weights too. The rule presented
here is an example for this.

1.4.1 Normalization in the MRR

If we assume that the condition given by (1.4) for the output firing rateO is met (for
example by using a non leaky integrate and fire neuron) and we neglect the decay in the
MRR by letting� approach infinity, then in the equilibrium state (assuming�

�t
~w = 0),

using (1.3) we can compute the length of the weight vectork~wk as described in [5]:

O = ~wT ~I (1.4)

Multiplying (1.3) from the left with ~wT , then substituting~wT ~I with O and finally
solving for ~wT ~w leads finally to (1.5).

k~wk =

r
�

�
(1.5)

If � <1 this normalization gets corrupted. Since in every situation the incrementing
term in (1.2) will be smaller with the correlation signal decaying, the weight vector
norm will be smaller too. So one would need to replace the ’=’ in (1.5) by a ’�’. This
effect can be countered by using a leaky integrate and fire spike mechanism, using the
same time-constant� for the leak. This way the decrementing term in (1.2) would
be smaller too. As the present aVLSI implementation uses a non leaky integrate and
fire mechanism, the normalization is not exact, but at least the weight vector length is
restricted. As simulations and experiments show (figures 1.7 and 1.8), it tends to be
not far away from that upper limit (approximately the maximum value in the graphs).
The main factor determining the difference of the weight vector length and its upper
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limit is the ratio of� to the average inter-spike interval of the output spikes: the bigger
the output spike intervals, the bigger the norms deviation from (1.5), because then
the decay has more time to affect the correlation signals substantially during these
intervals.

1.4.2 Normalization in our aVLSI implementation

Figures 1.7 and 1.8 illustrate test runs on the chip where two synapses received Poisson
distributed spike inputs4. Two effects make the chip deviate from the optimal normal-
ization: due to fabrication asymmetries, synapse 1 tends to be stronger than synapse
2. That is why the value at the right end of the graph is bigger than at the left end.

The second effect is the one expected by the theory: With the MRR, in contrast to
the original Riccati rule, where the output frequency is smaller, the weight norm gets
smaller too. The depression where the two average input frequencies are similar is
caused by this effect. In the original Riccati rule the weight-vector follows the average
input-vector

~w

k~wk
=

< ~I >

k < ~I > k
: (1.6)

Therefore also the output-frequencyO remains constant for a constant length of the
input vector (O = k~Ikk~wk). With the MRR however the input- and the weight-vector
will not align and they will deviate the most when the input-vectors values are all
equal. The more they deviate the smaller the output-frequencyO will become and the
more severely will the weightvector length decrease.

1.5 CONCLUSION

We propose that a back-propagating action potential can be used to obtain coordinated
changes in synaptic efficacy among all synapses of one neuron. For example weight
vector normalization can be achieved as demonstrated here in a theoretical learning
rule (MRR) and in an aVLSI artificial learning neuron.

Clearly the use of volatile weight storage in learning is not ideal. Work in progress
is addressing the issue of non volatile weight storage in on chip learning, using floating
gates [2], and therefore enabling our chips to preserve their learned state even when
they are switched off or inactive, without having to store weights digitally.

We plan to extend our work on learning with single synapses to networks of neurons.
Since that requires inter-chip communication, we intend to equip future chips with the
ability to use the address event protocol [8, 6] for that purpose.
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Figure 1.7 The graph shows the weight vector length on the y-axis for an experiment
with our chip using two synapses, both of which get Poisson distributed spike-trains
with constant average frequency as input. The squared sum of the average input
frequencies was kept constant. The x-axis is an angle � which is the angle of the
polar coordinates of the input vector. In other ’words’ the input frequencies �1 and
�1 are defined as �1 = 100sin(�) �2 = 100cos(�). The weights were given time
to settle and were then taken as the mean of 50 oscilloscope traces of 200ms each.
The bars show the standard deviations in these sets of 50 samples. For comparison
we also show two results of computer simulations of the MRR. The dash-dotted line
is the result of a simulation with equivalent parameters to the chip. It is more nicely
symmetric than the chip data, as is to be expected, since in the simulation there are
no mismatches between the two synapses. On the chip the first synapse tends to be
stronger. The dotted line results when the somas membrane voltage leaks out with
the same timeconstant as the correlation signal. This could not be replicated on the
chip, since we used a simple integrate-and-fire mechanism, without leakage through
the membrane.
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Figure 1.8 Again (see figure 1.7) the weight vector length for an experiment with two
synapses stimulated with Poisson distributed spike signals is shown. This time the
average frequency of synapse 2 is kept constant at 50 Hz. The x-axis shows the
average frequency given to the other synapse (�1). The weights were taken as the
mean of 200 oscilloscope traces of a duration of 200ms each. The bars show the
standard deviation in these sets of 200 samples.
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Notes

1. Oja’s rule is closely related to the Riccati Rule, that also normalizes the weight vector

2. Compare the signal names in the circuits in figures 1.4 and 1.5.

3. Compare the signal names in the circuits in figures 1.4 and 1.5.

4. We used a National Instruments Lab-PC card and a PC running Linux to provide these spike trains.
The program and the altered driver can be obtained from the corresponding author.
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