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Abstract

The computational abilities of recurrent networks of neurons with a linear activation function above threshold are analyzed. These
networks selectively realise a linear mapping of their input. Using this property, the dynamics as well as the number and the stability of
stationary states can be investigated. The important property of the boundedness of neural activities can be guaranteed by global inhibition. If
used together with self-excitation, the global inhibition gives rise to a multi stable winner-take-all (WTA) mechanism. A condition for a
neuron to be a potential winner of the competing dynamics is derived. The network becomes a largest input selector when the self-excitation
is marginal.

Slowing down the global inhibition produces oscillations. The study of oscillations of random networks suggests that all cyclic trajectories
of linear threshold networks are a result of the existence of partitions with undamped linear oscillations. Chaotic dynamics were never
encountered in computer simulations and perhaps do not exist at all in small networks.q 1998 Elsevier Science Ltd. All rights reserved.
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Nomenclature

N Number of neurons
Nþ Number of active neurons (at timet)
I ¼ (I i) Neural states (i ¼ 1,…, N)
F ¼ (Fi) Neural activities (i ¼ 1,…, N)
J ¼ (Ji) Input currents
Jþ Sum of inputs to active neurons only
Pþ andP¹ Set of active and inactive neurons respectively
Ft ¼ I þ Total network activity (sum of positive neural

states)
W ¼ (wij) Synaptic weights
Q ¼ (v i) Firing thresholds
t, L Time constant of inhibitory neuronL
d ij Kronecker–Delta (d ij ¼ 1 if i ¼ j and 0 otherwise)
X Steady state of variableX

1. Introduction

Linear threshold (LT) neurons have a non-saturating acti-
vation function. Their output, which is a rate-coded firing

frequency, is confined to the positive real axis. One of the
first neural network models using linear threshold neurons
was the model of the Limulus eye (Hartline and Ratliff,
1958) based on the concept of lateral inhibition. More
recently, the modelling of cortical microcircuits has
shown to be a well suited domain of application for LT-
networks as the growing literature illustrates (Malsburg,
1973; Douglas et al., 1994; Ben-Yishai et al., 1995; Salinas
and Abott, 1996). The structure and some behavior of these
networks have been investigated since (Hadeler, 1974) and
one of the major results is the derivation of a necessary and
sufficient condition for a LT-network to possess a unique
stationary state (Kuhn and Rainer, 1987; Feng and Hadeler,
1996). The condition is that all determinants of the linear
pieces the entire system is made of must be nonzero and
have the same sign. An intuitive understanding of this fact is
that the determinant of a linear mapping is related to its
orientation. If the orientation is preserved at partition
boundaries, then these boundaries divide the image space
into disjoint domains where each point is uniquely repre-
sented. However, monostable networks are computationally
restricted: they cannot deal with important neural computa-
tions such as decision making. Therefore, the main focus of
this paper is on important properties of multistable net-
works.
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The non-saturating activation function implies that the
firing rate of some recurrently connected neurons might
be unbounded. We interpret this undesired range of opera-
tion as being equivalent to the firing rate of real nerve cells
saturating due to the absolute refractory period. Linear
threshold neurons have to be kept from diverging by wiring
a suitable inhibitory pathway. This is consistent with
cortical cells rarely operating close to saturation, despite
the strong recurrent excitation (Douglas et al., 1995).
The nonlinear dynamics can be studied in detail by virtue
of the switching patterns between different linear pieces
which are characterized by an effective recurrence matrix.
Using this method we are able to describe the qualitative
behavior of the dynamics and the stationary states expressed
by synaptic weights and input values.

2. A general network of LT-neurons

The equations forN recurrently connected LT-neurons
are:

ti İ i(t) ¼ ¹ Ii(t) þ
∑

j
wij Fj(t) þ Ji , Fj(t) ¼ max(Ij(t) ¹ vj , 0)

(1)

The dot denotes temporal differentiation.W ¼ (wij) is the
recurrent synaptic matrix,I (I 1,…,I N) the neural states
(dissipated currents),F the activities (firing rates) andt ¼

(t1,…,tN) are positive time constants. TheJ ¼ (J1,…,JM)
are excitatory inputs, which for example originate from the
LGN if I (t) represents states of neurons in primary visual
cortex.Q ¼ (v1,…,vN) are individual firing thresholds. The
feedforward, feedback and dissipated currents are summed
to yield the net current that causes the firing rate to change.
The dissipative current¹ I (t) tries to dynamically anni-
hilate the net current and bring the neuron back towards
its resting state. A large time constant indicates that a neuron
presents a large inertia to the net current and makes it
respond slowly. The nature of the distinct nonlinearity in
the LT activation function is well suited to interpreting the
output as a firing rate, much better for example than a
smooth activation function.

For the following, we putv j ¼ 0 (j ¼ 1,…,N). This does
not change the computations of the network, since it is
equivalent to interpreting the inputs and the neural states
being shifted byv j and ¹ v j, respectively. Experimentally,
it is common to subtract the spontaneous background
activity before onset of a visual, somaesthetic or other sti-
mulus. This operation thus resembles the shifting of the
input, since the absence of inputs turns off the activities in
LT-networks1.

A possible computation of LT-networks is the input–output

relation ofJ and the steady stateI ¼ I (`), provided that such
a state is reached after transient dynamics.

3. The effective recurrence matrix

At any fixed time t, each LT-neuron is either firing or
silent. We can, therefore, divide the whole ensemble of
neurons into a partitionPþ(t) of neurons with positive
states:I i(t) $ 0 for i [ Pþ(t), and a partitionP¹ ðtÞ of
neurons with negative states:I i(t) , 0 for i [ P¹(t). Clearly
we have thatPþ(t) ∪ P¹(t) ¼ [1,…N] and that there are in
total 2N different possible partitions forI . Pþ and P¹ are
constant most of the time except at discrete times when a
neuron starts or stops firing.

Suppose now that we look at the dynamics at a particular
time interval, for whichPþ and P¹ are fixed. It is then
possible to define a matrixWþ such that:

Wþ I (t) ¼ WF(t) (2)

This relation holds for allI (t) constrained to this partition.
The matrixWþ is called theeffective recurrence matrix. It is
simply constructed out ofW by substituting all the columns
with an index belonging toP¹ by the null vector. Thus
wþ

ij ¼ wij for j [ Pþ andwþ
ij ¼ 0 for j [ P¹. It is straight-

forward thatWþ satisfies the microscopic relations:wþ
ij Ij ¼

wijFj. Drawing lines to neurobiology, the recurrence matrix
describes the connectivity of the anatomical network;
whereas the effective recurrence matrix describes the con-
nectivity of the operating network, taking into account only
active neurons. Silent neurons are not dynamically relevant;
this is why their effective output weights are zero.

We find that for any partition, the dynamics of the LT-
neural network are accurately described by the following
linear differential equations:

ti İ i(t) ¼
∑

j
(wþ

ij ¹ dij )Ij(t) þ Ji (3)

whered ij denotes the Kronecker delta. These equations are
easy to study by virtue of their linearity. The whole com-
plexity of the entire dynamics now resides in the switching
between different partitions. It is this switching that gives
rise to effects like dynamic amplification and nonlinear
decisions. A simple illustrative analogy is the situation
where a car driver is confronted by a green traffic light
shining at the same time as the red light. If he was only
capable of linear reactions, he would press the accelerator
and brake pedals at the same time, yielding at best a little
traffic jam. But no reasonable person would react like this.
On the contrary, the driver might reduce the sensorimotor
mapping dynamically to one where the effective recurrence
matrix neglects the neural code of either the red or the green
light. His appropriate reaction would thus be either to press
on the acclerator or the brake pedal, the latter of which
might cause a nervous honking from behind.

Still based on the multiple linear Eq. (3), we want to

1 As we will see, in some marginal cases, the activities can get latched at
non-zero values for zero input. This latching is then given the role of a
memory activity.
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address now the question of the boundedness of such a net-
work. This property has to be guaranteed for all inputsJ. A
sufficient criterion is that theN eigenvaluesl i (i ¼ 1,…,N)
of all the 2N matrices (Wþ ¹ 1) have a negative real part (1
denotes the identity matrix). Then every partition is asymp-
totically stable; all the system can do is switch between
different point attractors. However, since the determinant
of a matrix equals the product of its eigenvalues, all the
determinants of the effective linear systems have the same
sign (¹ 1)N in that case. As a consequence of the theorem
cited in the introduction, there is only a single stable fixed
point in this network, which is not what we are interested in.

To build a network with more interesting properties,
namely competition, it is much better to rely on a weaker
condition, which allows for positive eigenvalues under
some circumstances. A necessary condition for bounded-
ness is that every partition with positive eigenvalues will
eventually be quit by the dynamical system. A system can
still be bounded but not converge to a fixed point if it
switches endlessly between a stable and an unstable parti-
tion, as will be illustrated by a relaxed winner-take-all
network. The eigenvector corresponding to the most
unstable mode must be made of components of different
signs, in this case at least one neuron dives into the sub-
threshold region where a new linear system might prevent
explosion. Unfortunately, conditions based on eigenvalues
and eigenvectors are very exhaustive to verify and even
more difficult to respect when designing a network. Thus
for practical considerations, we have to rely on another
argument.

We assume for the moment that the states are bounded
and that they become stationary. What can be said about the
set of fixed points of the network? If (Wþ ¹ 1) is invertible,
then the explicit expression for the fixed pointI of Eq. (3) is:

I ¼ (1¹ Wþ )¹ 1J (4)

This is a true fixed point provided thatI comes to lie in the
partition dictated byWþ , e.g.I i , 0 for i [ P¹ andI j . 0
for j [ Pþ. The solution is unique for a given partition. If the
steady stateI is considered to be the output of the system,
then a LT-neural network is characterized to be a selective
linear mapper. Which linear mapping it actually realizes is
determined by the effective synapses and depends strongly
on the inputs and the initial conditionsI (0). If (1 ¹ Wþ) is
not invertible, then some neurons can get latched at a non-
zero activity for zero inputJ ¼ 0 and there are an infinite
number of fixed points.

The operation of thresholding is conceptually one of the
simplest ways to introduce a nonlinearity to a computational
model, which is required to realize brain-like behavior. This
is also a feature of the brain-state-in-a-box model (Anderson
et al., 1977; Anderson, 1983), which is more suited to
imitate psychophysical performances, notably categorical
perception. The perception is coded as equilibrium points
located at the corners of a high-dimensional box. However,
unlike a LT-network, the BSB-model is not capable of a

highly sensitive response to variations in the inputJ. On
the contrary, LT-networks can categorize the input by the
discrete set of active neurons in steady state.

By means of Eq. (4), it is possible to derive a simple
algorithm that seeks for the fixed points of the network. It
consists of three steps:

1. Choose a partitionPþ.
2. Construct the effective recurrence matrixWþ according

to Eq. (2) and solve the fixed point Eq. (4) forI .
3. If I is consistent withPþ, then it is a fixed point, if not,

then there is none for this partition.

The search for fixed points runs through all the 2N parti-
tions and is, therefore, very exhaustive, practically it works
only for smallN.

In order to learn something about the stability of the fixed
points, the eigenvalues of the effective linear systems have
to be computed, again a very time consuming task.

We focus now on more concrete examples. As a compro-
mise for boundedness, we can show that by using global
inhibition, the total network activity is always bounded,
from which it follows that the activity of every single neu-
ron is bounded. This requirement is still weak enough to
allow for unstable modes and interesting computations, as
we will see. The biological evidence of intracortical global
inhibition seems to be weak. Long range competition has
been modelled in a more elaborate model by means of
subcortical regions (Taylor and Farrukh, 1996). But to
keep the model simple and compact, global inhibition will
be adequate.

The network we introduce has arbitrary connectionswij .
0 betweenN excitatory neurons. The inhibition is assumed
to be instantaneous, its subtractive influence is included
directly in the equations of excitatory neurons:

İ i ¼ ¹ Ii þ
∑

j
(wij ¹ w̄j)Fj þ Ji (5)

wherew̄j ¼ o iwij. We compute the total activity by sum-
ming over all active neurons in Eq. (5). We define the total
positive stateI þ: ¼

∑
Pþ I i, the corresponding inputJþ: ¼∑

Pþ Ji and the total activityFt: ¼ o iF i. By construction we
have thatFt ¼ I þ and thatI þ is a continuous function in time
as opposed to the total effective inputJþ. Because we do not
sum over all the neurons but only over the active ones,İ þ is
bounded by:

İ þ
# ¹ I þ þ Jþ (6)

Inequality (6) forI þ with an equality sign is bounded. If two
different differential equations of the first order in time for x
and y satisfyẋ # ẏ andx(0) ¼ y(0), then the solutions are
ordered,x(t) # y(t) for t . 0. Thus the original network, Eq.
(5) is bounded.

Unfortunately this analysis does not lead to the conclu-
sion that the dynamics always converge to an equilibrium
point, because it does not eliminate the possibility of the
system switching endlessly between different partitions. In
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principle, the dissipation in one partition might counter-
balance the dissipation in another one, such that the system
oscillates between the two. However, such a case was not
encountered in computer simulations with a random excita-
tory matrixW; networks with strong and instantaneous inhi-
bition seem to produce global point attractors only.

4. Winner-take-all network

An interesting LT-network to be studied for its dynamics,
fixed points and stability is a winner-take-all network. Such
a network is constructed by restricting the excitatory con-
nections of Eq. (5) to pure self-excitation of strengthw $ 1.
Again a remark should be made about the biological
plausibility. Autapses do exist, but they are quite rare, in
fact they are too seldom for justifying exclusive self-excita-
tion on the single neuron level. Therefore every equation of
the coupled system is interpreted as the mean activity of
disjoint groups of strongly connected neurons. This is rea-
sonable, because strongly connected neurons are likely to
fire simultaneously. Thus their activities might also be
described by a common activation function. Every such
group of excitatory neurons is inhibited by a global and
recurrent inhibitory neuron. For a different biologically
motivated WTA-model using global inhibition, and also
additional references, see (Coultrip et al., 1992). The equa-
tions studied are:

İ i ¼ ¹ Ii þ wFi ¹ L þ Ji (7)

tL̇ ¼ ¹ L þ w
∑N
j ¼ 1

Fj (8)

Unlike in the general network, the global inhibition is now
mediated by an additional neuronL. Its output does not need
to be rectified, because due to the purely excitatory stimula-
tion of strengthw (corresponding tōw in Eq. (5)), it cannot
go below the threshold. The fixed points are the same for
instantaneous and delayed inhibition, but not the dynamics.
These are strongly dictated byt, reflecting the delay of
inhibition. The only inhomogeneities among excitatory
neuronsI i in this network are the individual external inputs:
Ji . 0.

The idea is to analyse the dynamics in each partition. By
virtue of the simplicity of the network, it is possible to per-
form a single analysis for all partitions. Without loss of
generality we choose a partition consisting ofNþ $ 1 active
excitatory neurons (Nþ ¼ 0 leads to at least one firing neu-
ron i becauseL → 0 in this case and becauseJi . 0). By
summing over the active neurons in this partition, we find:

İ þ
¼ ¹ I þ þ wI þ ¹ Nþ L þ Jþ (9)

tL̇ ¼ ¹ L þ wI þ (10)

The behavior ofI þ is described by the two eigenvalues of

the linear Eqs. (9) and (10):

l1,2 ¼ p 6

�������������
p2 ¹ q

q
(11)

wherep ¼ (w-1-t -1)/2 andq ¼ t -1(wNþ-w þ 1).

First we are interested in the stable case. The two eigen-
valuesl1, andl2 have a negative real part ifp , 0 andq .
0, which leads to:

t ,
1

w¹ 1
(12)

This condition no longer depends onNþ and is thus valid for
every partitionPþ. Therefore, provided the time constantt

is sufficiently small,I þ tracks an asymptotically stable fixed
point. Thus we find again that the total activityFt is
bounded.

There are still unstable modes in those partitions for
which Nþ $ 2: Suppose that any two neuronsI i and I j are
firing. By defining the differential stated ¼ I i ¹ I j, we find
that the differential equation ford is: ḋ ¼ (w¹ 1)dþ Ji ¹ Jj.
It follows thatd is locally unstable, becausew $ 1. Any two
firing neurons separate exponentially2. However, we know
that the sum of their activities is bounded: therefore, at least
one of them has to have a decreasing activity and fall below
the firing threshold. Similarly, all the stationary states cor-
responding to multiply firing neurons are unstable, because
differential modes are unstable: the vector (0,…, 1, 0,…,
¹1, 0,…, 0) with nonzero components 1 and¹ 1 for any
two firing neurons is an eigenvector of (Wþ ¹ 1) with posi-
tive eigenvalue (w ¹ 1).

From our stability analysis of the total network activity in
Eq. (12), we conclude3 that the only stable stationary states
lie in the partitions for whichNþ ¼ 1. By labelling the
winning neuron with the indexk, we find the following
stable steady-states:

Ik ¼ Jk (13)

L ¼ wJk (14)

Ii ¼ Ji ¹ wJk # 0, i Þ k (15)

The winnerI k is not always the neuron which receives the
largest external input currentJk. But the potential winners
can be inferred. These are the neurons for which Inequality
(15) holds. Their input timesw must be larger than any other
input (see Fig. 1). Thus the closer the self-excitationw is to

2 In the casew ¼ 1 the separation is linear:d(t) ¼ (Ji ¹ Jj)t þ d(0). Note
that the direction in which the separation takes place only depends on the
difference in the input currentsJi ¹ Jj, and not on the initial conditiond(0).
This is whyw ¼ 1 produces an absolute WTA-network! The casew , 1
leads to a network converging globally to a unique fixed point, because of
the spectral radius of (W ¹ 1) being smaller than 1 (Feng and Hadeler,
1996).

3 Formally this does not prove that the network consists only of global
fixed point attractors, although this was the case for all computer simula-
tions. If the rectification in Eq. (7) is not applied toI i, but to (wIi ¹ L þ Ji),
then it is possible to derive a global Lyapunov function assuring conver-
gence (S. Seung, personal communication).
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1, the more selective is the WTA-mechanism and in the
marginal casew ¼ 1 it is absolute. In this case the only
stable fixed point consists of the winning neuronI k, with lar-
gest external inputJk ¼ maxj(Jj), if the maximum is unique.
This concludes the analysis of the stable WTA-network.

What happens if the inhibition is slow (forw . 1):
t . 1=ðw-1)? Thenp . 0 in Eq. (11) and at least one eigen-
value has a positive real part. A simple calculation shows that
if the inhibition is not too slow 1/(w-1) , t , w/[(w-1)2],
then the eigenvalues are complex conjugates of each other for

all Nþ. Physically this describes an undamped linear oscilla-
tion. Iþ oscillates more and more around the fixed point and
has to go negative sooner or later. Then the driving forces of
Eqs. (7) and (8) vanish; all eigenvalues of the corresponding
partition are real and negative. However, there is no stable
fixed point of the equations forNþ ¼ 0. Thus, at least one
neuron will start firing, the oscillations set in again and the
cycle restarts. The ‘epileptic’ network switches endlessly
between this stable and other unstable partitions such that
its activity remains bounded. Further, computer simulations
show that the state trajectory approaches a limit cycle, which
is a periodic solution of the equations (Fig. 2).

On the other hand, for very slow inhibition,t q w, both
eigenvalues in Eq. (11) are real and positive for allNþ. The
solution forI þ is then purely exponential: the total activity
diverges to infinity without crossing partition boundaries
any more.

The appearance of periodic orbits in linear threshold net-
works seems to be related to the existence of complex conju-
gate eigenvalues with positive real parts. This questions is
investigated in computer simulations in the following section.

5. A completely arbitrary network

Complex eigenvalues of real matrices appear always in

Fig. 1. The possible winners of the WTA-network as a function of the
largest inputJmax. and the self-excitationw. The weakest neuron still able
to win must have an input which multiplied by the self-excitationw is still
larger than or equalJmax. Forw ¼ 1, this is only possible for the neuron with
the largest input: the network is monostable.

Fig. 2. Cyclic dynamics of the WTA-network of 6 neurons due to alterations between undamped oscillations marked by the shaded areas and exponential
decaying dynamics.J ¼ (0.1, 0.15, 0.2, 0.25, 0.3, 0.35),t ¼ 1.8,w ¼ 2. Note thatt is in the region where undamped oscillations occur [(1¼ 1/(w-1)), t , (w/
[(w-1)2] ¼ 2)]. The undamped oscillations terminate as soon as the last excitatory neuron stops firing. The algorithm seeking for the fixed points isolated nine
unstable fixed points. The labeling of the time-axis arises from the Forward–Euler method with stepsizeDt ¼ 0.1. For the same network witht ¼ 0.5, the four
fixed points in the unitary partitions whereNþ ¼ 1 become stable while the other five remain unstable. These numbers depend strongly on the inputJ.
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conjugate pairs. The probability that an abitrary matrix has
two positive eigenvalues with conjugate imaginary parts is
infinitely larger than the probability of two purely imaginary
eigenvalues, because the imaginary axis has zero measure.
If all oscillations in LT-networks are a result of unstable
modes defined by pairs of eigenvalues with positive real
parts, then oscillations should appear much more often
than in purely linear systems. Computer simulations of an
arbitrary LT-network of 16 neurons with random weights in
the range from -1.1 to 0.9 and uniform time constantst i ¼ 1
were performed. If the dynamics approached a limit cycle,
then the underlying mechanism was studied by splitting up
the network trajectory in pieces of linear dynamics accord-
ing to Eq. (3). This was done by computing all the zero
crossings of the network state trajectory. The eigenvalues
of all the effective linear systems were then computed and
checked whether they fell in the right half of the complex
plane excluding the positive real axis. The result of this
analysis to a periodic trajectory is depicted in Fig. 3, the
pieces of the dynamics which possess undamped oscillatory
modes are shown by the shaded surfaces. Extensive studies
revealed that for all periodic trajectories, it was possible to
isolate a time interval smaller than the period with
undamped oscillations4. This study suggests that periodic

oscillations are always due to the existence of undamped
oscillatory modes. It might be interesting to pursue whether
this can be undermined theoretically or whether on the con-
trary a periodic orbit can be constructed based only on
damped and purely exponential modes.

6. Conclusions

The main goal of this article was to investigate the ana-
lytic approach to networks of linear threshold neurons.
Here, a general excitatory network was shown to be
bounded by using global inhibition. Lateral inhibition as
proposed in the original model of Hartline–Ratliff has
been shown elsewhere to be bounded (Hadeler, 1974). In
both these kinds of LT-networks, there is thus no need for a
saturation in the activation function; the dynamics and the
fixed points can be analyzed with reasonable effort. For
piecewise linearity of higher than first the analyses would
be more expensive and nearly impossible for smooth activa-
tion functions such as sigmoids. It might be possible that a
combination of semi-global and lateral inhibition also
produces bounded networks while revealing even more
complex computations and behavior. The WTA-network
is a paradigm for global inhibition. As a contrast to other
recurrent WTA-networks in the literature, the network
studied here includes the possibility of always selecting
the neuron with largest input independently of the initial
conditions.

Fig. 3. Cyclic dynamics of a network consisting of 13 fully connected neurons with weights uniformly distributed in the range from¹ 1.1 to 0.9. The
eigenvalues used for detecting the regions of undamped oscillatory dynamics as marked by the shaded surfaces were computed with the software package
Matlab.

4 Interestingly, all trajectories that occurred in the simulations were diver-
gent or convergent to either stationary states or limit cycles. There were no
chaotic trajectories, not even in an arbitrary network of 50 neurons. This
suggests that chaos is not possible at all in small LT-networks.
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The study of complex dynamics in LT-networks showed
that limit cycles were always a result of repetitive undamped
oscillations. An illustrative example of these rhythmic
activities is the ‘epileptic’ WTA-network. Although the
analytic methods presented in this paper are elementary,
they are well suited to revealing the basic properties of
simple, as well as complex networks.
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