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Abstract

In 1986, Tanner and Mead [1] implemented an interesting constraint sat-
isfaction circuit for global motion sensing in aVLSI. We report here a
new and improved aVLSI implementation that provides smooth optical
flow as well as global motion in a two dimensional visual field. The com-
putation of optical flow is an ill-posed problem, which expresses itself as
the aperture problem. However, the optical flow can be estimated by the
use of regularization methods, in which additional constraints are intro-
duced in terms of a global energy functional that must be minimized. We
show how the algorithmic constraints of Horn and Schunck [2] on com-
puting smooth optical flow can be mapped onto the physical constraints
of an equivalent electronic network.

1 Motivation

The perception of apparent motion is crucial for navigation. Knowledge of local motion of
the environment relative to the observer simplifies the calculation of important tasks such as
time-to-contact or focus-of-expansion. There are several methods to compute optical flow.
They have the common problem that their computational load is large. This is a severe
disadvantage for autonomous agents, whose computational power is restricted by energy,
size and weight. Here we show how the global regularization approach which is necessary
to solve for the ill-posed nature of computing optical flow, can be formulated as a local
feedback constraint, and implemented as a physical analog device that is computationally
efficient.
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2 Smooth Optical Flow

Horn and Schunck [2] defined optical flow in relation to the spatial and temporal changes
in image brightness. Their model assumes that the total image brightnessE(x; y; t) does
not change over time;

d

dt
E(x; y; t) = 0: (1)

Expanding equation (1) according to the chain rule of differentiation leads to
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E(x; y; t) = 0; (2)

whereu = dx=dt andv = dy=dt represent the two components of the local optical flow
vector.
Since there is one equation for two unknowns at each spatial location, the problem is
ill-posed, and there are an infinite number of possible solutions lying on theconstraint
line for every location(x; y). However, by introducing an additional constraint the prob-
lem can be regularized and a unique solution can be found.
For example, Horn and Schunck require the optical flow field to be smooth. As a measure
of smoothness they choose the squares of of the spatial derivatives of the flow vectors,
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One can also view this constraint as introducinga priori knowledge: the closer two points
are in the image space the more likely they belong to the projection of the same object. Un-
der the assumption of rigid objects undergoing translational motion, this constraint implies
that the points have the same, or at least very similar motion vectors. This assumption is
obviously not valid at boundaries of moving objects, and so this algorithm fails to detect
motion discontinuities [3].
The computation of smooth optical flow can now be formulated as the minimization prob-
lem of a global energy functional,Z Z

F 2 + �S2| {z }
L

dx dy �! min (4)

with F andS2 as in equation (2) and (3) respectively. Thus, we exactly apply the approach
of standard regularization theory[4]:

Ax = y y: data
x = A�1y inverse problem, ill-posed
k Ax� y k + �k P k= min regularization

The regularization parameter,�, controls the degree of smoothing of the solution and its
closeness to the data. The norm,k � k, is quadratic. A difference in our case is thatA
is not constant but depends on the data. However, if we consider motion on a discrete
time-axis and look at snapshots rather than continuously changing images,A is quasi-
stationary.1 The energy functional (4) is convex and so, a simple numerical technique
like gradient descent would be able to find the global minimum. To compute optical flow
while preserving motion discontinuities one can modify the energy functional to include
a binary line process that prevents smoothing over discontinuities [4]. However, such an
functional will not be convex. Gradient descent methods would probably fail to find the
global amongst all local minima and other methods have to be applied.

1In the aVLSI implementation this requires a much shorter settling time constant for the network
than the brightness changes in the image.



3 A Physical Analog Model

3.1 Continuous space

Standard regularization problems can be mapped onto electronic networks consisting of
conductances and capacitors [5]. Hutchinson et al. [6] showed how resistive networks can
be used to compute optical flow and Poggio et al. [7] introduced electronic network so-
lutions for second-order-derivative optic flow computation. However, these proposed net-
work architectures all require complicated and sometimes negative conductances although
Harris et al. [8] outlined a similar approach as proposed in this paper independently. Fur-
thermore, such networks were not implemented practically, whereas our implementation
with constant nearest neighbor conductances is intuitive and straightforward.
Consider equation (4):

L = L(u; v;ru;rv; x; y):

The Lagrange functionL is sufficiently regular (L 2 C2), and thus it follows from cal-
culus of variation that the solution of equation (4) also suffices the linear Euler-Lagrange
equations

�r2u�Ex(Exu+Eyv +Et) = 0 (5)

�r2v �Ey(Exu+Eyv +Et) = 0:

The Euler-Lagrange equations are only necessary conditions for equation (4). The suffi-
cient condition for solutions of equations (5) to be a weak minimum is the strong Legendre-
condition, that is

Lruru > 0 and Lrvrv > 0;

which is easily shown to be true.

3.2 Discrete Space – Mapping to Resistive Network

By using a discrete five-point approximation of the Laplacianr2 on a regular grid, equa-
tions (5) can be rewritten as

�(ui+1;j + ui�1;j + ui;j+1 + ui;j�1 � 4ui;j)�Exi;j
(Exi;j

ui;j +Eyi;jvi;j +Eti;j )=0 (6)

�(vi+1;j + vi�1;j + vi;j+1 + vi;j�1 � 4vi;j)� Eyi;j (Exi;j
ui;j +Eyi;jvi;j +Eti;j )=0

wherei andj are the indices for the sampling nodes. Consider a single node of the resistive
network shown in Figure 1:
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Figure 1: Single node of a resistive network.

From Kirchhoff’s law it follows that

C
dVi;j
dt

= G(Vi+1;j + Vi�1;j + Vi;j+1 + Vi;j�1 � 4Vi;j) + Iini;j
(7)



whereVi;j represents the voltage andIini;j
the input current.G is the conductance between

two neighboring nodes andC the node capacitance.
In steady state, equation (7) becomes

G(Vi+1;j + Vi�1;j + Vi;j+1 + Vi;j�1 � 4Vi;j) + Iini;j
= 0: (8)

The analogy with equations (6) is obvious:

G  ! �

Iuini;j
 ! �Exi;j

(Exi;j
ui;j +Eyi;jvi;j +Eti;j )

Ivini;j
 ! �Eyi;j (Exi;j

ui;j +Eyi;jvi;j +Eti;j ) (9)

To create the full system we use two parallel resistive networks in which the node voltages
Ui;j andVi;j represent the two components of the optical flow vectoru andv. The input
currentsIuini;j

andIvini;j
are computed by a negativerecurrent feedback loopmodulated

by the input data, which are the spatial and temporal intensity gradients.
Notice that the input currents are proportional to the deviation of thelocal brightness con-
straint: the less the local optical flow solution fits the data the higher the currentIini;j

will
be to correct the solution and vice versa.
Stability and convergence of the network are guaranteed by Maxwell’s minimum power
principle [4, 9].

4 The Smooth Optical Flow Chip

4.1 Implementation
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Figure 2: A single motion cell within the three layer network. For simplicity only one
resistive network is shown.

The circuitry consists of three functional layers (Figure 2). The input layer includes an
array of adaptive photoreceptors [10] and provides the derivatives of the image brightness
to the second layer. The spatial gradients are the first-order linear approximation obtained
by subtracting the two neighboring photoreceptor outputs. The second layer computes the
input current to the third layer according to equations (9). Finally these currents are fed
into the two resistive networks that report the optical flow components.
The schematics of the core of a single motion cell are drawn in Figure 3. The photoreceptor
and the temporal differentiator are not shown as well as the other half of the circuitry that
computes the y-component of the flow vector.



A few remarks are appropriate here: First, the two components of the optical flow vector
have to be able to take on positive and negative values with respect to some reference po-
tential. Therefore, a symmetrical circuit scheme is applied where the positive and negative
(reference voltage) values are carried on separate signal lines. Thus, the actual value is
encoded as the difference of the two potentials.
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Figure 3: Cell core schematics; only the circuitry related to the computation of the
x-component of the flow vector is shown.

Second, the limited linear range of the Gilbert multipliers leads to a narrow span of flow ve-
locities that can be computed reliably. However, the tuning can be such that the operational
range is either at high or very low velocities. Newer implementations are using modified
multipliers with a larger linear range.
Third, consider a single motion cell (Figure 2). In principle, this cell would be able to sat-
isfy the local constraint perfectly. In practice (see Figure 3), the finite output impedance of
the p-type Gilbert multiplier slightly degrades this ideal solution by imposing an effective
conductanceGload. Thus, a constant voltage on the capacitor representing a non-zero mo-
tion signal requires a net output current of the multiplier to maintain it. This requirement
has two interesting consequences:
i) The reported optical flow is dependent on the spatial gradients (contrast). A single un-
coupled cell according to Figure 2 has a steady state solution with

Ui;j �
�Eti;jExi;j

(Gload +E2
xi;j

+E2
yi;j

)
and Vi;j �

�Eti;jEyi;j

(Gload +E2
xi;j

+E2
yi;j

)

respectively. For the same object speed, the chip reports higher velocity signals for higher
spatial gradients. Preferably,Gload should be as low as possible to minimize its influence
on the solution.
ii) On the other hand, the locally ill-posed problem is now well-posed becauseGload im-
poses a second constraint. Thus, the chip behaves sensibly in the case of low contrast
input (small gradients), reporting zero motion where otherwise, unreliable high values
would occur. This is convenient because the signal-to-noise ratio at low contrast is very
poor. Furthermore, a single cell is forced to report the velocity on the constraint line with
smallest absolute value, which is normal to the spatial gradient. That means that the chip



reportsnormal flowwhen there is no neighbor connection. Since there is an trade-off be-
tween the robustness of the optical flow computation and a low conductanceGload, the
follower-connected transconductance amplifier in our implementation allows us to control
Gload above its small intrinsic value.

4.2 Results

The results reported below were obtained from a MOSIS tinychip containing a 7x7 array
of motion cells each 325x325�2 in size. The chip was fabricated in 1.2�m technology at
AMI.
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Figure 4: Smooth optical flow response of the chip to an left-upwards moving edge.
a: photoreceptor output, the arrow indicates the actual motion direction.b: weak coupling
(small conductanceG). c: strong coupling.
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Figure 5: Response of the optical flow chip to a plaid stimulus moving towards the left:
a: photoreceptor output;b shows the normal flow computation with disabled coupling
between the motion cells in the network while inc the coupling strength is at maximum.

The chip is able to compute smooth optical flow in a qualitative manner. The smoothness
can be set by adjusting the coupling conductances (Figure 4). Figure 5b presents the nor-
mal flow computation that occurs when the coupling between the motion cells is disabled.
The limited resolution of this prototype chip together with the small size of the stimulus
leads to a noisy response. However it is clear that the chip perceives the two gratings as
separate moving objects with motion normal to their edge orientation. When the network



conductance is set very high the chip performs a collective computation solving the aper-
ture problem under the assumption of single object motion. Figure 5c shows how the chip
can compute the correct motion of a plaid pattern.

5 Conclusion

We have presented here an aVLSI implementation of a network that computes 2D smooth
optical flow. The strength of the resistive coupling can be varied continuously to obtain
different degrees of smoothing, from a purely local up to a single global motion signal. The
chip ideally computes smooth optical flow in the classical definition of Horn and Schunck.
Instead of using negative and complex conductances we implemented a network solution
where each motion cell is performing a local constraint satisfaction task in a recurrent
negative feedback loop.
It is significant that the solution of a global energy minimization task can be achieved
within a network of local constraint solving cells that do not have explicit access to the
global computational goal.
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