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A bottom up approach towards the acquisition and expression ofsequential representations applied to a behaving real-world device:Distributed Adaptive Control III.
AbstractBiological systems display a high degree of exibility in problem solving. In this paper a modelis presented, Distributed Adaptive Control III (DACIII), which is aimed at understanding theseforms of behavior. DACIII is part of a larger modeling series directed at understanding howbiological systems acquire, retain, and express knowledge of the world. This modeling serieshas its roots, on one hand, in the methodological consideration that brain and behavior needto be modeled from a multi-level perspective. On the other, the importance of the acquisitionof representations of events in the world, as opposed to an a priori speci�cation, is emphasized.DACIII is presented against the background of the paradigms of classical and operant condition-ing. On the basis of an analysis of these experimental approaches towards the study of animalbehavior a theoretical framework is de�ned aimed at identifying the minimal requirements ofa control structure which could display these behaviors. The proposed model is evaluated indi�erent con�gurations using both simulated and real robots. It is demonstrated that DACIIIis able to fully bootstrap itself from a mode of control which solely relies on proximal sensorsand prede�ned reexes, to a level of control which is dominated by acquired representationsof events transduced by distal sensors. This transition is reected in the performance of thebehaving device, from strongly variable trajectories to highly structured behavioral sequences.The results are compared to alternative models of classical and operant conditioning and modelswhich attempt to capture the properties of its underlying neural substrate.
KeywordsConditioning, Learning, Robot, Model, Brain, Sequential representations, Problem solving, Goaldirected behavior, Distributed Adaptive Control, Foraging.
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1 IntroductionBiological systems demonstrate a high degree of robustness in the face of environmental un-certainty. For instance, a rat placed in a seven arm maze, each arm containing a number offood items, will rather quickly display a performance which is described as an optimal strategy[Roberts, 1992]. Optimality in this case has an operational de�nition in terms of the relation-ship between the distance traveled and the number of food items recovered. Dependent on thetask demands, for instance de�ned by the e�ort required to recover the food items, a di�erentbehavioral strategy is displayed. In case the food dispensers are covered, the animal will aftertraining, �rst visit those dispensers which contain the maximal number of food pellets. In casethe food is readily accessible a, so called, linear strategy is followed where the nearest dispensersis visited �rst. Hence, dependent on the properties of the task and the environment the animaldisplays a di�erent behavior, in both cases, however, converging to an optimal strategy. Thistype of performance relies on the balancing of many di�erent components. For instance, theactual data available to the animal is only presented to it in ego centric coordinates. Onlythrough de�ning the temporal relationships of the local \views" of the world, together with thedisplayed local actions, can a global \world centered" relationships be de�ned. In contrast mostrobotic applications dealing with issues of path planning, for instance, solely rely on global in-formation regarding the environment (see [Kr�ose and Van Dam, 1997] for a review). Biologicalsystems unfortunately do not have this luxury. In addition only a small fraction of the actualimpressions of the world transduced through the senses pertains to the task at hand. The taskbeing de�ned in terms of the \goals" of the animal, for instance foraging for food in case it isfood deprived, and the relevant reinforcement encountered in the world. In these terms even aseemingly straight forward behavior turns out to be a feat of problem solving. The modelingstudy presented in this paper is aimed at understanding the processes involved in acquiring andexpressing these forms of behavior. Preliminary results of this study have been presented in[Verschure, 1993a].Moore [Moore, 1956] showed that it is in principle impossible to decide between alternativefunctional models of an observed response function. In practice this problem of indeterminancyis often encountered. For instance, in the explanation of the types of behavior displayed in theforaging task, which can be seen as a form of operant, or instrumental, conditioning, a largerange of models have been proposed. On one extreme there is the strict stimulus response in-terpretation which goes back to Thorndike's law of e�ect [Thorndike, 1911]. The law of e�ectspeci�es that in case a response leads to a \satisfying state of a�airs" it is \stamped in" whileif it leads to an \annoying" state of a�airs it will be \stamped out". This proposal attemptsto explain changes in behavior due to conditioning solely in terms of the e�ects of particularactions. It has formed a center piece of the extreme behaviorist movement of Watson and Skin-ner. Other proposals, however, emphasized the role of the expectations the learning systementertains, for instance by Hull [Hull, 1943] (see [Mackintosh, 1972, Dickinson, 1994] for a re-view). In this proto cognitive approach variables internal to the organism were introduced inthe explanation of learning phenomena. One problem underlying this dilemma in theories oflearning is that both the observations to de�ne and to validate these proposals are derived fromthe same level of description, in this case behavior. In order to solve this problem of indetermi-nancy a method of convergent validation was introduced [Verschure, 1997a] which proposes thatin order to enhance the probability that a model provides a unique formulation of a phenomenonit needs to be validated against constraints derived from multiple levels of description. In ourpresent exploration these levels are provided by the behavioral, and the neuronal perspectives.The above methodological consideration provides a strong argument for a synthetic researchprogram, which relies on large scale computer simulations interfaced to real-world devices. This3



seems the most e�ective way to actually develop and validate these \multi-leveled" scenarios.The choice in the presented study to validate the model using simulated and real robots is animplication of the method of convergent validation, next to the observation that behavior canonly be explained as a real-world real-time phenomenon. In [Verschure, 1993b, Verschure, 1997a]the methodological and conceptual arguments for this choice are further elaborated.The present modeling study is part of a larger series, called Distributed Adaptive Control(DAC) [Verschure et al., 1992]. The focus of these e�orts are the study of the acquisition,retention, and expression of knowledge by biological systems. Part of its theoretical consider-ations were derived from the observed limitations in the program of arti�cial intelligence andsome of its more recent incarnations, connectionism, new arti�cial intelligence, and arti�ciallife which have been extensively analyzed over the last years [Verschure, 1990, Verschure, 1992,Verschure, 1993b, Verschure, 1996]. The bottom line of this analysis is that even though themetaphors can be changed from the digital computer to the brain in most cases the hard problemof a prioris remains; how can we explain or create adaptive behavior without assuming it be-forehand? The combination of both the methodological considerations, regarding the validity ofour scienti�c e�orts, and the theoretical ones, addressing the genesis of knowledge in biologicalsystems, constitutes a program of synthetic epistemology [Verschure, 1998].Figure 1: About hereIn the present proposal we make the assumption that in order to explain the forms of learningexpressed in, for instance, the foraging task three strongly coupled levels of control need to bedistinguished. First, by solely relying on prewired reexive relationships between sensory eventsand actions the system functions as a reactive controller. It will reexively respond to immediateevents. Second, as an adaptive controller the system will develop representations of events thatcorrelate in some way with stimuli which triggered the reexes. In addition the reexive actionscan be reshaped in order to better reect the properties of the environmental perturbation. Atthe level of reective control more extended representations of sensory events and motor actionswill be formed, for instance expressing their relationship over time. The behavior displayed isinuenced by internally generated expectations of the properties of the world. A system whichcomprises of these three components will be refered to as a complete learning system. The threelevels of control will generate distinct behavioral signatures. Ranging from the strongly variablebehaviors displayed by a reactive control system to the highly structured behavioral patternsgenerated through reective control. The goal of our modeling e�orts now becomes the studyof the complete learning system.2 Methods2.1 TerminologyThe study of learning and problem solving has been systematically pursued for the last century.The main paradigms that have been developed are those of classical and operant condition-ing. The models presented in this study take their terminology from these domains and will beshortly described.Classical conditioning [Pavlov, 1927] refers to learning phenomena where initially neutralstimuli, or conditioned stimuli (CS), like lights and bells, are through their simultaneous pre-sentation with motivational stimuli, unconditioned stimuli (US), like footshocks or food, able4



to trigger a conditioned response (CR), such as withdrawal or salivation. The success of thislearning process is measured in terms of the probability of the occurrence of a CR after thepresentation of a CS. As to be expected the reality of animal behavior in the domain of classicalconditioning is more complicated than was initially anticipated [Mackintosh, 1972]. In order toplace the discussed models in a proper context a number of additional properties of this type oflearning need to be emphasized.At a behavioral level it seems to be appropriate to distinguish consummatory, or speci�c,components of learning from preparatory, or non-speci�c, ones [Konorski, 1967]. For instance,in the case of eyelid conditioning, where a tone (CS) is presented with an airpu� to the cornea(US), the animal will display a number of responses. Next to the closing of the eye lid, which canbe seen as speci�c to the US, non-speci�c behavioral or autonomic responses can be observed;startle, freezing, withdrawal, changes in heartrate, breathing, or Galvanic skin response. Theconditioned occurrence of these non-speci�c responses will follow a di�erent temporal trajectorythan the speci�c-responses. Non-speci�c responses show a fast acquisition (about 5 to 15 tri-als), while the development of the US speci�c CR takes a much larger number of trials. Thisbehavioral distinction seems to be also reected at the anatomical level [Lavond et al., 1993].Lesions to the amygdala, a structure in the medial temporal lobe, will strongly a�ect non-speci�clearning while lesions to the cerebellum, will selectively a�ect the speci�c learning component.A more general interpretation of the behavior revealed in classical conditioning is that it al-lows behaving systems to learn about correlations between CS and US occurrences. To a certainextend one could speak of the substitution of the US by the CS through learning. This can beseen as a crude approximation of causal relationships in the world through correlative measures[Hall, 1994, Verschure, 1996].Operant, or instrumental, conditioning describes learning procedures in which the US iscontingent on a particular action displayed by the organism. The earlier mentioned foragingexperiment can be taken as an example. It was �rst distinguished from classical conditioningby experiments performed by Miller and Konorski in 1928 [Miller and Konorski, 1928]. In theseexperiments a dog was trained to lift its leg in response to a cue, in order to acquire a foodreward. Only in case the animal displayed this required response did it receive a food reward. Asopposed to classical conditioning it is an action of the organism itself which triggers the reinforce-ment. The distinction between classical and operant conditioning is still debated in the �eld ofanimal learning [Mackintosh, 1972]. In the work presented here we make the proposal that bothphenomena reect components which are closely coupled in the overall learning system. Bothexperimental paradigms address complementary subcomponents of the complete learning system.2.2 Experimental environmentExperiments were performed using both simulated and real robots. Simulations guarantee re-peatability over trials and therefore allow a systematic evaluation of a control structure. Onlyexperiments with a real robot, however, allow the exploration of the robustness and generaliz-ability of a model. The real world always being more noisy than the worst case simulation canaccomplish (see [Mondada and Verschure, 1993] for a further discussion and comparison of bothmethods).
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2.2.1 BugWorldSimulations were performed using the simulation environment BugWorld [Goldstein and Smith, 1991].In this case the simulated spherical robot, (Figure 2A), was using three types of sensors; a range�nder, a collision sensor and two target sensors. The range �nder consists of 37 elements dis-tributed over 180 degrees on the front side of the robot, each element covering a part of therange �nder �eld. Their angular resolution decreases on the borders, 20o, and is maximal at thecenter, 5o. 37 collision detectors cover the same region as the range �nder elements. The twotarget detectors are located at 90o and �90o from the center of the robot. This con�guration ofthe shape of the robot and the properties of its sensors and e�ectors will be referred to as thesoma.The soma can execute discrete translational and rotational actions. These atomic actions arecoupled together to de�ne behavioral patterns: \exploration", \avoidance", and \approach".Avoidance will lead to a combination of reverse and turn actions, approach induces a turn ac-tion, while exploration induces translational motion.Figure 2: About hereFigure 2B displays a typical environment used in these simulation experiments. A more gen-eralizable dimension to measure the size of an environment is provided by units of body size.In these terms this environment measures approximately 17 by 10 body units. In a secludedspace multiple obstacles and targets are placed. The four targets (A, B, C, and D) each dispersea gradient which decays linearly with distance. The targets have their own dynamics. In casea target is touched it is removed. A new target reappears in the same position when anothertarget is found.Figure 2C illustrates some of the behavior of the simulated robot. The positions visited areindicated with an outline of the soma. In this short trajectory a number of typical events occur.From the initial position, 0, the soma displays exploration, translational movement. Subse-quently it collides (US) three times (locations 1, 2, and 3) each time an avoidance reex (UR)is displayed. Given the position of the collision on the soma each collision induces a turn tothe right. At location 4 the gradient dispersed by target A is sensed which induces approachbehaviors. The soma follows the gradient until the target is found.2.2.2 Khepera-XmorphExperiments with the microrobot Khepera (K-team, Lausanne, Switzerland) were performedusing the distributed simulation environment Xmorph [Verschure, 1997b].Figure 3: About hereKhepera (Figure 3A) is a circular robot with a diameter of 55 mm and a height of 30 mm[Mondada et al., 1993]. The basic con�guration consists of two modules; the base plate and theprocessor module. All modules are connected by an extension bus to allow easy expansion. Thebase plate constitutes the elementary interface to the real world; e�ectors and obstacle/lightdetection. The robot uses two wheels for its locomotion, each wheel is driven by a DC motor.Obstacle and light detection is achieved by 8 infra red send-receive sensors (IR). Six IRs are6



evenly placed over the front 180o of the robot and two are placed in the back. The angular res-olution of the IRs is approximately 50o. The on-board computer is based on a Motorola 68331processor with a clock speed of 16 MHz and supports 256kByte of both RAM and ROM. Localto Khepera only the processes maintaining the serial communication, sampling of the sensors,and control of the e�ectors were executed. Khepera was connected to a host computer (SunUltra1) using a serialport at 38400 baud. Next to the two base modules Khepera was equipedwith a color PAL CCD camera (K-team, Lausanne). The image from the camera was digitizedwith a video frame grabber (ProMovie Studio, Media Vision, Fremont, CA. USA) attached toa PentiumPro PC (dual CPU 300 MHz under Linux).The environment (Figure 3B) consisted of a 90 by 60 cm secluded space (16 by 11 body units).At regular intervals along the walls red stripes were attached. In the center of the environmentlines consisting of purple stripes or green rectangles were de�ned. A light source illuminatedthe center of the lines in a region with a diameter of approximately 30cm. Through a reectora gradient of illumination intensity was de�ned.Xmorph (Figure 3C) supports the study of neural models at di�erent levels of description. Itprovides a graphical speci�cation language (using the X-Motif environment) to de�ne, control,and analyze large scale simulations using a distributed computing method. To enhance thecomputational performance Xmorph uses a server-client arrangement based on the TCP/IPprotocol. In this study a total of �ve individual, but interacting, processes were de�ned; front-end graphics, tracking system, and three simulation and interface processes. These processeswere distributed over a LAN consisting of 1 Sun Ultra1 (Solaris) and four PentiumPro PCs(Linux). Processes communicated in a synchronous mode and performed at approximately 10update cycles per second. The three simulation processes, \Video", \DacIII", and \Khepera",exchange data as indicated by the connections shown in Figure 3C. \Video" deals with digitizingthe video image derived from the CCD camera mounted on the microrobot and the simulationof the neural system which processes the image. \Video" exchanges the activity of a populationof simulated cells reecting the CS events, see section 2.6, with the simulation of the controlstructure, \DacIII". In addition \DacIII" receives inputs from populations of simulated cellsresponding to US events on the robot derived from the infra red sensors. \DacIII" projects theactivity of its population expressing URs to \Khepera". \Khepera" in turn interprets its motormap which receives this activity and sends the appropriate commands to the robot over theserial link.2.3 The working hypothesis on the complete learning systemFigure 4: About hereCombining the assumptions on the three interacting levels of control and the distinction betweenthe role of the non-speci�c and speci�c learning systems our sketch of a complete learning systemcan be further re�ned (Figure 4):� 1: Underlying the learning systems is an automatic system of reactive control which pro-vides the organism with a basic level of behavioral competence. This system is fullyprewired and consists of US-UR couplings. The UR can be interpreted as an expressionof species speci�c behaviors.� 2: The fast non-speci�c component of classical conditioning reects the properties of alearning system which not only regulates autonomous function, preparing the organism for7



action, but in addition facilitates the formation of primary representations of CS events,CS identi�cation� 3: The slow speci�c component of classical conditioning relates to the shaping of theCR, which is bootstrapped on top of acquired CS representations. CR shaping allows a�ne tuning of prede�ned behavioral patterns to the actual properties of environmentalchallenges, i.e. timing.� 4: CSs are derived from events on distal sensors (e.g. color CCD camera), while USs arederived from proximal sensors (e.g. infra red sensors).� 5: Operant conditioning reects aspects of a general purpose learning system which al-lows the organism to form more extended representations of earlier acquired CS and CRrepresentations, for instance their relationship in time.� 6: The substrate of learning is the change in e�cacies of synapses connecting di�erent cellpopulations. The change of synaptic e�cacy is solely dependent on the activity of pre-and postsynaptic cells; the learning process is seen as strictly local.Components 1, 2, and 3 de�ne the adaptive control structure. The reective control structureis de�ned by components 1, 2, 3, and 5. In the following sections the models of the reactivecontroller (called DAC0), the adaptive controller (called DACII), and of the reective controller(called DACIII) will be described in terms of the con�guration considered in the present study,in this case one CS and two US modalities. The properties of the speci�c learning system arenot included in the present study.2.4 Adaptive control: A model of the non-speci�c learning systemFigure 5: About hereThe control structure implementing the non-speci�c learning system, DACII, is based on thefollowing assumptions (Figure 5): 1, USs of a particular type activate speci�c populations ofcells reecting an internal state (IS), i.e. aversive (US�-IS�) and appetitive (US+-IS+). 2, Theactivation patterns in IS preserve the topology of the proximal sensor (e.g Infra red sensors).3, Cells in IS will activate speci�c reexive actions (UR). 4, Priorities between the IS popu-lations are expressed by prede�ned interactions (I). 5, The CS modality (e.g video camera) isrepresented by a distinct population of cells preserving the topology of the sensor. 6, Learningproceeds by modifying the connections between the CS and IS populations.2.4.1 DACII: Model equations describing the fast dynamicsThe activity, uj, of unit j in population CS is derived from the state, sj, of element j of therelated distal sensor: uj = t(sj) (1)where t is a transduction function. 8



The activity of population CS is propagated to the IS populations through excitatory con-nections. The input, vki , of cell i in IS population k is de�ned by:vki = NXj=1wkijuj + cki (2)where N is the size of the CS population, wkij is the e�cacy of the connection between CScell j and IS cell i, and cki is the state of element i of US conveying sensor k. The activity, oki ,of cell i of IS population k is de�ned by:oki = H(vki � �ki ) (3)where H is the Heaviside or step function and �k de�nes the threshold of the units of ISpopulation k.The input, rl, of unit l in the UR population is de�ned by:rl = KXk=1MkXi=1 yklioki (4)Where K denotes the number of IS populations, Mk is the size of IS population k, and ykliis the strength of the connection between cell i of IS population k and cell l of the UR population.After updating their inputs the UR units compete in a Winner Take All (WTA) fashion. Thewinning unit's activity is again thresholded. In case its activity is suprathreshold it will inducea particular motor action. In case no motor unit is activated the control structure will triggerexploration behavior.A system only consisting of the UR-IS and the IS-UR mapping constitutes a reactive controlstructure (DAC0).2.4.2 DACII: Model equations describing the slow dynamicsThe learning rule employed is de�ned on the basis of a number of observations. In experimentswith DACI [Verschure et al., 1992], a �rst model of an adaptive control structure, it was shownthat in order to acquire and retain CS-US associations the depression component in a locallearning rule needs to be activity dependent. In this way the solution reached was similar tothe Oja learning rule [Oja, 1982], which is known to extract the principle components of itsinput set. Subsequently it was shown that this activity dependent depression can be derivedfrom only the postsynaptic cell, as opposed to the average activity in the postsynaptic pop-ulation [Verschure et al., 1995], in order not to violate the assumption of the locality of thelearning process. In [Verschure and Pfeifer, 1992] two sources of instability of this local learningrule were identi�ed, overgeneralization and self-reinforcement. This fundamental problem wassubsequently solved in DACII, without violating the assumption of the locality of the learningprocess, by embedding the process regulating the synaptic e�cacies in a recurrent circuit. Afterupdating the input, vk, of the IS populations (equation (2)), these populations in turn recur-rently inhibit the CS population. The resultant activity, u0j, of unit j in the CS population nowis de�ned as: 9



u0j = uj � rej (5)Where r is a gain factor modulating the e�ect of the recurrent inhibition and ej is therecurrent prediction de�ned by: ej = KXk=1MkXi=1wkijvki (6)where Mk is the size of IS population k. e will be referred to as a CS prototype.The connections between the CS and IS populations now evolve according to:�wkij = �kvki u0j (7)where �k de�nes the learning rate of the connections between population CS and IS popula-tion k.Despite the possibility of u0 to attain negative values, w is at all times kept at values greateror equal to 0. Given the e�ect of the recurrent inhibition equation (7) this learning method isreferred to as predictive Hebbian learning.DACII will over time form a classi�cation of its interaction with the environment in terms ofCS events conditional to its internal states. These acquired CS prototypes on one hand allowthe system to function as an adaptive controller and on the other to form the representationalbuilding blocks for the construction of sequential representations. Before elaborating on thebehavioral properties of DACII, the basic components of DACIII, the present approximation ofthe reective controller, will be de�ned.2.5 Reective control: Acquisition, retention, and use of sequential repre-sentations Figure 6: About hereThe reective controller, DACIII, inherits all properties from the reactive and the adaptive con-trol structures, DAC0 and DACII respectively. In addition it contains a number of componentswhich allow it to form and use sequential representations; the general purpose learning system.Figure 6 shows the central components of present approximation of a general purpose learningsystem, which is constructed on top of the adaptive controller. These components deal with: 1,the acquisition of sequences of pairs of CS prototypes and related actions in a transient ShortTerm Memory bu�er (STM). 2, the retention of these sequences in a permanent form in LongTerm Memory (LTM). 3, the parallel matching of retained CS prototypes with ongoing sensoryevents. 4, the competition between matching retained prototypes. 5, the mechanism facilitatingthe chaining between components of LTM. 6, the recombination of LTM components and newCS prototypes.DACIII will bootstrap itself from a stage of reactive control to a stage of adaptive control,followed by a transition to a level of reective control. Each transition to a higher level of10



control depends on constraints generated at the preceding level. In case of the transition fromthe reactive to the adaptive controller this constraint is provided by the actual occurrence of USevents which will induce a re-mapping of the CS-IS associations (equation (7)). The transitionfrom this level of control to the reective controller depends on the quality of the matchingbetween predicted and actual CS events expressed by an internal con�dence measure, D. Ddepends on the accuracy of the CS prototypes formed by the non-speci�c learning system ofthe adaptive control structure. This accuracy is reected in the result of the matching ofactual, distal sensor derived (equation (1)), and predicted (equation (6)) CS events. Matchingis de�ned by the distance, d(u; e), between the feedforward generated CS activity pattern, u,and the recurrent prediction, e: d(u; e) = 1N NXj uj � ej (8)D evolves according to: D = (1� �D)D + �Dd(u; e) (9)where �D de�nes the integration time constant.D is a dynamic state variable which is internal to the learning system. It provides an estimateof the progression of non-speci�c learning and will decrease (not monotonically however) in casethe constructed CS prototypes consistently match ongoing CS events. It will increase in caseexpected CS events are violated. This can occur, for instance, if the environment or the CSprototypes were to change for any reason.Once D reaches a con�dence threshold, DACIII will engage the general purpose learningsystem. In case any of the IS populations is active the generated CS prototype, e (equation(6)), and the related action, r (equation (4)), is stored in the STM bu�er. This CS-UR pair willbe refered to as a segment. STM functions as a ring bu�er and has a �nite length, NSTM . Incase a target is found the STM content is copied in a permanent representation, LTM. The CSprototypes stored in the LTM segments will now be matched against ongoing CS activity. Theresult of matching is expressed in the activity of a collector unit attached to each LTM segment.The activity, cl(v), of the collector unit of LTM segment l, given IS activity v is de�ned as:cl(v) = 1N NXi=1 j eimax(e) � simax(s) j (10)where s represents the stored CS prototype. The collector units of all LTM segments interactin a competitive fashion. The probability of segment l to win this competition depends on cl andan associated trigger unit, tl, which acts as a dynamic threshold. The best-matching prototypeminimizes the quantity ml(v): ml(v) = cl(v)tl (11)In case ml(v) of winning segment l is below a given matching threshold, its corresponding URrepresentation is projected onto the UR population.Chaining through a sequence of LTM segments is de�ned as a probabilistic process. The acti-vation of a LTM segment will increase the probability that the next segment, l+1, of the sequencewill be selected in the future, by reducing the value of its trigger unit tl+1; tl+1 = �; 0 < � < 1.On each step, the activation of the trigger unit of each memory prototype decays to its default11



value 1: tl = � t + (1� � t)tl; 0 < � t < 1.DACIII can form recombinations of LTM segments and ongoing CS prototypes by reinsertingactivated LTM segments into the STM bu�er.2.6 The mapping of sensors and e�ectorsIn case of the BugWorld simulations the cells of the CS population, N = 37, receive their input,sj, from the range �nder (Figure 2A). The US dependent input, cUS+, to the IS+ group, N = 2,is de�ned by the sign of the di�erence between the states of the two target sensors. In this waythe robot can be sensitive to the gradient dispersed by a target. The IS� population, N = 37,receives its input, cUS� , from the collision sensors. cUS�i is 1 in case collision sensor i is active.In the experiments using Khepera and Xmorph both cUS� and cUS+ were derived from theIR sensors. On average the IR sensors will respond to reecting surfaces placed at up to 5cm from the sensor. cUS� is de�ned by thresholding, �CL, the IR return signal, which givesan approximation of a collision sensor (CL). �CL was set such that surfaces closer than 1 cmfrom the sensor would trigger suprathreshold activity. The raw IR signal was projected onto apopulation of leaky integrator linear threshold units, N=6, which rendered cUS� . cUS+ was de-rived from the ambient light (AL) detected by the IR sensors in their passive mode. This signalwas projected onto a population of leaky integrator linear threshold units, N=6. Their activitywas thresholded, �AL, in order to reduce the background level of ambient light. By threshold-ing, �T , AL with an appropriate value a measure is de�ned which reects the presence of a target.The dynamics of both US populations are de�ned in similar terms. The membrane potential,vmUSi , of US transducing unit i is de�ned as:vmUSi = �USvmUSi + IRIRi (12)where �US speci�es the decay rate of vmUS , IR the excitatory gain due to the IR signal,and IRi the return signal of IRi, either in active or passive mode.The activity, cUSi , is de�ned through thresholding the integrated input:cUSi = H(vmUSi � �US)vmUSi (13)The multiplication of the Heaviside with vmUSi is only applied to AL. Motor output send toKhepera is derived from a topologically structured map as used in earlier work [Verschure et al., 1995].Continuous rotational or translational motion is de�ned by patterns of activity in population Mwhich consists of leaky integrators, N=100. The units in M receive external excitatory inputsfrom the UR population. The pattern of innervation is speci�c for each UR unit, since theyeach represent a speci�c pattern of behavior. The units in M update their membrane potentialsfollowing equation (12) to which now an inhibitory input is added derived from all other units inM. In case the winning unit is above threshold, �M , it will de�ne the motor commands the robotwill execute. Note that as opposed to the simulation in this case motor activity is continuous,once initialized the motors will only change their state in case another pattern of activity arisesin M.The distal sensor, which de�nes CS events, was provided by the color CCD camera mountedon Khepera. The 480 by 640 image was compressed to an image size of 210 by 210. Every12



Figure 7: About herecolor channel of the digitized image, using a rgb representation, was pixelized (reduction ratio:4x4:1) onto a distinct population of leaky integrators, N=2500, conserving the \retinotopy" ofthe camera. Their membrane potentials and activity were updated according to equations (12)and (13). The population conveying the CS states, N=36, was subdivided into three subregions,each cell reecting the relative dominance of a particular color channel in subregions of theimage. Each unit received excitatory input from a topologically mapped (15x15) region of thepreferred color channel and inhibition over a wider surround (30x30) in the two opposing colorchannels. The membrane potential, vmCi , of cell i of population C is de�ned as:vmCi = �CvmCi + p NpXj wpijcpj � o1 No1Xj wo1ij co1j � o2 No2Xj wo2ij co2j (14)where �C speci�es the decay rate of vmC , p the gain of the preferred color channel, cpj thevalue of pixel j of the preferred color channel p, and wpij the connection strength of the projectionof cell j to cell i. Indices o1 and o2 refer to the two opposing color channels.The activity, sCi , of unit i is de�ned through thresholding the integrated input:sCi = H(vmCi � �C)vmCi (15)Figure (7) shows the properties of the model processing the color image and producing themapping to the CS population. Figure 7A shows the projections onto one representative cell ofeach color region in the CS population. Figure 7B displays the con�guration used to illustratethe response properties of the CS modality in which a red rectangle was placed in front of therobot. Figure 7C represents the compressed image derived from the camera using a standardluminance to gray mapping. Figure 7D shows the response of the three color channels to thestimulus and the response of the CS population. In this case a single cell in the region of theCS population responding to red is active. Through balancing the excitation from the preferedcolor channel with the inhibition from the two opponent channels a robust response to colorscan be achieved over a range of illumination conditions.3 ResultsBy means of the simulated robot the basic properties of both DACII and DACIII will be illus-trated. The experiments with Khepera serve to demonstrate that the proposed model general-izes in a straight forward manner to a real robot. Before turning to a more detailed analysis ofDACII and DACIII, a performance comparison of the three forms of control distinguished willbe described.3.1 A comparison of the three models of controlIn order to delineate the performance di�erence between the three types of control, reactive(DAC0), adaptive (DACII), and reective (DACIII), all three models were applied to the sametask of �nding targets in an environment containing multiple obstacles. In this simulationexperiment the environment depicted in Figure 2B was used. The robot could explore thisenvironment for a total of 7000 time steps. The target gradients were only present for the13



�rst 2000 time steps. In this way a recall period, lasting 5000 time steps, was introduced. Inthis period the robot either �nds a target through the use of acquired representations or bycoincidence. Table 3.1 summarizes the performance of the three forms of control.Control Targets Collisions Traveled distance Collisions/TargetsDACO 53 532 66170 10.04DACII 34 106 60590 3.12DACIII 53 73 39910 1.38Table 1: A performance comparison of DAC0, DACII, and DACIIITable 3.1 shows that there is a strong performance di�erence between the three forms ofcontrol. DACO �nds a signi�cant number of targets, but su�ers a high number of collisions.The overall collision to target ratio is 10.04 and the traveled distance is 66170. DACII reducesthe number of collisions compared to DAC0 but �nds less targets. DACIII further reducesthe number of collisions and �nds as many targets as DAC0. In addition its total traveleddistance is markedly lower than for the other two control structures. To further exemplify theperformance di�erence between DACII and DACIII Figure 8 displays the trajectories of bothcontrol structures during the recall period.Figure 8: About hereIn the recall period DACII does not collide with any obstacles anymore, as a result of previouslearning experiences. The displayed trajectory, however, shows that its behavior is highly vari-able. DACII practically covers all positions in the environment. Since its actions are reactive toimmediate sensory events, CS or US, little temporal structuring of its behavior can be observed.This is in sharp contrast to DACIII which has settled into a trajectory which is highly regularand approximates the shortest route between the di�erent targets. This suggests that it hascreated sequential representations which seem appropriate for the present task. The structur-ing of the behavior, through the use of the general purpose learning system, also explains thereduced number of collisions DACIII su�ers as opposed to the other control structures. SinceDACIII covers a reduced region of the environment the probability to encounter obstacles alsodecreases. The relatively low value of the traveled distance of DACIII can be explained in termsof the properties of the behavioral stereotypes; avoidance, and approach. Approach behaviorshave no translational component, hence the more a control structure is, directly or indirectly,under the inuence of population IS+ the less its traveled distance will become. This indicatesthat DACIII to a large extent relies on sequences containing approach behaviors.3.2 The dynamics of the con�dence measure DThe transition from adaptive control to reective control depends on the internal con�dencemeasure D (equation (9)). The performance test described above demonstrated that DACIIIdid reach its con�dence threshold and engaged the general purpose learning system. Figure 9provides a more detailed description of the dynamics of D.Figure 9: About here14



The performance of DACIII in this experiment was equivalent as in the earlier described per-formance comparison. Figure 9 shows that D rapidly decreases over the �rst 2000 time steps. Atthe onset of the �rst recall period D transiently rebounds and subsequently shows a practicallyconstant decrease with time. When the target gradients return at time step 7000 this decreaseis accelerated. D reaches an asymptotic level after approximately 8000 time steps.Together with the performance of DACIII (see Figure 8B), this implies that the internalcon�dence measure D reliably reects the quality of acquired CS prototypes. D shows that thematching between the ongoing events on the distal sensors progressively improves. In additionFigure 9 suggests that it can be considered as an implicit time indicator.3.3 The acquisition and use of sequential representationsFigure 8B showed that DACIII is able to display a highly structured behavioral trajectory overextended periods of time. The underlying LTM segments, however, do not necessarily need todirectly reect this coherence. This raises the question of the content and relationships of thesequential representations that a�ected the performance. As a �rst approximation of the analy-sis of the LTM segments we can pose the question in what position in the environment e�ectiveLTM segments, that matched ongoing CS events and induced actions, were actually stored inthe STM bu�er. The distribution of these locations provides a measure of the speci�city andthe coherence of the LTM representations.Figure 10: About hereFigure 10 displays this acquisition distribution for the experiment with DACIII describedin Figure 8B. Every time a LTM segment induced an action, the position were it was storedin STM was plotted with the outline of the soma. The spatial distribution of the acquisitionof e�ective segments shows that most were acquired in four speci�c regions in the vicinity ofthe four targets. At each target distinct approach sequences were acquired which capturedthe detailed di�erences at these four locations. These frequently reused sequences, which aremost densely labeled, fall mostly within the region of the target gradient. A second type ofe�ective segments, however, were acquired outside of these gradient regions. These are of par-ticular interest. These segments were acquired when learned approach or avoidance actions weredisplayed. This demonstrates that not only the content of the CS prototypes depends on thelearning experience, but that also their inclusion in LTM segments reects the learning history.Comparing with the actual trajectory displayed by DACIII, Figure 8 B, shows that this lattertype of sequences were generalized to other situations. This analysis shows that DACIII hasparcelated its representation of its interaction with the environment in terms of a limited andcoherent set of prototypical situations.This provides a possible scenario for explaining aspects of the foraging behavior. Figure 8Bshowed that DACIII followed a linear strategy. The interpretation of the used LTM representa-tions indicated that this linear strategy is based on a limited set a prototypical situations de�nedin terms of the motivational state, appetitive, and the CS prototypes and associated actions.Hence, a continuous representation of the complete trajectory is not required to induce thishighly structured behavior. In addition globally structured behavior can be achieved throughthe use of local, ego centric views of the world. This property of DACIII can be partly explainedthrough the generalization of particular sequences to other positions in the environment but15



especially by the emphasis of the mechanisms for acquisition and expression on events whichdeviate from default behavior. This aspect of DACIII's behavior suggests therefore that not onlyin the interpretation of speci�c sensory events generalization can be achieved, but also in theformation and especially expression of more abstract sequential representations, which combineboth sensory and e�ector components.3.4 Results with Khepera-XmorphIn the experiments with the microrobot Khepera the aim was to demonstrate that DACIII gen-eralizes to a real-world device using sensors and e�ectors with very di�erent, and certainly lessideal, properties than the simulated device. In these experiments the environment depicted inFigure 3 was used. The position of the robot was tracked using a ceiling mounted PAL CCDcamera and the tracking module, TraX, of Xmorph. In addition relevant state variables werecontinuously logged. Figure 11 displays the performance of the model in a trial that lasted atotal of 2 hours. The model used its �rst LTM segment after 24800 cycles which is equivalentto 48 minutes. Figure 11: About hereFigure 11A shows a typical trajectory in the early stages of learning. This trajectory wasgenerated during 3 minutes and 14 seconds beginning at 10 minutes and 45 seconds after thestart of the trial. Khepera started out at the lower right corner of the environment, indicatedwith the white rectangle, and �nished approximately 3 minutes later at the lower side of thetarget region, black rectangle. In the early stages of learning the behavior is dominated byreactive control and progressively by adaptive control. In this period the behavioral trajectory,summarized for the �rst 26 minutes in Figure 11B, is characterized by periods of translationalmovement deected by collisions, and avoidance actions, or the detection of the target gradient,accompanied by approach actions. After the transition to reective control (Figure11 C andD) the translational motion is on more regularly interrupted by sequences of actions triggeredthrough the control of the sequential representations. These LTM representations in turn areactivated through the colored markers on the oor and the walls of the environment. This isillustrated in detail for the trajectory displayed in Figure 11C in Figure 12.Figure 12: About hereFigure 12 displays the positions visited by Khepera in a time interval starting at 89 minutesafter the start of the trail and which lasted about one minute. The positions visited by Khep-era where actions were de�ned by the reective control structure are indicated with rectangles.Positions in the environment where a target was found are indicated with stars. Early in thistrajectory, in the vicinity of the green rectangles attached to the oor of the environment, severalsubsequent actions are under reective control. The perceived green rectangles matched withsome of the CS representations stored in the LTM segments. Subsequently the robot movestowards the wall and collides. After turning into the open �eld another collision occurs with theupper wall. While crossing the set of green rectangles reective control is activated and the greenrectangles are followed for a number of steps. A few seconds later this reoccurs. In this casereective control remains active for 13 consecutive time steps and induces a slight turn towardsthe target region. Subsequently the target is found. This sequence of actions demonstrates thatthe non-speci�c learning system has constructed stable representations of CS events which the16



reective control structure has combined with their accompanying actions in an appropriate wayin LTM as witnessed by the performance of the overall system.Figure 13: About hereAs a second example of the ability of DACIII to successfully control a real-world device aset of experiments were performed using a similar environment (Figure 13A). This environmentmeasured 37 by 57 cm. Next to red stripes attached to the wall a red triangle was placed onthe left center part of the oor to evaluate the avoidance responses acquired by the adaptivecontroller. A path of green or purple rectangles was leading to the target region. The trajectoryof the �rst 45 minutes, Figure 13A, demonstrates that the red triangle is systematically avoidedand that the target region is regularly visited. In the recall test the light source was switchedo� and the robot was repetitively placed in the upper left corner of the environment, markedwith a white rectangle. The orientation of the robot was such that it would not be able to reachthe target region through translational motion only. In all trials the target region was visited.Both through a direct analysis of the relationship between the performance of DACIII andthe e�ectiveness of reective control and a recall test it is demonstrated that the presented modelof a complete learning system generalizes well to a real-world device.4 DiscussionThe aim of this paper was to describe a model of a complete learning system which could providea heuristic in understanding the forms of behavior displayed in, for instance, a foraging task.The presented approximation of a complete learning system demonstrated that aspects of theseforms of behavior can be understood in strictly bottom up terms. Using reactive control as afoundation for learning the experiments described showed that an adaptive control structurecan be de�ned which extracts representations of CS events out of the interaction between thesoma and the environment. The representations of CS events, called CS prototypes, express arelationship between a particular state of a distal sensor and an internal state. Through thiscoupling of a sensory event and an internal state, implemented by the synaptic e�cacies of theprojections between the CS and IS populations, the CS representation is implicitly associatedwith a particular behavior. Hence, three components of a CS representations can be distin-guished; its content derived from the state on the distal sensor (the CS properly), its meaningde�ned by the internal state (in the present case appetitive or aversive derived from the encoun-tered USs), and an action pattern (UR). The presented model of adaptive control suggests thatthe construct representation needs to be considered in terms of these three closely coupled com-ponents. In addition this model demonstrated that the process of CS identi�cation can be basedon a fully local learning rule. Subsequently reective control, using sequential representationsof CS prototypes and UR representations, can be bootstrapped on top of the adaptive controlstructure. The reective control structure in turn is able to induce highly structured forms ofbehavior. This structuring, due to the chaining mechanism, in turn is only de�ned in terms ofthe local interactions between the segments which form the sequential representations. Acti-vated segments a�ect future classi�cations only by transiently increasing the probability that thesubsequent segment in the sequence will dominate the competition process implemented by thecollector and trigger units. This allows the reective control structure to dynamically constructand maintain multiple \plans" for its behavior. It is this property of our present model which17



could be interpreted as reective.In developing this model the assumption was made that complementary components of thecomplete learning system are revealed through the paradigms of classical and operant condi-tioning. Our results demonstrate that this is a feasible option. The processes revealed throughclassical conditioning, adaptive control, laying the foundation for the processes studied throughthe paradigm of operant conditioning, reective control. Before elaborating on the implicationsof the results some elements of the presented models will be discussed.DacIII is presented as a �rst approximation of a complete learning system and a reectivecontrol structure. At this stage of its development, however, it is not claimed that it actually iscomplete. Many elements are still missing, and provided our only limited understanding of thebehavioral and the neuroscienti�c domains some elements still await their speci�cation. DACIIIdoes provide a �rst step towards the study of these systems and allows a systematic explorationof scenarios dealing with the domain of operant and classical conditioning which facilitate aninteraction between these two domains of inquiry.In this study we choose for a formulation of the predictive Hebbian learning mechanism whichcan induce negative activity levels of activity in the CS population as opposed to the originalde�nition [Verschure and Pfeifer, 1992]. This choice was based on the wish to �nd a smoothapproximation of the asymptotic values of the connection strengths. This precludes a directapplication of this method as a heuristic in the study of biological systems. The method ofpredictive Hebbian learning, however, does require further study. It, for instance, replicatesthe observed response properties of the Ventral Tegmental Area (VTA) [Schultz et al., 1997].It has been shown that the dopaminergic cells in this region show an enhanced response, tobackground, in anticipation of rewarding events, which in turn can be suppressed below back-ground in case the anticipated reward does not occur. In addition an equivalent method hasbeen successfully applied to the study of cortical dynamics [Rao and Ballard, 1997]. In cur-rent work we are exploring the option to allow the recurrent inhibition of the CS populationto change the level of activity given a particular level of background activity. This implies,however, that the dynamics of the weights needs to be extended with a variable threshold asproposed in [Bienenstock et al., 1982]. In the case of predictive Hebbian learning, however, thedynamic threshold will express the presynaptic drive onto a particular synapse as opposed tothe time averaged post synaptic activity. Preliminary results have shown that this is a feasibleoption.The main problem which has not been explicitly addressed in the present study is how STMand LTM representations are retained. The current version of DACIII relies on algorithmic solu-tions. The distinction between speci�c brain structures involved in either acquisition, amygdala,or retention, cortex, needs to be made in the study of learning and memory and in the proposedmodel. Yet, no clear proposals are available how this transformation is accomplished. This isan open problem which will take a central role in the further study of a complete learning system.Many models have been proposed dealing with either classical or operant conditioning, i.e.[Klopf, 1982, Sutton and Barto, 1981, Grossberg and Levine, 1987, Grossberg and Schmajuk, 1987].As opposed to these models the DAC modeling series, which has its background in a model ofclassical conditioning [Verschure and Coolen, 1991], took as its central theme the problem ofthe acquisition of CS representations, or CS identi�cation, which was proposed to be one ofthe central elements of the learning system studied through the paradigm of classical condi-tioning. These alternative approaches, however, were focused on the acquisition of CS-US or18



CS-UR associations assuming that the respective CS, US, and UR representations are given apriori. DAC also deviates from the main stream of models studied in the domain of machinelearning, see [Kaelbling et al., 1996] for a review, by its insistence on local learning methods.DAC con�rms, however, Grossberg's hypothesis, [Grossberg, 1982], on the importance of dis-tinguishing the e�ects of a short term drive representation, in DAC terminology the internalstate, and the CS representation in the explanation of classical conditioning. This distinc-tion, however, has roots both in the study of behavior, [Konorski, 1967] and the neuroscienceof learning, [Thompson et al., 1983]. In [Armony et al., 1995] a model of classical conditioningwas proposed which described the development of receptive �eld properties of thalamic andcortical cells induced by fear conditioning. This model, which relates to the properties of theadaptive controller (DACII) only provides a very abstract description of these dynamics. It doesprovide an additional example, however, of the hypothesis put forward by the DAC series thatthe observed e�ects of classical conditioning on the autonomous nervous system only providea restricted picture on the role of the non-speci�c learning system. Traditionally the role ofclassical conditioning has been de�ned in terms of the acquisition of CS-US associations. Itse�ects should be expanded, however, to include the dynamic formation of CS representations.This is also suggested by the physiology of both the primary auditory, [Weinberger et al., 1993],and visual, [Galuske et al., 1997], cortex in conditioning tasks. It has been demonstrated thatneurons in both areas, conveying distal sensor information, can adapt their tuning curves toreect the properties of a CS.Based on the method of convergent validation the subsequent models in the DAC series havebeen extensively studied using both simulated and real robots and a wide range of sensor and ef-fector systems [Verschure et al., 1992, Verschure and Pfeifer, 1992, Almassy and Verschure, 1992,Mondada and Verschure, 1993, Verschure et al., 1995]. This aspect of DAC can be best com-pared to the work on the mobile robot MAVIN [Baloch and Waxman, 1991]. Despite its rela-tively restricted focus on visual object recognition it is one of the �rst examples of a completecontrol structure applied to a mobile robot based on observations derived from the behavioralliterature. A a model of operant conditioning, applied to a delayed match to sample task, imple-mented on a robot has been proposed [Touretzky and Saksida, 1996]. This model, as opposedto DACIII, is aimed at a functional decomposition of the task at hand, using a productionsystem implementation, and does not allow any cross validation with a neuroscienti�c level ofdescription. As such it faces the problem of indeterminancy pointed out in the introduction andits application to a real-world device does not seem a necessary component in understandingthe proposed functional decomposition.Several models dealing with sequence learning have been proposed. On one hand a largenumber of these models are derived from Hop�eld networks [Hop�eld, 1982] which include atransduction delay, e.g. [Morita, 1996]. In our earlier work on classical conditioning we havedemonstrated that these types of networks can be successfully applied to the modeling of bothdelay and trace conditioning [Verschure and Coolen, 1991]. In case of the acquisition, reten-tion, and expression of sequential representations, however, these models are not su�cient.DACIII shows that an important component of the complete learning systems is the parallelmatching and competition of LTM segments and the expectancy dynamics implemented by thecollector and trigger units. In order to implement such a system CS prototypes need to berepresented as distinct entities in the underlying substrate. This type of networks, however,would represent the CS prototypes as attractors which cannot be guaranteed to be distin-guishable at any one point in time. Hence, they do not provide a feasible option. A secondclass of models explicitly addresses the biological substrate involved in sequence learning, e.g.[Dominey et al., 1995, Denham and McCabe, 1995, Dehaene and Changeux, 1997]. All these19



models emphasize the close interaction between frontal cortex and the basal ganglia and im-ply a system implemented by the STM-LTM dynamics of DACIII. In all cases, however, the CSidenti�cation problem has been side stepped and the models have not been evaluated in termsof behaving systems. This can account for the di�erent solutions pursued. For instance, DACIIIrelies strongly on the internal con�dence measure D. It was argued that such a variable express-ing the ability of the learning system to reliably classify its interaction with the environment isa necessary component of a complete learning system. It can be seen as a gating signal for theacquisition of STM representations. The proposed con�dence measure, does provide an hypoth-esis on the type of state variables that a reective control structure, such as a mammalian brain,needs to maintain in order to function e�ectively. Both alternative proposals mentioned lacksuch a measure. They also lack a clear framework specifying how CS representations are acquiredand retained. As DACIII both proposals, however, emphasize the importance of the continuousmatching and competition between representations. In this case the matching is interpreted asa process implemented in frontal areas of the neocortex, while the competition is implementedthrough the cortico-basal ganglia loop. In the further development of the DAC series the di�er-ent components of the proposed model are replaced with models which reect more closely theanatomical and physiological properties of these brain areas e.g. [Verschure and K�onig, 1997].Only after this modeling exercise can we with more con�dence provide anatomical labels to thesubcomponents of DACIII, i.e. functional components distinguished in a model do not neces-sarily map directly and uniquely onto speci�c brain areas. At our present level of modeling itseems more appropriate to not violate the obvious, i.e. by insisting on local learning methods,as opposed to too quickly generalize the putative models to highly intricate and still only partlyunderstood brain structures.In the present version of DACIII the complexity of the CS representations are severely reducedcompared to what biological systems can accomplish. This implies that the actual behavioralimplications of the models can not be fully explored. The issue of learning is closely tied to thenotion of representation. In addition, as mentioned earlier, the model components are de�nedin too abstract terms to allow a validation against neuroscienti�c data which the method ofconvergent validation prescribes. In order to alleviate this situation a parallel modeling e�ortdealing with the way in which cortical circuits can form dynamic, spatial and temporal scale,invariant representations has been performed which includes pertinent anatomical and physio-logical features of cortical circuits [K�onig and Verschure, 1995, Verschure and K�onig, 1997]. Inaddition, in order to arrive at more biologically realistic real-world devices, initial experimentswere performed using neuromorphic sensors (silicon retinae) as distal sensors on mobile plat-forms [Indeveri and Verschure, 1997]. These sensors approximate the response properties of theouter plexiform layer of the retina [Douglas et al., 1995]. They provide an input signal whichemphasizes the dynamics of the visual world, rapidly adjusting to changing illumination condi-tions and responding to spatio-temporal contrast variations. Hence, these distal sensors providemore realistic constraints on neural models which are supposed to work with these signals asopposed to CCD cameras.An important question is whether the proposed model, which captures elements of problemsolving tasks such as foraging, can be considered a model of cognitive processes. The dominantparadigm in the study of mind, brain, and behavior can be called symbolic cognitive psychology[Newell, 1990]. This approach bases its explanations of cognition on a so called knowledge level.A central principle in a knowledge level explanation is the law of rationality: a rational systemwill use its knowledge in order to reach its goals. A paradigmatic example of this approach,which constituted the core of the arti�cial intelligence program, is the hypothesis of PhysicalSymbol Systems (PSS) put forward by Newell and Simon [Newell, 1980]. Despite its limitations20



the proposed model of the reective controller, DACIII, is the closest approximation of a syn-thetic rational system, which uses its knowledge to reach its goals. The goals are de�ned in termsof its internal states, i.e. avoid or approach. In case the IS population Aversive is active, forinstance, the adaptive control structure will aim the behavior of the system to the reduction ofthis internal state, i.e. by triggering avoidance actions. As such both the avoidance of obstaclesand the approach of targets can be interpreted as goals the system tries to attain. The reectivecontrol structure is, in addition, attempting to achieve the goal of �nding targets. The knowl-edge it brings to bear on reaching these goals are the acquired LTM segments, which can beinterpreted as the world model of the system. This world model, however, is at no point in time�xed. The content of LTM can change at any time due to new experiences (see [Verschure, 1998]for a further comparison). Traditionally the ascription of a goal to a behaving system is de�nedin terms of performance. The presented model of the reective control structure makes theproposal that its neuronal correlate will have a component which relates to the motivationalstate of the organism. As such the de�nition of a representation in terms of a sensory event, aninternal state, and an action implies that the notion of a goal is an integral component of theacquired CS representations.DACIII is a fully bootstrapped system. Initially it performs as a reactive controller whichprovides the constraints to develop CS representations. Through the acquisition of these CSrepresentations the system will start to behave as an adaptive controller. Subsequently thetransition to reective control can be made in case the non-speci�c learning system reliablyclassi�es the ongoing interaction between the organism and the environment. At this level thedeveloped CS prototypes can start to function as expectations on future states of the worldexpressing their relative con�dence in terms of the dynamics of the collector and trigger units.These expectations will in turn strongly structure the actual behavior displayed. Even thoughmany problems remain to be solved DACIII demonstrates that also more complicated, \cogni-tive", problem solving tasks are within reach of a pure bottom up approach, the reservations ofthe cognitivists not withstanding [Fodor, 1983].
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Figure captionsFigure 1The three levels of control.Figure 2BugWorld.A: The simulated soma.B: A standard environment containing four targets.C: An example trajectory using a reactive control structure.Figure 3Khepera and Xmorph.A: The microrobot Khepera.B: The used environment. Scale bar indicates 20cm. The circle indicates the border region of thetarget gradient. \X" represents the center of the target region with the highest light intensity.C: The three simulation processes de�ned in Xmorph dealing with the sensors, Video, and thee�ectors, Khepera, and the simulation of the control structure, DacIII.Figure 4The complete learning system.The assumed interactions between non-speci�c, speci�c, and general purpose components oflearning and the sensors and e�ectors of a behaving system. Dashed lines represent operationsperformed on representations of the CS or CR. Dotted lines represent acquired CRs. Solid linesindicate prewired relationships.Figure 5Adaptive control.DACII a model of the non-speci�c learning system. WTA: Winner Take All.Figure 6The model of the general purpose learning system.Central components and their interactions are distinguished.Figure 7Properties of the modeled sensory system processing states of the distal sensor (color CCD cam-era).A: an illustration of the projections between the three populations responding to the color chan-nels and the CS generating population. Light gray lines indicate excitatory connections, darkgray is inhibitory.B: Khepera placed in front of a red rectangle. Scale bar is 20cm.C: The digitized video image using a standard hue to luminance mapping.D: A single cell in the CS population responds to the red rectangle present in the image. Only forthis cell the excitation, derived from the preferred red channel (population FoveaR, exceeds theinhibition received from the two opposing color channels, green and blue (populations FoveaGand FoveaB. Levels of activity are expressed in a gray scale and the size of the rectangles repre-senting the individual cells. Light gray and large rectangles represent maximum activity, darkgray and dots represent minimum levels of activity.Figure 8Performance comparison in the recall period. 26



A: trajectory of DACII.B: Trajectory of DACIII performing the same task.Figure 9The con�dence measure D.Evolution of D of DACIII over 14000 steps using the environment depicted in Figure 2B. Thetarget gradients were present from time steps 0 to 2000 and 7000 to 9000 (see lower panel).Figure 10Positions in the environment where e�ective LTM segments were stored in STM.Figure 11Performance of Khepera using DACIII. Time intervals are de�ned as hours:minutes:seconds.A: Example trajectory in time interval 00:10:45 and 00:13:59. Individual points in the plotreect the position of Khepera as sampled through TraX. The white and black rectangles rep-resent the position of the soma at the start and end of this sequence respectively.B: Positions visited by the soma during the �rst 26 minutes of the experiment.C: Time interval 1:29:57 - 1:33:48.D: Positions visited by the soma in the time interval 1:08:55 - 1:33:48.Figure 12Illustration of the structuring of the behavior of Khepera through the use of sequential repre-sentations. Positions where the behavior was determined by reective control are indicated witha rectangle. Location of the robot where it found a target is indicated with a star. The startand end position of the soma in this interval is indicated with \Start" and \End". The arrowindicates a situation where under the continuous control of the internally generated predictionsa target was found.Figure 13Illustration of the structuring of the behavior of Khepera through the use of sequential repre-sentations in a recall test in a di�erent environment.A: Positions visited during the �rst 45 minutes.B: Positions visited during three test trials where the robot was placed in the upper left cornerof the environment indicated with the white rectangle.
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Figure 2 A
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Figure 2 B
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Figure 2 C

31



Figure 3 A
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Figure 3 B
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Figure 3 C
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Figure 4
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Figure 5
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Figure 6
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Figure 7 A
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Figure 7 B
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Figure 7 C
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Figure 7 D
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Figure 8 A
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Figure 8 B
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Figure 9
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Figure 10
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Figure 11 A
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Figure 11 B
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Figure 11 D
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Figure 12
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Figure 13 B
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