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The fundamental similarities in structural organization and phys-
iology across neocortex suggest that the cortical circuits use com-
mon principles of operation that can be modified according to
specific processing tasks1,2. One fundamental principle is the
feedback excitation3–5 mediated by recurrent intracortical axon-
al connections2,6–8.

The functional properties of recurrence are often studied in
network models consisting of a one-dimensional (1-D) array of
neurons, each with a similar pattern of excitatory and inhibitory
connections2,9–12. Typically, the location in the array of respond-
ing neurons encodes a stimulus variable (for instance, spatial
location or orientation). We will call such a network a recurrent
‘map’ (Fig. 1a).

Recurrent maps have interesting properties that contribute
directly to our understanding of signal processing by cortical neu-
ronal networks. In particular, excitatory feedback generated
between map neurons enhances those features of the input match-
ing the synaptic patterns of recurrence, and overall inhibition sup-
presses noise in these patterns13. However, the recurrent map is
unable to focus processing on some specific aspect or region of
its input, and so fails to incorporate the attentional/intentional
modulation observed in many cortical networks14–18.

We incorporated the required attentional mechanism in the
recurrent map by inserting a small population of ‘pointer’ neu-
rons in the excitatory feedback loop of the map (compare Fig. 1a
with b). In this case, the recurrent excitation on the map depends
not only on the synaptic weights, but also on the activation of
the pointer neurons. Consequently, top-down inputs to the point-
er neurons that affect their activation can control the map
response to sensory input in an attentional manner by modulat-
ing excitatory feedback. We call this new recurrent architecture
a ‘pointer map’ (Fig. 1b).

RESULTS
Our results are of two kinds, mathematical (see Methods and
Mathematical Appendix) and simulation. The mathematical
results address some general properties of the pointer-map
dynamics such as their convergence (to fixed point attractors)
and their relationship to the dynamics of recurrent maps.

Our simulation results are illustrated for a pointer map encod-
ing a stimulus feature, for example, the retinal location of a visual
target. The activities of the 25 neurons in the one-dimensional map
are labeled by M = (M1,..., MN). Usually, the sensory input
m = (m1,..., mN) to the map consisted of either one or two station-
ary or slowly moving visual stimuli. A visual stimulus at location r
was modeled by a Gaussian activity profile mx = h exp[–(r–δx)

2/σ2],
where the height h and width σ reflect time-invariant properties
of the stimulus (for example, size, contrast, and orientation). Here,
0 ≤ δx ≤ π/2 is the preferred spatial stimulus location in retinal
(angular) coordinates of the xth map neuron.

When the visual stimulus was stationary, the activities P = (P1,
P2) of the two pointer neurons reported its presence by virtue of
their sine and cosine synaptic weightings with the map:

P = (P1, P2) = [αΣ
x

(cos δx, sin δx)Mx + (p1, p2)]+ (1)

Here[.]+ = max(0, .) denotes a threshold nonlinearity that makes
pointer activities nonnegative. We included a parameter α in our
model that uniformly scaled the strength of individual excitato-
ry connections between the map and pointer neurons as well as
a similar parameter β for the global inhibition on the map to
explore the effects of weak and strong synaptic connections.

We denote an attentional input to the pointer neurons by 
p = (p1, p2). For simplicity of exposition, we first assume that this
attentional input is zero. In this case, because of our particular
choice of synaptic weighting, the activities of the pointer neu-
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rons form a population vector of steady map activity. The angle
γ = arctan(P2/P1) formed by the pointer reports the location of
the visual stimulus. The length √

—
P1

2—+           
__

P2

_______
2 of the pointer reports

the intensity of the stimulus, or possibly some other variable
(such as eye position) encoded by the network.

A vector representation of the activities of a population of
neurons is useful for decoding the firing rates of cortical neu-
rons19,20. However, such a population vector is a passive read-
out of activity on the map. By contrast, because of recurrence,
our pointer contributes actively to processing on the map. That is,
the pointer neurons excite neurons on the map whose preferred
stimulus locations are closest to the direction γ of the pointer
(Fig. 2). One of the effects of the excitatory and inhibitory feed-
back in the network is to localize the activity on the map by sup-
pressing lateral noise. Most importantly, the attentional input p
to the pointer neurons biases the pointer in equation 1. We pro-
pose processing induced by this attentional input as an alternative
architecture that can be combined with recurrent maps. The
attentional input imposes top-down selectivity on processing by
the network, affecting the pointer and, indirectly, the map activ-
ity. As a consequence, sensory responses of both pointer and map
neurons reflected attentional modulation, but at different spa-
tial scales. The map neurons had a relatively narrow spatial tun-
ing, whereas the tuning of the pointer neurons was broader.

Figure 3a shows the steady response of a pointer map to a
degraded static visual image. The combination of excitatory and
inhibitory feedback enhances the signal, suppressing noise in the
input. The stronger the feedback (the larger α and β), the sharp-
er the stationary activity profile. For both weak and strong feed-
back, the pointer is directed toward the spatial location of the
stimulus.

When two or more visual stimuli were presented to the net-
work, strong feedback could restrict the representation on the
map to just one of them (Fig. 3b). The representations of spa-
tially distant stimuli compete with one another, and the network
can be multistable. That is, the most salient stimulus did not nec-

essarily win the competition. The stronger the feedback, the more
likely that a weak stimulus could be stably represented. The win-
ning stimulus depends on the initial activations of map and
pointer neurons. In particular, the preattentive bias of the com-
petition induced by the initial activation of pointer neurons can
be used to initialize the processing of visual input to an expected,
specific, spatial location of a visual stimulus. In addition, for weak
feedback (not shown), several stimuli could be simultaneously
represented by the map and the pointer was directed toward their
average location.

The attentional input p to the pointer can change the loca-
tion and the magnitude of the map activity profile even after pre-
sentation of a visual stimulus. The effects of the attentional input
can be decomposed into two orthogonal components relative to
the instantaneous direction of the pointer P. The component of
the input p orthogonal to P has a directing or steering effect,
causing rotation of the pointer. Figure 4a shows how the control
input could be used to direct the pointer from the right toward
the left, forcing the selection of the weaker of two visual stimuli.
Because the pointer map is multistable, the weaker input can
remain selected even after the control input has been removed. In
this example, we applied an excitatory input to the left pointer
neuron. A similar steering could be achieved by applying an
inhibitory input to the right pointer neuron. Although these two
methods produced the same result of selecting the stimulus to
the left, they are dynamically different. An excitatory input to the
left pointer neuron tends to activate map neurons whose pre-
ferred stimulus locations are on the way to the stimulus to be
selected, whereas a negative input to the right pointer neuron
tends to inhibit them.

Figure 4b demonstrates movement of an activity profile about
the map by the pointer. The map was driven by uniform input,
arising from non-specific visual input and/or from an efference
copy of eye position (see below). The network transformed the
uniform input into a narrow profile of activity on the map. The
activity could then be shifted around continuously by steering

articles

Fig. 1. Two architectures for cortical networks. (a) A recurrent map.
This network consists of one population of excitatory neurons arranged
in a one dimensional ‘map’ that represents a stimulus attribute. All neu-
rons receive sensory input and make recurrent excitatory connections
with members of the map (horizontal bidirectional arrow). Weights of
synaptic connections fall off with distance between neurons (inset). All
neurons receive the same global inhibitory input (solid line drawn through map neurons), which is proportional to the summed activity on the map.
(b) A pointer map. Like the recurrent map, this network comprises a population of excitatory neurons. However, unlike the recurrent map, recur-
rent excitatory connections do not occur directly between members of the map, but through a second population consisting of two of excitatory
‘pointer’ neurons. The two pointer neurons make different connection patterns with the map neurons. Pointer neuron 1 makes identical forward
and backward connections that are a cosine function of location on the map (inset), giving stronger connections on the left (thick bidirectional
arrow) than on the right (thin bidirectional arrow). Pointer neuron 2 makes connections that are a sine function of location, and so increase toward
the right. The pointer neurons also receive an attentional input.
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the pointer. This is a simple way of implementing dynamic
remapping21, the internally generated shifting of activity profiles,
as observed in premotor and parietal cortex22,23, for example.

Besides rotating the pointer, the attentional input can either
facilitate or suppress. The component of p parallel to the point-
er causes facilitation of the pointed-to region on the map. If the
component is antiparallel (inhibitory), then the corresponding
region is suppressed. The facilitatory input to the pointer could be
used, for example, to hold activity at an attended/intended loca-
tion on the map (Fig. 4c). In this example, the visual input con-
tained a target that first drifted toward the left, held position and
then drifted toward the right again. Initially, the pointer simply
tracked the target location. When the target was on the left, the
pointer received a facilitatory attentional input causing the map
activity to remain latched even after the target had drifted away.
Strong inhibitory attentional input to pointer neurons could be
used to derecruit excitatory feedback. In Fig. 4d, we connected
two pointer neurons to a recurrent map. The strong inhibitory
input (p1, p2 < 0) completely suppressed pointer neurons and
caused only the recurrence to be effective and represent the
stronger stimulus. Alternatively, by disinhibiting the pointer neu-

rons (no attentional input), there was an increased positive feed-
back on the map that caused higher map activity. Although the
pointer neurons were only weakly connected to the map in this
example, target selection caused by attentional input as in Fig.
4a could still be achieved.

Pointer-map interactions offer a simple explanation of how
a neuron can be both locally tuned to some stimulus variable
and monotonically tuned to some other variable. This is com-
monly observed in neurons of parietal areas LIP and 7a, which
combine a localized retinal receptive field multiplicatively with
a monotonic tuning to eye position24,25, for example. In the
pointer map, such multiplicative response properties can arise
in two ways (Fig. 5). One mechanism (Fig. 5a and b) acted using
map input as in a recurrent map11,26. The other mechanism (Fig.
5c and d) acted using the pointer input. In the case of map input,
addition of a uniform feedforward input e (an efference copy of
eye position) to a Gaussian visual input was expressed as a mul-
tiplicative combination in the output. The reason for this trans-
formation is the localizing effect of excitatory feedback. The
Gaussian (visual/saccadic) input establishes the output response
location, and the uniform input scales the localized response.
Because the pointer and map are linked by feedback, the mod-
ulation of response by uniform input affects both map and point-
er neurons, although the modulatory input is applied to the map
neurons only.

In the pointer map, attentional input to the pointer could
also mediate multiplicative scaling (Fig. 5c and d). In this case
of Fig. 4c, however, the facilitatory attentional input had to be
parallel to the pointer rather than uniform. The attentional
input intensity scaled the activity profile on the map. For a par-
ticular map neuron, this scaling is expressed as an attentional
modulation of the gain of its visual receptive field. The two
methods of multiplication, homogeneous input e to the map
and attentional input to the pointer, produced almost indis-
tinguishable gain modulations (compare Fig. 5a to c). By com-
bining these two mechanisms, the firing rates of the neurons
can be influenced independently by two inputs. For example,
if the map receives several visual targets, then the focal pointer
input can address and selectively enhance one of these targets
while suppressing others. The constant additive eye position
input to the map scales the amplitude of the winning target in
a multiplicative fashion. This mechanism solves the conun-
drum16 of how an ensemble of retinocentric parietal neurons

Fig. 2. Schematic
description of the inter-
actions between a
pointer and a map. For
purposes of explanation,
an eight-neuron map is
overlaid on the first quad-
rant of the unit circle.
Silent map neurons are
shown as clear circles,
and active map neurons
are shown as gray circles
with sizes proportional to
the activation. The
pointer is composed of
two neurons whose activ-
ities are indicated by cir-
cles and by the components (thin arrows) of a vector (thick arrow). The
vector points in the direction γ to the map where the pointer-to-map
input is largest (indicated by the broken line). The map-to-pointer input
is proportional to the population vector of map activity.

Fig. 3. Pointer map without attentional input
(p = 0) (a) Signal restoration by pointer-map
feedback. The noisy visual input m to the
map is shown by the dashed line. It consists
of a Gaussian centered on neuron 11 to
which a uniform Gaussian noise with mean 0
and variance 0.5 was added. The steady map
activity is shown for weaker (β = 0.1,
α = 0.34, thin line) and stronger (β = 10,
α = 3.16, thick line) feedback connections,
resulting in weaker and stronger competition
between distant neurons on the map. In both
cases, the steady pointer (shown by the
arrow) is directed toward the location of the
visual input on the map, correctly extracting
the location of the noisy visual stimulus. (b) Competing dynamics. Shown is the input (below) and time evolution of activity (above) of the 25 map
neurons (left) and 2 pointer neurons (right). All activities are represented in pseudocolor with saturated blue at zero increasing to saturated red.
The location on the map corresponding to the direction γ(t) of the pointer is shown as a white line superimposed on the map output. The map
input contains a weak target on the left and a stronger target that wins the competition on the right. The map and pointer neurons are initialized
to zero activity. h1 = 0.5, h2 = 0.5, σ = √—

5 and β = 1.
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can simultaneously express the locus of attention and encode
eye position by gain modulation.

DISCUSSION
Foveating eyes and reaching limbs are important for focal sen-
sory processing and motor interaction with the world23,27. The
direction of their pointing modulates the responses of neurons
in a number of cortical and subcortical areas. These observa-
tions suggest that neuronal ‘pointers’ to distributed activity on a
map of neurons may be a general computational property of
sensorimotor and attentional/intentional processing. The point-
er-map network presented here provides a general computa-
tional construct in which neuronal pointers operate on
associated neuronal maps.

Architecturally, pointer neurons are located in the excitatory
feedback loop of the map neurons. The pointer comprises a small
number of neurons whose output firing rates forms a vector.
When the network is stationary, the direction of the vector points
to, and represents, a cluster of active neurons on the map. Atten-
tional inputs to the pointer neurons could steer and modulate
the recurrent excitation applied to the map (Figs. 4 and 5). The
dynamics of the network depends on interaction of the rectifi-
cation non-linearity of each neuron with the variable gain arising

from the recurrent connections. The stronger the excitatory and
inhibitory feedback was, the stronger the induced competition
between different stimuli (Fig. 3a).

There are similarities between pointer maps and recurrent
maps. For example, the behavior shown in Fig. 3 has been
demonstrated as a feature of recurrent networks2,11. Indeed, in
the Mathematical Appendix, we show that if the attentional input
p to the pointer neurons is only positive, then the pointer map
can be related to a recurrent map with cosine-tuned synapses
that receive additional input, but with a different time depen-
dence. However, the architectural and functional advantages of
the pointer map are lost in this reduction because attentional
control and read-out are separated from the recurrent map,
whereas in the pointer map, both control and readout are incor-
porated directly into the feedback path of the network itself.

Unlike recurrent maps, our architecture offers the possibility
of dynamically changing excitatory feedback strength without
synaptic plasticity. By inhibiting pointer neurons, the excitatory
feedback to the map could be derecruited (Fig. 4d). As a possible
generalization of this nonlinear operation, we can imagine a
redundant number (>2) of pointer neurons connected identi-
cally to a map. By selectively inhibiting some of them, the exci-
tatory feedback in the network could be continuously reduced,

articles

Fig. 4. Attentional pointer map. The time-
dependent activities of the two pointer neu-
rons, P, and their inputs, p, are shown at the
right. Dashed horizontal lines mark the time
when attention is engaged, and full horizontal
lines mark the time when attention is with-
drawn (p = 0). h1 = 0.7, h2 = 0.5 and σ = √—

5.
(a) Target selection. The pointer is initialized
to the right, P(0) = (0, 1.5). Thereafter, the
attentional input p = (0.6, 0) forces the
pointer to direct its excitatory feedback loop
to the left of the map, bypassing the location
of strongest input and selecting the weaker
input to the map. Even after withdrawal of
attention, the activity profile remains at the
weaker input, with just a small shift to the
right. β = 3. (b) Dynamic remapping. The
input to the map is uniform. Initially, there is
no external input to the pointer, so the attrac-
tor in the center of the map is selected.
During the period marked ‘left’, the pointer
receives an input p = (0.4, –0.4), which steers
the activity on the map continuously toward
the left. During the period marked ‘right’, the
opposite input to the pointer p = (–0.4, 0.4)
steers the activity toward the right. When the
pointer input is withdrawn, the activity settles
down at its current map location. The
inhibitory input to pointer neurons is shown
in black. β = 3. (c) Attentional memorization.
The map receives a uniform background input of amplitude 1 that provides the energy that enables self-sustained activity. A Gaussian target of
height 1 is added to the input. The location of the target evolves in time (dashed line). First, it drifts from the middle toward the left, where it stops.
The passive pointer tracks the target. At a certain time t0, the pointer receives a sustained input parallel to its current direction, p = 15 P(t0) . When
the target subsequently starts to drift away toward the right, the map activity and the pointer remain at the attended location. β = 4. 
(d) Recruitment of pointer neurons. This figure shows simulation results of a map containing recurrent excitatory map connections with a Gaussian
profile, peak synaptic strength of 0.9 and width σ = 10. Additionally, two pointer neurons are recurrently connected to the map with a synaptic
strength of α = 0.3. There is global inhibition on the map of strength β = 0.9. The fixed map input used to compute steady states for three different
attentional inputs is shown by the black line. When the pointer neurons are suppressed by inhibitory attentional input p = (–0.8, –0.8), the response
gain of the map is ∼ 1 (red line). Only the stronger input is represented by the recurrent map. When the pointer is disinhibited (p = 0) to the pointer,
then map gain increases as a result of recruited feedback by the pointer. Here the stronger target leads to higher activity (green line). Finally, atten-
tion to the left [p = (0.4, –0.4)] causes selection of the weaker input to the map (blue line).
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leading to stronger or weaker competition between
stimuli. This is because the excitatory feedback
strength depends only on the number of active
pointer neurons.

The pointer-map control can be generalized from maps of
one dimension to maps of many dimensions. Topologically, the
recurrent weights between the map and at least n + 1 pointer
neurons are located on the positive quadrant of the n dimen-
sional sphere embedded in (n + 1)-dimensional space. For
example, if two spatial dimensions are to be encoded, three
pointer neurons can represent the azimuth and the elevation as
two independent spatial variables. Important qualitative fea-
tures such as the selective competition between stimuli are
retained. Because the activity of the entire map is encoded in
the outputs of just a few pointer neurons, the architecture of
the pointer map provides an efficient link between different
representational scales, and hierarchical levels. Encoding by
pointers reduces the axonal connections required to link inter-
area maps from the order O(Nn) to O(n), where N is the num-
ber of map neurons required to encode a single dimension. Of
course, this optimization of wiring efficiency limits transmit-
ted information to a single location and encoded activity at that
location. However, the pointer does permit sequential readout
by scanning (Fig. 4a), and so information may be transposed
from space to time rather than lost.

The pointer and map neurons responded on very different
spatial scales (Fig. 5). This difference in scale electrophysiologi-
cally distinguishes pointer from map neurons. In addition,
according to our model, pointer neurons have longer response
latency to sensory stimuli but shorter latency to attentional effects
modulating the sensory responses as compared with map neu-
rons. Interaction of pointers and maps within a common feed-
back loop provides a natural translation between neuronal
encodings of different scales, explaining a principle of intra- and
inter-areal feedback connections in cortex. For example, area MT
neurons with large receptive fields can be interpreted as point-
ers that selectively enhance the responses of V1 neurons with
smaller fields for regions of visual space. This interpretation is

consistent with experimental results showing that MT–V1 feed-
back connections modulate V1 responsiveness to stimuli28.

The pointer input p, an attentional control signal, both steered
excitatory feedback of the network to a chosen map location
(Fig. 4a) and facilitated or suppressed its responses (Fig. 5c). This
mechanism can explain changes in sensitivity to stimuli within
a single receptive field brought about by selective attention, as
observed in visual areas V1, V2, V4, MT and MST15,17,29,30. If
map-neuron outputs are collected by a single, hypothetical
observer neuron (for instance, in MT), then the neuron’s response
reports the target attended by the pointer. When pointer direc-
tion is changed, the same observer neuron will report the
response at a new attended location. Because the pointer is steer-
able, it can provide the sequential scanning required to resolve
ambiguity arising from multiple stimuli31.

Previous studies incorporated attentional control to provide
a dynamic routing, whereby information is selectively shifted
from lower to higher processing levels. In these models, the con-
trol signals achieved the routing either by modulating effective
connection strength of the feedforward information stream32,
or by modulating the gain of the input neurons33. For example,
in one model33, gains of V4 neurons providing input to an
observer neuron in IT are multiplicatively modulated by atten-
tion. The pointer map provides a mechanism for this attention-
al modulation.

Attentional properties of the pointer map are equally relevant
in preparation for motor action. Neurons of parietal area LIP
remain active when animals withhold their motor response while
remembering the location of an extinguished saccade target34.
This remembered motor plan can be explained by referring to
Fig. 4c, in which neurons of the map encode presaccadic move-
ment fields rather than visual receptive fields. The map response
can be sustained even after removal of the stimulus. The multi-
stability of pointer maps for constant map input allows both the

articles

Fig. 5. Modulation of retinal receptive fields of map and
pointer neurons. Steady responses of the 13th map neu-
ron and the left pointer neuron as a function of the retinal
location of a visual stimulus. h = 0.7, σ = √—

5 and β = 2. (a,
b) The visual response modulation arises by adding uni-
form inputs e = 0, 0.33, 0.66 and 1 to the map, corre-
sponding to 4 different eye positions, from –45° (e = 0) to
45° (e = 1). There is no input to the pointer neurons. The
largest responses (thick lines) correspond to e = 1. (c, d)
The visual response modulation arises from input p =
p(cosθ, sinθ) to the pointer neurons, where p = 0 0.25,
0.5 and 0.75 correspond to 4 different levels of atten-
tional input. The angle θ is chosen to be identical to the
angle γ of the pointer, corresponding to attention at the
retinal location of the stimulus. There is a facilitatory
effect to the neurons whose preferred stimulus location
coincides with the location of the actual visual stimulus.
The strongest responses are shown by the thick lines
(corresponding to p = 0.75). Despite the different mech-
anisms at work, the map and pointer neurons express
similar modulations of the visual response. Because of
inhibitory feedback interactions within the map, the
receptive fields of map neurons are more narrowly tuned
than those of pointer neurons.

Effect of eye position

Effect of attention

a b

c d
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map and pointer to latch to their current activities, producing
short-term memory.

The pointer map can also explain remapping of responses.
For example, the rotation of a population vector during an inten-
tional memorization period as reported in neurons of primary
motor cortex22 could be achieved by pointer input (see Fig. 4b).
In this case, map neurons would code directions of arm 
movement.

During fixation, LIP neuron receptive fields are retinocentric.
However, their responses are modulated both by the behavioral
relevance of the attended stimulus16 as well as by eye position24.
How, then, can a decoding network distinguish between atten-
tion and eye position in the response of the population of LIP
neurons? This conundrum can be explained by a pointer map of
LIP where retinal input carrying many targets induces hills of
activity on the map. The pointer control input selects a behav-
iorally relevant target on the map and suppresses the others. A
common additive eye position input to the map induces scaling
of the response to the selected stimulus. In this way, the retinocen-
tric coordinates of the visual target and the salient position
become bound in the single location of the map response pro-
file, and the amplitude of the response profile reflects eye posi-
tion. This interpretation is supported by findings showing that
the visual world is only sparsely represented in LIP35, with only
the most salient or most behaviorally relevant stimulus being
strongly represented.

Despite its simple architecture, the pointer map expresses
sophisticated computational features of cortical processing such
as signal enhancement, sequential readout from maps, attentional
control and gainfields. Neural pointers are analog versions of the
powerful pointer construct used in computer science36 in the
sense that a compact neural pointer is able to select and read out
a local structure on a much larger map. Moreover, the pointer
map is modular, suggesting that pointer maps can compose more
elaborate architectures for cortical computation.

METHODS AND MATHEMATICAL APPENDIX
Pointer-map networks. The pointer-map network (Fig. 1b) compris-
es simple linear threshold neurons that express the rate coding aspects
of cortical neuronal circuits. Outputs of these neurons do not saturate
in their range of operation, and so the stability of the network, like cor-
tical networks, depends on feedback inhibition2. To simplify the model,
recurrent inhibition proportional to the total map activity is directly
subtracted.

The dynamical equations of the pointer-map network are

(2)

(3)

where [.]+ = max(., 0) is the linear threshold or rectification nonlinearity,
and the dot denotes temporal differentiation. α and β are positive para-
meters that determine excitatory and inhibitory connection strengths.  The
synaptic weights are symmetric between the map and the pointer, and are
chosen to be excitatory and lie on a circle, as can occur in biology37.

(4)

Neurons are intitialized with nonnegative activities (firing rates) P and
M. The rectification ensures that the activities remain nonnegative at all
times.

Equation 2 is written in component form and indexed over x to
emphasize the ordered spatial arrangement of the map neurons. Equa-
tion 3 is written in vectorial form to emphasized that, geometrically, P
= (P1, P2) forms a planar vector that points onto the map (Fig. 2).

wy = (wy1,wy2) = (cosδy, sinδy),  where δy = 
π(y – 1)
2(N – 1)

P = –P + [p + α Σ wyMy]+

N

y=1

.

Mx = –Mx + [mx – β Σ My + α Σ wxkPk]+

N

y=1 k=1

2.

Pointer-map Lyapunov function. A Lyapunov function asserts that the
‘energy’ of the system continuously decreases and that the network con-
verges to a stationary state for all initial conditions. Such functions have
been demonstrated for saturating neural networks with symmetric
weights (wij = wji)

38–40. This approach can also be applied to the pointer-
map network with steady inputs. For equations (2) and (3), the Lyapunov
function is given by

L(M, P) = Q(M, P) – Σx mxMx – p1P1 –p2P2 (5)

and the quadratic function Q is

2Q = Σ
x

Mx
2 + P1

2 +  P2
2 + β Σx,y

MxMy – 2α Σx Mx(P1cosδx + P2sinδx) (6)

For the time-derivative of L, we can show

L
.

≤ – Σx M
.

x
2 – P

.
1
2 –  P

.
2
2 ≤ 0 (7)

Hence, the continuously differentiable function L does not increase
over time. More specifically, L is strictly decreasing and L

.
= 0 only at fixed

points of equations (2) and (3). Unlike Lyapunov functions defined for
saturating neurons, we must establish that L is bounded below. A suffi-
cient condition for the lower bound is that the quadratic terms Q are
positive everywhere except at the origin:

Q(M, P) > 0  for max(M1,..., MN, P1, P2) > 0 (8)

It is possible to show41 that condition (8) is satisfied for the following
choice of α:

(9)

This establishes that when α is chosen according to the ‘operational
range’ (9) then for time-independent inputs m and p, every network tra-
jectory converges to a fixed point. This operating point for α in (9) is
safely below the true limit of stability of the network, which can be inves-
tigated by computer simulations.

Relation to recurrent maps. If the input to pointer neurons is positive,
p = p(cosθ, sinθ), where p ≥ 0 and 0 ≤ θ ≤ π/2, then the pointer-map
feedback loop can be reduced to regular local excitatory feedback only
among map neurons. We assume that the pointer neurons have an initial
state of direction γ0, given by P(0) = P0(cosγ0, sinγ0), 0 ≤ γ0 ≤ π/2. Because
the pointer neurons receive purely excitatory input, there is no need for
rectification. Hence, equation 3 can be integrated and the resulting
expression for P(t) can be placed into equation (2), which leads to:

M
.

x = –Mx + [mx – β Σ
y

My + T1x + T2x + T3x]+ (10)

Three terms, T1, T2 and T3, describe inputs to the map and arise from
its interaction with the pointer neurons:

T1x = e–tP0 cos(γ0 – δx) is a preattentive input to the map arising from
the initial setting of the pointer. This input is largest for the map neuron
whose preferred stimulus location δx is closest to the initial pointing γ0,
and decays to zero in time according to e–t.

T2x = α(1 – e–t)p cos(θ – δx) is an attentional input to the map aris-
ing from the low-pass filtered input to the pointer. T2x is initially zero
and increases with time. Like T1x, T2x is a feedforward input to the map.
Having a cosine profile, this input is maximal for the neuron in the map
whose angle δx is closest to the angle θ of the pointer input.

T3x= α2Σy cos(δx – δy) M̂y(t) is the relevant feedback term of pointer
maps. M̂y(t) = ∫o

t

ds e–(t –  s)M̂y(s) is the low-pass-filtered map activity. The
pointer-map feedback loop reduces to delayed excitation of cosine profile
on a recurrent map.

Note that the stationary states of pointer maps without attentional pro-
cessing and recurrent maps with cosine interactions are exactly the same.
Deviations from equation (10) occur for negative pointer input. In this
case, input to the pointer neurons can reduce the excitatory connection
strength between the map and the pointer by inactivating pointer 
neurons.

α  ≤ √1
N + β

© 1999 Nature America Inc. • http://neurosci.nature.com
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