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Abstract

At NIPS 96 we introduced the Modi�ed Riccati Rule (MRR), a Heb-

bian like learning algorithm that uses temporal correlations between pre-

and postsynaptic spike to determine changes in synaptic connectivity 1.

Recent physiological experiments in young rat neocortex indicate that

the relative timing of single excitatory postsynaptic potentials (EPSP)

and postsynaptic action potential (AP) indeed in
uence the synaptic ef-

�cacy 2;3. Since the backpropagating AP is shared information among

all synapses, the synaptic changes could evolve in a coordinated way.

One coordinated behaviour, which in the MRR is achieved this way, is

weight vector normalization. We introduce a CMOS implementation of

the MRR and demonstrate its normalizing property.

1 The MRR in analog VLSI

We have fabricated an analog VLSI (aVLSI) chip, using a 2�m CMOS process,

to simulate the MRR in analog hardware. Figure 1 shows a repeatedly used

component of the circuit. The so called trigger circuit produces digital pulses of

adjustable width given a rising 
ank as input. Figure 2 describes the soma and

�gure 3 one learning synapse (of which our silicon neuron has three). Also part

of the neuron but not shown is an excitatory and an inhibitory non learning

synapse with adjustable weight.

2 Normalization

By normalization, we mean that the length of the weight vector is kept con-

stant. This is one mechanism that prevents the synaptic weights growing

in�nitly. Such growth is a constant danger in more basic Hebbian learning

rules, especially in recurrent networks. On the other hand normalization of

the weight vector also prevents the case that all synapses of one neuron be-

come ine�ective. In many learning rules this normalization is performed as an
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Figure 1: This 'trigger circuit' produces a digital pulse of adjustable size as response to a

rising edge. Later in this paper we will use its icon (in the upper left). It is composed of

a NAND gate and two inverters. The NAND and one inverter form an AND gate. The

input signal is given directly to one input of the AND and delayed and inverted to the other.

fall determines that delay and therefore the width of the trigger circuit's output pulse. rise

being slightly smaller than V dd ensures that the falling edge of the signal does not produce

a glitch.

extra step after the weights have been adjusted. In other cases, like the Riccati

or the related Oja's rule, the normalization is included in the learning rule and

the extra step is not required. The MRR is inspired by the Riccati rule and

has inherited an approximate weight vector normalization from it and so has

our aVLSI implementation.

This is basically achieved by making the weight decrements dependent on

the postsynaptic AP and the actual weight, and the increments proportional to

the number of presynaptic spikes. If one increases the frequency of the input to

all synapses uniformly, then the output frequency will increase proportionally.

If the weight increments and decrements were in equilibrium, they will remain

so. If we increase the average input frequency at just one synapse, this will

cause the weight at this particular synapse to grow. This enhances the average
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Figure 2: The circuit for the soma: It contains three trigger circuits. The lower two pro-

vide timing information to the synapses about the rising and falling of the action potential

(os rising, os falling). The third embedded in the top circuit, tuned by fall slow to pro-

duce wider pulses, provides the action potential. It is activated as soon as the soma voltage

(inverted sense compared to nature) falls below a threshold (ap thold). A di�erential pair,

a current mirror and a simple ampli�er change that information into a rising voltage. The

rising edge then triggers the trigger circuit. The soma is set back to Vdd by os falling.

output frequency, which will cause all other synapses that still receive the

same amount of input spikes to weaken. This competition among the synapses

causes the weight vectors length to remain in a limited range.

On our chip the weight increments are not linearly dependent on the num-

ber of input spikes. They would be so if the correlation signal corr was simply

a non-decaying spike counter and its in
uence on the weight increments linear

rather than exponential. The correlation signals's decay is deliberate, since

it makes weight increments dependent on temporal coincidence. It causes the

normalization to be less precise, especially when several synapses get inputs

that are very similar in frequency (see �gures 4 and 5). The exponential re-

lation between corr and the weight increments is a more serious problem. By

keeping delta small, we keep to a small region of that exponential curve so as
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Figure 3: The circuit for one synapse: It �rst captures an incoming spike with a trigger

circuit and translates it to a pulse of well de�ned width. This pulse opens a gate which

allows a current to 
ow from the soma to ground, the size of the current given by the

synapse's weight (The sense of the membrane voltage is inverted compared to nature.). It

also decreases (increases in the intuitive way) the correlation signal by an amount determined

by the delta. alpha and beta set the size of the weight change at an AP-event. A further

control on the weight increments and decrements can be achieved by adjusting the length of

the os rising pulse with fall (see the circuit for the soma in �gure 2). Finally the correlation

signal's decay (towards tau) and its upper limit is controlled by the parameter tau.

to linearize it as much as possible. Still this e�ect tends to lengthen the weight

vector when the input load is concentrated on just a few synapses (�gures

4 and 5). This again enlarges the 'valleys' (expected from the theory of the

MRR) shown in the �gures, where the two input frequencies are similar.

Figures 4 and 5 illustrate test runs on the chip where two synapses received

Poisson distributed inputs. Due to fabrication asymmetries, synapse 1 tends

to be stronger than synapse 2. That is why the value at the right side of the

graph is bigger than at the left side.

3 Conclusion

A backpropagating action potential can be used to obtain coordinated changes

in synaptic e�cacy among all synapses of one neuron. For example weight
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Figure 4: The graph shows the weight vector length on the y-axis for an experiment with our

chip using two synapses, both of which get Poisson distributed spike-trains with constant

average frequency as input. The squared sum of the average input frequencies was kept

constant. The x-axis is an angle � and the input frequencies �1 and �2 given to the synapses

are de�ned as �1 = 100sin(�) �2 = 100cos(�). The weights were given time to settle and

were then taken as the mean of 50 oscilloscope traces of 200ms each. The bars show the

standard deviations in these sets of 50 samples.

vector normalization can be performed this way as demonstrated in an aVLSI

arti�cial learning neuron.
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Figure 5: Again (see �gure 4) the weight vector length for an experiment with two synapses

stimulated with Poisson distributed spike signals is shown. This time the average frequency

of synapse 2 is kept constant at 50 Hz. The x-axis shows the average frequency given to the

other synapse. The weights were taken as the mean of 200 oscilloscope traces of 200ms each.

The bars show the standard deviation in these sets of 200 samples.

1996.

2. M. V. Tsodyks and H. Markram. Redistribution of synaptic e�cacy

between neocortical pyramidal neurons. Nature, 382:807{810, August

1996.

3. H. Markram, J. L�ubke, M. Frotscher, and B. Sakmann. Regulation of

synaptic e�cacy by coincidence of postsynaptic aps and epsps. Science,

275:213{215, 1997.


