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6.1 Introduction

Neuromorphic engineering [Mead, 1989, Mead, 1990, Douglas et al., 1995]
applies the computational principles used by biological nervous systems
to those tasks that biological systems perform easily, but which have
proved difficult to do using traditional engineering techniques. These
problems include visual and auditory perceptive processing, navigation,
and locomotion. Typically, current neuromorphic systems are hybrid
analog-digital electronic systems fabricated using CMOS VLSI technology
[Mead, 1989, Douglas and Mahowald, 1995]. Research has focused on the
sub-threshold analog operation of these circuits, because in this regime it
is possible to construct compact analog circuits that compute various bio-
logically relevant operations such as logarithms, exponents and hyperbolic
tangents.

The greatest successes of neuromorphic analog VLSI (aVLSI) to date have
been in the emulation of peripheral sensory transduction and processing
of the kind performed by biological retinas and cochleas. The sensory pe-
riphery is a logical place to begin an analog neuromorphic system, since the
light impinging onto a retina or sound waves entering the cochlea are all
continuous analog signals. Furthermore, these structures are easily acces-
sible to neurobiologists and their purpose is obvious, at least in the general
sense, so a great deal is known about their biology. These structures also
have a relatively simple organization, consisting of arrays of similar pro-
cessing elements that interact only with nearest neighbours. Such circuits
have a repeating two-dimensional, ‘crystalline’, structure that can be tiled
across the surface of a single chip, and the output of the computation can
be sampled by raster scan.

Finally, however, the amount of computation that can be performed on a
single chip is limited by silicon area, and the utility of the computations is
limited by access to the number of inputs and outputs to and from the com-
putation. For example, silicon retinae have a few thousand pixels, but only
about 100 contacts can be made by macroscopic wires onto the circuitry on
the surface of the retina chip. The goal of neuromorphic engineers is to
incorporate many such chips, performing a variety of computations, into
behaving systems. To build such systems, a number of methods for per-
forming general communication between analog chips have been devel-
oped [Lazzaro et al., 1993, Mahowald, 1994, Boahen, 1996], thus overcom-
ing the limitations of chip inputs and outputs, and now the first simple
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multi-chip neuromorphic systems are being constructed. Typically, these
systems use modifications of previously designed sensory chips as input
devices to multi-chip processing systems.

In this chapter we will describe a multi-sender multi-receiver communica-
tion framework for neuromorphic systems, and provide some examples of
its operation in the context of networks of simple aVLSI neurons.

6.2 Neuromorphic Computational Nodes

One of the major advantages of analog systems is that the physical pro-
cesses that contribute to a particular computation can be constructed very
compactly in comparison to digital circuits. Of course, this efficiency is
only possible if the functions that can be composed using just a few aVLSI
components match those required by the computation [Hopfield, 1990],
and if the computation is not very sensitive to noise.

A further advantage is that analog systems typically store their state very
densely, as voltages on capacitors for example, and so the state variables
can be co-localised in space with the computations that affect them. These
properties lead naturally to very localised, fine-grained, parallelism. This
architecture is unlike that of conventional digital processors, whose large
amount of computational state is usually stored at some distance from the
relatively few processors that affect them.

The dense and co-localised nature of analog computation lends itself to
processes which are widely distributed and which depend on many re-
gional factors. Examples of such processes are adaptation, learning, and
decorrelation of adjacent signals. Unfortunately, technical limitations re-
strict the spatial extent over which fine-grained parallel analog processing
circuits can be built. For example, the two and a half dimensional structure
of present day silicon circuits, and the computational hardness of routing
algorithms, restrict the number of physical point-to-point wires that can
be routed between circuit devices. Consequently, the computational nodes
of neuromorphic systems take on the hybrid organisation shown in Figure
6.1. Each computational process is composed of a region of analog cir-
cuitry, the output(s) of which are converted into an event code. The region
accepts one or more event inputs which are processed by the analog cir-
cuitry. Networks of silicon neurons prove an example of this architecture.

6.3 Neuromorphic aVLSI Neurons

Neuromorphic silicon neurons emulate the electrophysiological behaviour
of biological neurons. The emulation uses the same organisational tech-
nique as traditional numerical simulations of biological neurons. The con-
tinuous neuronal membrane of the dendrites and soma is divided into a
series of homogeneous, isopotential compartments [Koch and Segev, 1989,
Traub and Miles, 1991]. The connectivity of the compartments expresses
the spatial morphology of the modelled cell. In general, more compart-
ments imply a more accurate simulation. The resolution of the segmenta-
tion is a compromise between the questions that must be addressed by the



6.3 Neuromorphic aVLSI Neurons 159

INPUT

adaptation physical process
learning
gain

dense state
/ parameters

colocalized state/process

OUTPUT

Figure 6.1. Abstract computational node in a neuromorphic system. Each node is
represented by a rectangle, one of which is enlarged to show more detail. Each node
consists of an input region that receives pulse events from other source nodes. The
central region consists of analog circuitry that processes the inputs and generates
an output. The processing is performed by analog VLSI circuits that implement
physical processes analogous to those used by real neurons for their computation.
The state variables and parameters that control the computation are (ideally) stored
locally (e.g. as voltages on capacitors) to minimise the power inefficiencies that
result from having memory and processing separated as in conventional digital
computers. Arrows indicate paths of event transmission.

model, the resources required by each compartment, and error tolerance.
For example, neurons with between 5–30 compartments are a common
compromise for digital simulations of cortical and hippocampal circuits
[Douglas and Martin, 1992, Traub and Miles, 1991].

Elias [Elias, 1993, Northmore and Elias, 1998] has constructed neuromor-
phic VLSI neurons with 112 passive compartments which model the leak-
iness of the cellular membrane and the axial resistance of the intracellu-
lar medium using space-efficient switched-capacitors to implement resis-
tances. However, in recent years it has become clear that neuronal den-
drites are not simply passive cables [Johnston and Wu, 1995, Koch, 1998],
but that voltage and ion-sensitive conductances play a major role in active
spatio-temporal filtering of signals transmitted through the dendrites. This
means that neuromorphs too should provide for active dendritic process-
ing.

The active conductances of biological neuronal membranes control the
flow of ionic current between the various ionic reversal potentials and
the membrane voltage on the membrane capacitance (Figure 6.2). These
active conductances are usually sensitive to either the transmembrane
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potential, or the concentration of a specific ion. In our silicon neurons
[Mahowald and Douglas, 1991, Douglas and Mahowald, 1995], the den-
dritic and somatic compartments that comprise the model neuron are pop-
ulated by modular aVLSI sub-circuits, each of which emulates the physics
of a particular ionic conductance. Each module is a variant of a prototyp-
ical ion conductance circuit (Figure 6.3) that obeys Hodgkin-Huxley prin-
ciples [Mahowald and Douglas, 1991, Rasche et al., 1998]. The voltage de-
pendence of the ion channel is achieved by a transconductance amplifier
that has a sigmoidal steady-state current voltage relation similar to that ob-
served in biological active membrane channel conductances. The temporal
dynamics of the conductances are emulated by a leaky follower integra-
tor. The various voltage-sensitive conductances are simple modifications
of this general theme. The ion or ligand sensitive modules are a little more
sophisticated. For example, conductances that are sensitive to calcium con-
centration rather than membrane voltage require a separate voltage vari-
able representing free calcium concentration, and synaptic conductances
that are sensitive to ligand concentrations require a voltage variable repre-
senting neurotransmitter concentration. The dynamics of the neurotrans-
mitter concentration in the cleft is governed by additional time constant
circuits.

Figure 6.2. Simplified model of neuronal elecrophysiology. The membrane capaci-
tance at right carries a charge which appears as a transmembrane potential differ-
ence. For convenience, the potential of the exterior of the cell is set to ground. The
interior of the cell is represented by the long horizontal wire, which is attached to
the inner terminal of the capacitance. Charge flows on and off the capacitor via
the vertical wires, each of which consists of a conductance mechanism (box) and
a power supply (inclined line). Power supplies above the horizontal line are pos-
itive (e.g. sodium or calcium reversal potentials), while power supplies below the
horizontal line are negative (e.g. potassium reversal potential). Typically, a box
contains a voltage dependent conductance for some ion. The features of such a
conductance mechanism are shown at left. A variable conductance controls the
flow of current off the membrane capacitor (e.g. a potassium current). The current
is the product of the conductance and the voltage drop across the conductance (or
driving potential). The conductance is voltage sensitive. The circle on left senses
the membrane potential, and uses this information to modify the conductance ap-
propriately (arrow), with some time constant. The electrophysiology of neurons is
essentially the result of chargings and dischargings of the membrane capacitance
by a population of conductances to various ions.

So far, we have used these general principles to design modules that emu-
late the sodium and potassium spike currents, persistent sodium current,
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Figure 6.3. Example of a neuromorphic CMOS aVLSI circuit. (a. & b.) Basic cir-
cuit that emulates transmembrane ion currents in the silicon neuron (Mahowald &
Douglas 1991). (a.) A differential pair of transistors that have their sources linked
to a single bias transistor (bottom). The voltage, m max, applied to the gate of
the bias transistor sets the bias current, which is the sum of the currents flowing
through the two limbs of the differential pair. The relative values of the voltages,
Vm and V50, applied to the gates of the differential pair determine how the current
will be shared between the two limbs. The relationship between Vm and the output
current, m, in the left limb is shown in (b.). The current, m, is the activation vari-
able that controls the potassium (in this example) current, Ik, that flows through
the ‘conductance’ transistor interposed between the ionic reversal potential, Ek,
and the membrane potential Vm. (c.) The circuit that generates the sodium current
of the action potential is composed of activation and inactivation sub-circuits that
are similar to (a.). The activation and inactivation circuits compete for control of
the sodium ‘conductance’ transistor by summing their output currents at the node
marked by the asterisk. The current mirror is a technical requirement that permits
a copy of the inactivation current to interact with the activation current. In this
example, sodium current, Ina, flows from the sodium reversal potential, Ena, onto
the membrane capacitance, Cm. The transconductance amplifier and capacitor on
the right of the inactivation circuit act as a low pass filter, causing the inactivation
circuit to respond to changes in membrane voltage with a time constant set by the
voltage, Tauh. Parts a. and c.: Reprinted with permission from Nature, [Mahowald
and Douglas, 1991]. Copyright (1991) Macmillan Magazines Limited.
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Figure 6.4. Responses of a silicon neuron to intra-somatic injections of current steps
applied at time of arrow above. Membrane voltage and calcium concentration are
shown in response to 5 increasing current stimuli. Current offset occurs at various
times (not indicated). In the upper two traces the current is sustained to the end of
the observation period. In the three lower cases offset occurs a little after the last
spike. The noise in these recordings arises mainly from quantisation effects in the
digitising oscilloscope.

various calcium currents, calcium-dependent potassium current, potas-
sium A-current, non-specific leak current, exogenous (electrode) current
source, excitatory synapse, potassium mediated inhibitory synapse, and
chloride mediated (shunting) inhibitory synapse.

When these modules are incorporated into the compartmental morphol-
ogy of typical silicon neurons, they give rise to state-dependent dynamics
that strongly resemble those observed in real neurons (Figure 6.4). But the
importance of the silicon neuron in the present context, is as an example
of a neuromorphic analog circuit that receives event inputs at its synapses,
computes a result via multiple local interacting analog circuits, and en-
codes this result as a temporal train of events at its output in the style of
Figure 6.4. The routing of the events between the outputs and inputs of the
computational nodes, which may be distributed across the multiple chips
of the neuromorphic system, is the task of the address-event communica-
tion system.

6.4 Address Event Representation (AER)

We have developed an interchip-communication protocol that is an asyn-
chronous digital multiplexing technique using address-event representa-
tion (AER). It has the characteristics of event-driven multiplexed pulse-
frequency modulation in which the address of the node which is the source
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of an event is broadcast during the pulse, to all computational nodes within
a defined region. The nodes decode the broadcast neuronal addresses.

Like neuronal action potentials, events in this system are stereotyped digi-
tal events, and the interval between events is analog. Each digital event is
a digital word representing the identity of the neuron that is generating an
action potential. It is placed on the common communications bus (which is
effectively a universal, multiplexed axon) at the time the action potential is
generated. Thus, information is encoded in the temporal pattern of events.

The savings in the number of wires required for communication between
neurons is due to the replacement of

�
axonal fibres, with one active at

a time, by �������	��
� ��� wires, which are simultaneously active. However,
in a real nerve bundle, several axons may be simultaneously active. We
can accommodate this condition by making the event duration very short
(approximately 1 microsecond) compared with the width of neural action
potentials (approximately one millisecond). These short-duration events
are less likely to overlap. Since, as in a real neuron, the maximum fir-
ing rate of a node is limited, even if events from several nodes did occur
synchronously, they could be arranged such that they occurred in close
succession with little loss of information in a rate coding scheme. The
degree of loss depends on the requirement for exact timing of events in
the neural process. Much cortical spike processing has a temporal reso-
lution in the order of a millisecond [Singer, 1994, Abeles, 1994] or longer
[Shadlen and Newsome, 1994], whereas the maximum time-skew intro-
duced by queuing of address events is much shorter — of the order of
0.1 milliseconds. However, some processing, such as occurs in special pur-
pose auditory processing neurons like those found in the brain-stems of
barn owls [Moiseff and Konishi, 1981] require higher temporal resolution
( �����	� milliseconds). Neurons with such high resolution may still be man-
ageable within the context of AER systems. However, analogs of such spe-
cial purpose non-cortical neuronal circuits with higher temporal resolution
requirements are probably best implemented using hardwired connections
on single chips, and only their results reported via AER. Alternatively, a
different coding scheme may be required, such as described in Section 6.8.

The address-event representation is illustrated in Figure 6.5. The neurons
in the sender array generate a temporal sequence of digital address events
to encode their output. This representation is conceptually equivalent to a
train of action potentials generated by a real (or a silicon) neuron. How-
ever, in the AER case, the output of each computational node (for example,
a silicon neuron) is associated with a digital address that uniquely identi-
fies it.

Whenever a neuron signals an event, the encoding circuitry broadcasts that
neuron’s address on the inter-chip data bus. The outputs have a refrac-
tory time that limits the frequency at which they can issue events and, like
their biological counterparts, only a small fraction of the silicon neurons
embedded in a network are generating action potentials at any time. The
inter-event interval at a neuron is much longer than is the time required to
broadcast the neuron’s address. Therefore, events from many neurons can
be multiplexed on the same bus. The receiver interprets the broadcast of
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Figure 6.5. The address-event representation. Self-timed neurons on the send-
ing chip generate trains of action potentials. The neurons request control of the
bus when they generate action potentials and are selected to have their addresses
encoded and transmitted by the multiplexing circuitry. A temporal stream of ad-
dresses passes between the sender chip and the receiver chip. This temporal stream
is decoded by the receiver into trains of action potentials that reach their proper
postsynaptic targets. Relative timing of events is preserved over the Address-Event
bus to the destination as long as the source neurons do not generate action poten-
tials that are too close together in time.

the address as an event that corresponds to the occurrence of an action po-
tential from the neuron identified by that address. The receiving nodes or
synapses that are ‘connected’ to the source neuron detect that their source
neuron has generated an action potential, and they initiate a synaptic input
on the dendrite to which they are attached.

If neuronal events were broadcast and removed from the data bus at fre-
quencies of about 1 megahertz, about one thousand address-events (AE)
could be transmitted in the time it takes one neuron to complete a single
1 millisecond action potential. If say 10% of the neurons discharge at 100
spikes per second, one single such bus could support a population of up to
� � �

rate encoded neurons, at which point the bus would be saturated.

Debates continue over the question of whether biological neurons signal
the intensity of their inputs in their rate of discharge, or whether their
discharge encodes the coincidence of input events on their dendritic trees
[Singer, 1994, Abeles, 1994, Shadlen and Newsome, 1994, Fujii et al., 1996].
The experimental neurophysiological literature remains divided on the na-
ture of the coding. One view is that information is encoded in the exact
times and coincidence of spike occurrence, but the resolution of this timing
is not known. Psychophysical studies of visual and auditory processing
suggest that sub-millisecond precision may be required. (Although there
is at present no experimental evidence for such precision at the level of sin-
gle spike processing in cortical neurons, so the psychophysical observations
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may depend on a population mechanism.) Coincidence detection implies
high time resolution, and would place a much greater burden on the AE
timing. The alternative view is that neuronal information is encoded in the
discharge rate of neurons, and that the rate is measured on a time scale of
about ten milliseconds. Fortunately, much of early sensory processing is
dominated by rate-coding [Orban, 1984], and so is well within the capabil-
ity of present AER technology.

Because very few neurons within a network are active at any one time,
AER is more efficient at transmitting this sparse representation of data
across the neural population than the non-event driven multiplexing meth-
ods, such as scanning, that have been used in earlier neuromorphic work
[Mead, and Delbruck, 1991].

6.5 Implementations of AER

Initially inter-chip communication networks provided only simple unidi-
rectional, point-to-point connectivity between arrays of neuromorphs on
two neuromorphic chips [Mahowald, 1994, Boahen, 1996]. These commu-
nication schemes map spikes from output nodes in the sending chip to any
appropriate input nodes in the receiving chip. The mapping occurs asyn-
chronously, and provides random-access to the receiver nodes. The spikes
are actually represented as addresses. An address-encoder at the output
node generates a unique binary address that identifies that node (neuron).

The output addresses are transmitted over a shared bus to the receiving
chip, where an address decoder selects the appropriate receiver node (in-
put) and activates it. Two versions of this random-access scheme have been
proposed, a hard-wired version, and an arbitered version.

In the hardwired version [Mortara et al., 1995], output nodes (neurons) al-
ways have direct access to the input lines of the address-encoder, and each
spike activates the encoder as soon as it occurs. This scheme has the virtue
of simplicity, and permits high-speed operation. But when the spikes of
two or more neurons collide and activate the encoder simultaneously, the
encoder generates an invalid address. For random (Poisson) firing times,
these collisions increase exponentially as the spiking activity increases, and
the collision rates are even more prohibitive when neurons fire in syn-
chrony. The invalid addresses generated by collisions can be detected, but
this costs material and address space.

In the arbitered version of the random-access scheme, an arbiter is inter-
posed between the output nodes and the address-encoder. The arbiter
detects potential collisions and ensures that only one of the contending
output nodes gains access to the encoder at any time. The output of the re-
jected nodes can be ignored and discarded (partially arbitered), or queued
until they are selected by the arbiter (fully arbitered). Intermediate queu-
ing strategies, which queue a limited number of events, or discard ageing
events, have also been investigated [Marienborg et al., 1996].

Arbitration preserves the integrity of the addresses that are transmitted,
but the statistics and temporal structure of events may be distorted by the
discarding or queuing. For random (Poisson) firing rates of events of finite
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duration, the queuing time is inversely proportional to the rate at which
empty event slots occur. Thus, the queuing time decreases as technolog-
ical improvements reduce the cycle time even when channel utilization
remains the same. For synchronous bursts, the delay is proportional to the
activity level.

The selection of an arbitration method depends on the task that must be
solved by the neuromorphic system. When spike timing is random and
high error rates can be tolerated, the hard-wired version provides the
highest throughput. On the other hand, when spikes occur in synchrony
and low error rates are desired, the arbitered version provides the highest
throughput but will introduce some timing uncertainty.

6.6 Silicon Cortex

‘Silicon Cortex’ (SCX) is a particular instantiation of a fully arbitered
address-event communication infrastructure that can be used to test inter-
chip communication in simple neuromorphic systems. The SCX frame-
work is designed to be a flexible prototyping system, providing re-
programmable connectivity among on the order of � � �

computational
nodes spread across multiple chips on a single board, or more across mul-
tiple boards. The present version of SCX is implemented on a VME board
design called SCX-1 1 [Sheu and Choi, 1995]. Each SCX-1 board can sup-
port up to six chips or other AE sources, and multiple boards can be linked
together to form larger systems.

The SCX was devised to test and refine several fundamental problems en-
countered in building systems of analog chips that use the address-event
representation:

� Co-ordinating the activity of multiple sender/receiver chips on a
common bus

� Providing a method of building a distributed network of local busses
sufficient to build an indefinitely large system

� Providing a software-programmable facility for translating
address-events that enables the user to configure arbitrary con-
nections between neurons

� Providing extensive digital interfacing opportunities via VME bus
� Providing ‘life-support’ for custom analog chips by maintaining

volatile analog parameters or programming analog non-volatile stor-
age

Of course, VME cards and VME crates are extremely bulky, and inconsis-
tent with the final aims of neuromorphic systems, which lie in the direction
of compact autonomous low-power systems. However, SCX was designed
to provide an experimental environment for exploring AER communica-
tion issues under well controlled conditions. The principles learned can

1designed and fabricated by Applied Neurodynamics, Inc. of Encinitas, California, USA.
+1 760 944 8859
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then be implemented in future on a smaller scale, in more specific, neuro-
morphic systems.

One immediate application of SCX-1 is as a real-time neuronal network
emulator, in which the computational nodes are silicon neurons, and the
output address-events are generated by the occurrence of neuronal action
potentials. We have designed a number of multi-neuron chips (MNC) that
are compatible with the SCX-1. Each chip comprises 36 neuromorphic neu-
rons. One class of MNC chip has neurons with six dendritic compartments
and over two hundred parameters that control the behaviour of the ac-
tive conductance modules, synapse modules, and electrotonic properties
similar to those described in Section 6.3. A second class of MNC chips is
composed of very simple integrate-and-fire type neurons, which are opti-
mised for testing SCX communication rather than for exploring neuronal
network behaviour per se.

When an analog action potential occurs in a neuron, it triggers the trans-
mission of that neuron’s address on the Local Address Event Bus (LAEB),
which is local to the SCX-1 board on which the source neuron is located.
That address is detected by a digital signal processor (DSP) that trans-
lates the source address into a train of afferent synaptic addresses which
then activate the appropriate synapses on target neurons. In this way the
DSP source-destination lookup table defines the stable connectivity (ax-
onal structure) of the neurons. The efficacy of particular synapses is set at
neuron level.

Since a number of neurons must share an AEB with limited bandwidth,
the number of neurons that can be supported by the AEB is limited (at
present) to about � � �

. However, the number of neurons in an entire system
can be much larger, because most of the connectivity of neurons in cortex
is local, and so different AEBs can support adjacent populations of neu-
rons in a manner analogous to the columnar structure of cortex. The DSP
that effects the local connectivity is also able to transmit source addresses
to more distant populations via domain AEBs, so emulating long-range
connections.

Once configured, the Silicon Cortex system runs completely autonomous-
ly, and in real-time. However, there are two levels of standard digital soft-
ware that control its operation. Low level software controls the operation
of the DSP. This software enables the DSP to maintain the parameters of
the various neurons that control their biophysical ‘personality’. The sec-
ond level of software (still under development) runs on a host computer,
and enables the user to configure the neurons and the network, and to
monitor their performance.

In addition to providing a neuronal network emulation environment for
neurophysiological investigation, the SCX framework can be used to de-
velop more specific neuromorphic systems that include sensors such as
retinas and cochleas, and motor effectors.
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Figure 6.6. The SCX-1 board has sockets for two custom aVLSI chips and a daugh-
ter-board may hold up to four more. Communication between these chips takes
place on the local address event bus (LAEB). The LAEB arbiter arbitrates among
the event outputs of all of the custom chips. The custom chips may exchange local
information directly in this manner. Programmable interconnection is effected by a
DSP, which stores translation tables in its digital memory. The DSP system is con-
figured initially by a host computer. The DSP receives input events and generates
output events through a number of bi-directional FIFOs. Translated presynaptic
events pass through the MUXB to the local custom chips; events to and from other
devices connected to the domain busses pass through the DEABA and DEABB FI-
FOs, and events to and from the VME bus pass through the VME FIFO. The AE
traffic on the domain busses, to which a number of other SCX-1 boards may be at-
tached, is filtered before being loaded into the domain FIFOs, so that events that
are not required on this board are not passed on to it. These filters are essential for
limiting the work of the DSP. An additional task of the DSP is to provide configu-
ration services for the custom chips. Analog parameters on the custom chips are
loaded by the DSP via the DAC and MUXB FIFO. The analog outputs of the custom
chips can be monitored directly with an oscilloscope.

6.6.1 Basic Layout

The design of SCX-1 is a compromise between providing the AE infrastruc-
ture described above, the need to test some particular technical ideas about
the AER communication, a convenient physical implementation, forward
compatibility with future AER systems, and cost.

The SCX-1 board layout is illustrated schematically in Figure 6.6. There are
two 84-pin pin-grid-array (PGA) sockets to accommodate custom neuron
chips. A daughter-board connector is also provided. Daughterboards can
be fabricated by users. Daughterboards can contain up to four elements
that need to talk on the LAEB. For example, the board could carry four
additional custom neuron chips, or receiver chips that transform patterns
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of address events into images for display on a video monitor. Daughter-
boards (or the daughter board connector) can be used to interface to pe-
ripheral sensory devices, such as retinae, or motor drivers that use address-
events.

Communication among all of the chips in this system takes place on three
address-event busses (AEBs). The control of the AEBs is mediated by an
asynchronous protocol on the local AEB (LAEB) used for intra-board com-
munication, and a synchronous protocol on the domain AEBs (DAEBs)
used for inter-board communication. Both the asynchronous LAEB and
the synchronous DAEB protocols are broadcasts, and so there is no hand-
shake between the transmitter and receivers. Details of the LAEB protocol
are described elsewhere (http://www.ini.unizh.ch).

Communication between the chips on the SCX board takes place via the
LAEB. The occurrence of an event on any chip is arbitrated within that
chip, and leads to a request from the chip to the bus arbiter. The bus arbiter
determines which chip will have control of the LAEB at each cycle, and
that chip will broadcast an AE on the bus. These events can be read by
all chips attached to the bus. In particular, the bus is monitored by a DSP
chip, which can route the AEs to a number of different destinations. For
example, the DSP chip can use a lookup table to translate a source AE
into many destination AEs. Or it can translate events from the LAEB onto
two domain busses (DEABA and DEABB) that make connections between
boards.

Although the neuromorphic chips running on the SCX are finally expected
to read and write their own data directly to the LAEB without the assis-
tance of additional external circuitry, in this experimental system we have
provided an alternative means of writing data to the neuromorphic chips.
(Figure 6.7.) The alternative route for data is a private route between the
DSP chip and the custom chips, called the multiplexor bus (MUXB). The
DSP can transmit destination-encoded events to the custom chips via the
MUXB. In addition, the MUXB bus allows the DSP to supply analog pa-
rameters on the custom chips via a DAC. These parameters can be re-
freshed periodically if stored on capacitors. Alternatively, a high-voltage
input line and digital control lines are provided for analog chips that use
floating-gate parameter storage.

Also, in this experimental system, the DSP is buffered from the busses it
reads and writes by FIFOs (first-in first-out buffer). To off-load DSP pro-
cessing, digital circuitry filters the events that occur on the DEABs and
recognises events that are relevant to the neurons on its board or which
need to be transferred through this board to the other DAEB. The filters
place the domain events in FIFOs so that they too can be serviced by the
DSP chip. The DSP chip can feed events back to the LAEB again via a FIFO,
or to the DAEBs via their FIFOs, as appropriate.

The parameters and connections of a neuronal network implemented on
the SCX-1 are programmable. The DSP’s digital memory stores a list of
connections for the neurons that the DSP must service. Loading a new
list reconfigures the neuronal network. To do this, or to amend an ex-
isting connection list, a host computer communicates with the SCX-1 via
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Figure 6.7. Ideal address-event chips (top left) have a simple bi-directional commu-
nication with the local AE bus. Individual AEs are broadcast via the local AE bus,
and may evoke a response at many target nodes. Ideally, each node should recog-
nise its relevant source events, but our present multi-neuron chips use a DSP chip
and a lookup table to implement the fan-out from source address to the individ-
ual target synaptic addresses. The DSP accesses an on-chip demultiplexor via the
multiplexor bus (MUXB). In this case the DSP and chip form a functional unit (top
right, delineated by a broken line) equivalent to the ideal case. One local AE bus
and its associated AER chips that together constitute a domain, may be bridged to
another domain by means of a ‘domain daemon’ that filters and optionally re-maps
AEs between the busses.

the VME bus. Once loaded, connection lists and parameter values can be
stored along with the DSP software code in non-volatile memory on the
SCX-1 board.

6.7 Functional Tests of Silicon Cortex

6.7.1 An Example Neuronal Network

Amongst the first tests of the ability of the SCX-1 system to support neural
computation using the AE protocol, was a test of communication between
neurons in a simple network. We configured this neuronal network (Fig-
ure 6.8) using the multi-neuron chips containing simple integrate-and-fire
neurons referred to above. In this network, there are two main populations
of twelve ‘excitatory’ neurons each. All the neurons in both of these popu-
lations are driven by a constant current input via current injection circuitry
included on the chips. Each neuron has an excitatory connection to each of
the other neurons in its population, and an inhibitory connection to each
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Neuron in population 1

Neuron in population 2

'Inhibitory' neuron

Tonic
input

Excitatory synapse

Inhibtory synapse

Figure 6.8. Partial schematic representation of the example two population neu-
ronal network described in the text. Filled triangles represent identical ‘excitatory’
neurons. Large filled circles represent identical ‘inhibitory’ neurons. Small open
circles represent excitatory inputs, small filled circles represent inhibitory inputs.
For simplicity, only three neurons are shown in each population of ‘excitatory’ neu-
rons, whereas the network was implemented with twelve neurons in each popula-
tion.

of the neurons in the other population. Associated with each of the two
‘excitatory’ populations, is an ‘inhibitory’ neuron that receives excitatory
input from each of the neurons in that population. The output of these
‘inhibitory’ neurons are connected back to inhibit all of the neurons in the
associated ‘excitatory’ population and excite all of the neurons in the other
population.

With suitably adjusted connection strengths, the network settles into an os-
cillatory firing pattern. The neurons in one ‘excitatory’ population fire for
a period whilst neurons in the other population are silent, then the pattern
of activity swaps over between the two populations. When one population
is firing, each output contributes to the inhibition that prevents neurons in
the other population from firing, and also produces an EPSC in the associ-
ated ‘inhibitory’ neuron. After integrating a certain number of such inputs,
this neuron will reach its threshold and fire. When it does so, it produces
a large inhibitory effect on the neurons in the population that was firing,
thus bringing their activity to a halt. Neurons in the previously silent pop-
ulation thus no longer receive inhibitory input and can now begin to fire,
and continue to do so until their associated ‘inhibitory’ neuron fires. The
cycle then repeats (Figure 6.9). Overall, the network acts as nothing more
than a flip-flop, but in doing so it tests the communication performance of
SCX.
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Figure 6.9. A raster plot of address-event activity over the course of several os-
cillatory cycles of the network described in the text. The vertical axis gives the
addresses of the neurons in the network. Each plotted point represents the occur-
rence of an address-event on the LAEB, and hence the firing of a neuron. The lower
twelve traces (of neurons numbered 12 to 23 inclusive) represent the activity of one
of the populations of ‘excitatory’ neurons. The next twelve traces (of neurons num-
bered 24 to 35 inclusive) represent the activity of the other population of ‘excitatory’
neurons. The populations’ associated ‘inhibitory’ neurons are at addresses 74 and
75 respectively.

In all cases, the communication between neurons is takes place through the
conversion of the firing of a neuron on a MNC into an AE, the transmis-
sion of that AE from the MNC over the LAEB to the DSP, the fan-out to a
list of destinations by the DSP, and the onward transmission of those des-
tination addresses over the MUXB back to neurons on the MNC. Since the
DSP software is always involved in the routing and fan-out of connections
from source to target neurons, it is possible to re-configure the network es-
sentially instantaneously. For instance, when two MNCs are fitted, rather
than using twenty-six neurons on the same chip to implement the circuit
just described, it is possible to redistribute the use of neurons across the
two chips, for example to have one ‘excitatory’ population and its associ-
ated ‘inhibitory’ neuron on one chip, and the other neurons on the second
chip. This is done by down-loading a new configuration from the host
computer via the VME bus.

6.7.2 An Example of Sensory Input to SCX

The most promising path for the development of analog neural networks
is interfacing them to sensors and effectors that can interact dynami-
cally with the real world [Etienne-Cummings et al., 1994]. Linking the
SCX neural network to sensors requires building sensors that use the
same AE-based communications protocol. The AER has been used to
interface a silicon cochlea to a SUN SparcStation, with the goal of us-
ing the cochlea as input for a backpropagation-based speech recognition
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algorithm [Lazzaro et al., 1993]. Primitive silicon retinae using the AER
have been used to provide input to a chip for computing stereo disparity
[Mahowald, 1994], and are now being evolved for use with AER systems
[Boahen, 1996].

We have now interfaced a retina chip to SCX-1 as an example of sensor to
analog neural network communication. The retina chip we have used is
a development of that described by [Liu and Boahen, 1995] that produces
AER output. It has 1024 pixels arranged in a square array. Each pixel can
produce both an ‘ON’ AE and an ‘OFF’ AE distinguished by one of the
AE bits. The retina was connected to an SCX-1 daughterboard of the kind
referred to in Section 6.6.1. This daughterboard simply buffers the output
signals onto the LAEB. Thus AEs from the retina are received by the DSP
in the same way as AEs from MNCs on the SCX-1 board itself.

The retina chip was stimulated by a drifting square-wave luminosity grat-
ing. During stimulation, the average event rate generated by the all the
pixels of the retina was about 10KHz, with peak rates of about 100KHz. Of
all these pixel outputs, the AEs generated by a

�����
patch of retinal ON

pixels was mapped by the DSP chip onto a group of neurons located in
the MNCs. A histogram of the AEs received from the ‘ON’ outputs of the
patch of pixels on the retina as a single ON bar in the grating pattern drifts
past them is shown in Figure 6.10a. The SCX-1 was configured such that
these nine pixels formed the receptive field of one of the integrate-and-fire
neurons on a MNC. The synaptic strength of these inputs was adjusted so
that many inputs from the nine retinal cells must summate to reach the
threshold for action potential generation in the MNC neuron. The output
of one MNC neuron is also shown in a histogram in Figure 6.10b. This sim-
ple experiment demonstrates the integrity of the SCX communication in-
frastructure, and shows how external sensory (or motor) chips can be used
in conjunction with SCX. Of course, the MNC chips in their present form
do not provide very interesting sensory processing, they merely demon-
strate the communication. However, work is in progress to transform
more abstract processing chips (such as those that detect focus of expan-
sion [Indiveri et al., 1996]) for operation using AER protocol. The aim is
to allow multiple visual processing chips to operate simultaneously on a
single stream of retinal AEs.

At present, with the DSP software as yet un-optimised, neuronal events
can be broadcast and removed from the LAEB at frequencies of � ���	�
megahertz. Therefore, about 100 address-events can be transmitted in the
time it takes one neuron to complete a single 1 millisecond action poten-
tial. And if, say, 10% of neurons discharge at 100 spikes per second, a
single bus can support a population of about � � �

neurons before saturat-
ing. Of course, many more neurons than this will be required to emulate
even one cortical area. Fortunately, the limitation imposed by the band-
width of the AER bus is not as bad as it may seem. The brain has a similar
problem in space. If every axon from every neuron were as long as the
dimensions of the brain, the brain would increase exponentially in size as
the number of neurons increased. The brain avoids this fate by adopting
a mostly local wiring strategy in which the average number of axons ema-
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Figure 6.10. A simple test of silicon retinal input to the silicon cortex. A �����
receptive field of neurons in the silicon retina projected to a group of neurons in
the silicon cortex. The retina was stimulated by a drifting square-wave luminosity
grating. a. Histogram showing address events arriving on the local event address
bus from the retina. The active region of the histogram (0–0.7s) corresponds to the
time when the ON phase of the grating activates the retinal cells, whereas the inac-
tive region corresponds to the OFF phase of the grating. b. Histogram of the output
address event activity of one of the MNC neurons. Similar ON and OFF responses.
The discharge rate of the MNC neuron is less than the input event rate because
many excitatory events summate in the MNC neurons to produce an output event
from that cell.

nating from a small region decreases at least as the inverse square of their
length [Mead, 1990, Mitchison, 1992, Stevens, 1989]. If the action poten-
tial traffic on the AER bus were similarly confined to a local population of
neurons, the same bus could repeat in space, and so serve a huge num-
ber of neurons. The SCX domain busses, which permit the construction of
repeating populations of neurons, are a small first step toward exploring
these issues.

6.8 Future Research on AER Neuromorphic Systems

AER and Silicon Cortex have provided a practical means for communi-
cation between aVLSI neuromorphic chips. For the immediate future, re-
search efforts will be focused on transforming existing aVLSI sensory pro-
cessing chips into a form suitable for incorporation in AER systems. There
are many technical problems to be solved here, particularly in relation to
the construction of hybrid circuits that must mix small signal analog pro-
cessing with digital inter-node communication.

As we move toward the implementation of neuronal networks that per-
form useful sensory and motor processing, we must confront the open
question of how much accuracy or consistency is required in the time of
delivery of AER signals over the network of local and domain busses.
The answers to this question are closely tied into the use of timing in the
neural code itself, which also remains an open research question in neu-
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robiology [Shadlen and Newsome, 1994, Abeles, 1991, Rieke et al., 1997,
Mainen and Sejnowski, 1995].

Deiss has proposed a Space-Time-Attribute (STA) coding scheme for event
messages that is partially motivated by the need to route, schedule and
deliver events in a timely fashion in a large broadcast or other network
system [Deiss, 1994a, Deiss, 1994b]. The arrival time over a global shared
bus or network is no longer necessarily prompt nor consistent. If event
coincidence is part of the neural code, then the system must maintain the
representation of these coincidences. The STA code requires the ability to
represent the simulated 3 space location (S) of an event source as well as
the time of the event (T) along with optional attributes (A) of the event.
One implementation of STA would involve transmission and filtering of
packets containing these code subfields. Events could be filtered by dae-
mons sensitive to time and or location of the source event or a destination
attribute field. Resources did not permit developing a filter daemon of this
sophistication for SCX-1 domain busses. Instead, the SCX-1 domains filter
single word events with no subfield processing. While it would be possible
to allow all events to pass through unfiltered and then have software de-
code packet boundaries and sort and filter the events, the peak event rate
on the domains is sufficiently high that the DSP would not keep up unless
event rates were restricted. Each domain bus has more than an order of
magnitude more bandwidth than the LAEB for single word events in order
to provide for more prompt delivery of messages and delay-based schedul-
ing. Filtering algorithms that can be implemented in hardware have since
been developed by Deiss, but they would require extensive changes to
SCX.

In practice, the existing AER technology already provides a suitable en-
vironment for practical applications. For example, the behaviour of large
networks of spiking neurons can be emulated in real time. We expect that
the much slower digital simulations of spiking networks, of the kind re-
ported in this volume, could be replaced by hardware emulation on SCX
type systems. Furthermore, we expect to see small special-purpose AER
systems appearing in neuromorphic applications, such as the use of mul-
tiple aVLSI sensors to provide primitive sensorimotor reflexes for simple
robots.
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