
The action potential discharge response of single neurons to both
visual stimulation and injections of current were obtained during
intracellular recordings in cat visual cortex in order to estimate the
net excitatory current arriving at the soma during visual stimulation.
Of 45 neurons recorded intracellularly, 19 pyramidal neurons and one
basket cell were labelled with horseradish peroxidase. The
discharge of all neurons adapted to constant current. For 40
neurons, a single exponential provided a good fit to the adapting
discharge (r2 = 0.73 ± 0.03) for all current intensities. Superficial
layer neurons were significantly faster adapting [P < 0.001, mean
(± SEM) time constant of adaptation = 11.5 ± 1.3 ms; n = 20] than
deep layer neurons (mean time constant of adaptation = 51.4 ±
6.4 ms; n = 10). The percentage adaptation of the spike frequency,
%(peak – adapted rate)/peak, was determined from the fitted
exponential. Superficial layer neurons adapted significantly more
strongly (P < 0.01, mean = 67 ± 3%) than deep layer neurons
(mean = 51 ± 5%). The mean firing frequency in response to a
current step of 320 ms duration had a linear relationship to the
amplitude of the injected current (slope 66 spikes/s/nA; origin zero,
mean r2 = 0.94; n = 33). This relationship provided a means of
estimating the net peak excitatory current generated by visual
stimuli. The estimated mean peak somatic current during the
passage of a bar across the receptive field was 1.1 nA and the
average current for the duration of the visually evoked discharge
was 0.64 nA (n = 17). The transfer response of real and model
neurons was obtained by differentiating the discharge response to a
step input current and was then used to predict the output of the
neuron following an arbitrary input. When these transfer responses
were convolved with known input signals in model neurons, the
predicted output was close to the simulated response of the model
neuron to the same input waveforms. The transfer response was
calculated for eight real neurons. Estimates of the net excitatory
current arriving at the soma during visual stimulation was obtained
by deconvolution. The mean peak somatic current for these neurons
was 0.62 nA.

Introduction
In recent years the focus of visual cortical physiology has begun

to shift from simple descriptions of the receptive field properties

of neurons toward understanding the principles of neuronal

interactions  (Douglas and  Martin, 1991; see Douglas et al.,

1995), of which receptive fields are one obvious product. To

examine these interactions we require a method for estimating

the effect of synaptic events on the output of cortical neurons.

Synaptic efficacy has been assessed in vitro by measuring the

amplitudes of single synaptic events using spike-triggered

averaging (e.g. Komatsu et al., 1988; Thomson et al., 1988), or

paired intracellular recordings (e.g. Mason et al., 1991). The

amplitudes of the unitary EPSPs and IPSPs are small, usually

tenths of a millivolt. However, synaptic events that occur in

isolation are not  apparent in vivo. Even  in the  absence of

external sensory   stimulation,   the membrane potential is

relatively depolarized compared to that seen in vitro, and

f luctuates ceaselessly. These synaptic events are most likely

the consequence of spontaneous activity arising from the

low-frequency firing from tens or even hundreds of presynaptic

thalamic and cortical afferents (see Bernander et al., 1991).

When presented with visual stimuli, neurons in the primary

visual cortex typically respond for periods of several hundreds of

milliseconds. In this dynamic state in vivo the dendrites and

soma are quite different from the cable structure that is tested in

vitro. Hence the interpretation of individual synaptic effects is

certainly impractical and their individual effects are possibly

irrelevant in the in vivo situation (Bernander et al., 1991). There

is a growing consensus that to provide an important insight into

the transduction of synaptic current into a spike rate output, we

need first to understand the broad components of the net

synaptic current delivered to the action potential generation site

(Douglas and Martin, 1991; Powers et al., 1992; Schwindt and

Crill, 1996).

Studies of the input–output functions of neurons derive

mainly from the studies of motoneurons by Granit et al. (1963,

1966a,b). They injected current steps into the soma and found

that for steady-state discharge there was a linear current–

frequency relationship over a ‘primary’ range of firing, which

covered ∼80% of the motoneuron’s operational range. In

addition, they were able to demonstrate that the currents add

linearly and that synaptic and injected currents have the same

effect on the firing rate. These observations indicated that the

current–frequency relationship could be used as a calibration

curve to estimate, for a given discharge rate, the net current

supplied to the soma by excitatory synapses.

This work has been extended by Powers et al. (1992), who

worked on motoneurons in vivo, and by Schwindt and Crill

(1996) with cortical neurons in vitro. They used modified

voltage-clamp techniques to show that the effective synaptic

current can be estimated from the frequency of discharge, even

in the face of such non-linearities as spike threshold and

dendritic amplification. Thus, the measurements of the effective

synaptic current subsume all of the many factors that govern

current delivery to the site of action potential generation.

However, these studies computed the effective input current for

the simpler case of the steady-state discharge only, so removing

the potentially complicating effects of spike-rate adaptation. In

the case of visual stimulation, however, it is the synaptic currents

generated during normal response to the movement of a

stimulus over a receptive field that we wish to estimate, so the

time-dependent adaptive processes are inevitably engaged. If we

could predict how the intrinsic mechanisms of adaptation

transform the synaptic input into discharge, then we could

estimate the excitatory current signal by inverting the trans-

formation.

The most convenient method of making such estimations

would be to assume that the conversion of synaptic current to
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spike rate in neocortical neurons can be approximated by a

linear system. Conventional deconvolution methods can then be

used to estimate the input signal (e.g. excitatory current) from

the output signal (e.g. action potential discharge) and the

impulse response function (transfer response) of the neuron. It

is clear, however, that all spiking neurons exhibit non-linearities;

the thresholded action potential is one obvious example of this.

This seems to preclude any linear systems treatment of neuronal

discharge. However, recent evidence from in vitro recordings in

guinea-pig visual cortex indicates that the conversion of input

current to spikes can be reasonably approximated by a linear

filter model with rectification (Carandini et al., 1996). Thus,

there are some grounds for optimism that such linearities also

might allow us to estimate the form of the excitatory current that

leads to the pattern of spike discharge observed in vivo.

In this paper we compare experimentally the adaptation of

neurons to steps of injected current, and compare the magnitude

of responses to intracellular current injections and to visual

stimulation. However, the challenge is to estimate the magnitude

of the time-varying net synaptic current arriving during visual

stimulation. We thus used a more detailed model neuron than

that used by Carandini et al. (1996) to test the acceptability of

the assumption of linearity. The simulations indicated that a

linear model does provide a means of achieving a useful

approximation: the shape of an arbitrary input current can in

fact be recovered with reasonable fidelity from the spike output.

We then applied this same method to our experimental data to

estimate the form and amplitude of the net somatic current

during actual visual stimulation. A brief report of this work has

appeared (Ahmed et al. 1993).

Materials and Methods

Animal Preparation

The cats were prepared according to previous methods (Martin and

Whitteridge, 1984; Douglas et al., 1991). Sixteen cats (1.9–4.0 kg, mean

2.5 kg) were initially anaesthetized with 2-3% Halothane in N2O/O2. The

left femoral vein and artery were cannulated. Halothane was withdrawn

and anaesthesia was maintained with i.v. alphaxalone–alphadolone

(Saffan, Glaxo). The eyes were infiltrated with a drop of atropine sulphate

(1%,  w:v)  and phenylepherine hydrochloride  (1%, w/v) to paralyse

accommodation and retract the nictitating membrane. Contact lenses of

zero power were placed on the corneas and test lenses focused the eyes

on a tangent screen 114 cm from the eyes. After completing the surgical

procedures, Saffan anaesthesia was replaced with i.v. sodium barbiturate

(loading dose 10 mg/kg, thereafter 2-3 mg/kg/h). The animal was para-

lysed (80 mg of gallamine triethiodide and maintained on a continuous

infusion of 13 mg/kg/h with tubocurarine of 1 mg/kg/h). The animal

was ventilated with a mixture of O2/N2O (30:70). End-tidal CO2 was

maintained around 4.5%. The blood pressure, heart rate, EEG, end-tidal

CO2 and rectal temperature were monitored continuously throughout the

experiment.

Classification of Neuronal Responses and Nomenclature

Recordings were made in the right primary visual cortex (Horsely–Clarke

AP coordinates –3 to –6 mm). Insulated tungsten stimulating electrodes

were positioned in the optic chiasma (OX), in the optic radiation above

the right dorsal lateral geniculate nucleus (OR1), and in the optic

radiation underlying the primary visual cortex (OR2). The micropipettes

were filled with 4% horseradish peroxidase (HRP) in a 0.2 M KCl solution

buffered with 0.05 M Tris (pH 7.9). The impedance of the bevelled

pipettes ranged between 40 and 80 MΩ. During extracellular recording

neurons were functionally classified (Gilbert, 1977), their receptive fields

through the right and/or left eye were mapped, and their optimal

orientation and range, directional selectivity, ocular dominance class,

latency to OX, OR1 and OR2 stimulation were determined (Douglas et al.,

1991). Responses to visual stimuli were stored as peristimulus time

histograms (PSTHs). The DC offset and capacitance compensation were

trimmed, and the electrode impedance measured before attempting

intracellular impalement. Records of the intracellular potential were

digitized and stored (see below). HRP was injected into the neuron using

intermittent positive current pulses of between 2 and 4 nA.

The responses of neurons have been classified according to the form

of their action potential, or by the temporal pattern of their responses.

Mountcastle et al. (1969) recording from sensorimotor cortex in vivo

distinguished ‘regular’ neurons, which were encountered most frequently

and had triphasic action potentials, from ‘thin spike’ neurons, which had

brief action potentials and high firing rates. These types were later found

in vitro by Connors et al. (1982). They added a third type, the ‘burst’

firing neuron. Burst firing neurons are characterized by phasic high

frequency firing of two or three action potentials in response to a step of

excitatory current. Both the regular and bursting types adapt to  a

constant input and have non-linear relationships between the amplitude

of the excitatory current and the firing rate. A fourth type has been

observed in vivo in different cortical areas in the cat by various

investigators (Calvin and Sypert, 1976; Gray and McCormick, 1996;

Steriade et al., 1996, 1998). These neurons show regular and repeated

bursts of several spikes at 30-40 Hz during constant current injections.

At low currents the current discharge curves are shallow (primary

range firing, e.g. Granit et al., 1966a), but become steeper with

increasing current (secondary range firing in motoneurons, e.g. Granit et

al., 1966b). Essentially the curves are sigmoidal because they saturate at

high currents. By contrast the ‘thin spike’ or ‘fast’ firing neurons do not

show adaptation and have a relatively linear relationship between

injected current and firing rate (McCormick et al., 1985; Baranyi et al.,

1993; Azouz et al., 1997). The current nomenclature for these classes is

unsatisfactory because some neurons are characterized on the basis of

their action potential duration, others on their pattern of firing. As

Mountcastle et al. (1969) observed, the fast-spiking neurons actually have

a more regular pattern of discharge than the so-called ‘regular’ neurons,

which adapt. In this paper we were primarily concerned with the pattern

of firing and so we classified the neurons on that basis. We prefer to use

the label ‘adapting’ rather than ‘regular’, and ‘non-adapting’ rather than

‘fast-firing’. Bursting neurons are a subclass of adapting neurons and are

those that produce a high-frequency burst of impulses before adapting.

Since such bursts could also arise from spontaneous synaptic activation,

we classified as bursting only those neurons that continued to produce

bursts even at high amplitudes of current injection where the response

would no longer be dominated by the spontaneous synaptic input.

Recording and Analysis

All the  electrophysiological data were recorded via a Neurolog DC

amplifier (NL102G). The voltage signal was filtered (24 or 48 dB octave –1

Butterworth, frequency 0.5–0.7 kHz, Kemo VBF/3) digitized at 2 kHz

(CED1401), and stored on a computer. ‘Bridge’ balancing was done

outside and inside the cell. Capacitance compensation was generally not

attempted inside the cell because of risk of damage. Further details are

given in Douglas et al. (1991). Biophysical or visual stimulation of the

neurons was controlled using in-house software. The biophysical

protocols were located in a different program to the visual protocols, so

on occasions the intracellular recording was lost before the program for

the biophysical tests was loaded. Visual presentations of bar stimuli were

produced by a Picasso image generator (Innisfree) and displayed on a

cathode ray tube (HP 1304a x–y display).

Intracellular current steps of 320 ms duration and amplitudes of 0–3

nA in increments of 0.1 or 0.2 nA were used to elicit a discharge of spikes.

Instantaneous spike rates were derived from the successive interspike

intervals of the discharge for 45 neurons. Responses to optimally oriented

visual stimuli were recorded together with electrical stimulation of the

optic radiation above the lateral geniculate nucleus (site OR1), the white

matter underlying primary visual cortex (OR2), and optic chiasma (OX).

Measurements of interspike intervals, spike characteristics, averaging of

responses, spike stripping to average subthreshold membrane potential

f luctuations, etc., were performed by customized software. Curve fitting

(least-squares regression algorithm of Marquardt) and other statistical

analyses were performed on the StatGrafics software (STSC Inc.).
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Simulations

Our simulation methods have been described in detail in previous

publications (Bernander et al., 1991; Douglas and Martin, 1991, 1992;

Douglas et al., 1991). Pyramidal neurons in striate cortex were labelled

with horseradish peroxidase during physiological experiments in vivo

in anaesthetized adult cats (Douglas et al., 1991). After histological

processing the neurons were reconstructed in three dimensions using a

computer-assisted method. The detailed structures of their dendritic trees

were reduced to an equivalent dendritic tree (Douglas and Martin, 1992)

consisting of seven compartments that represented the basal dendrites,

the soma and the apical dendrites. The dendrites were modelled as passive

compartments, but the model soma contained voltage- and

calcium-sensitive conductances that have been observed in cortical

neurons (McCormick et al., 1985; Hamill et al., 1991). Details of the

parameters used for conductances are given in Bernander et al. (1991).

Simulations of the electrophysiological behaviour of the pyramidal

neurons were performed using CANON (Bush and Douglas, 1991;

Douglas and Martin, 1991), or more recently with the NEURON

simulation package (Hines, 1989, 1993). Both give the same results. Signal

analysis was performed  using the  software  packages DADiSP (DSP

Development Corp.) and Mathematica (Wolfram Research).

Results

Experimental Tests of Linearity of Neocortical Neurons

The two principal requirements of a linear system are that (i) its

response to any linear combination of inputs can be decom-

posed into a linear sum of its responses to each of the inputs

applied individually; and (ii) its output scales linearly with input.

One corollary of these requirements is that the parameters (such

as the time constants) of the system be independent of its state.

It is usually not possible to satisfy these conditions strictly for

biological systems. However, there is a strong motivation for

making a linear approximation where it is reasonable. Under this

approximation we can exploit one very useful property of a

linear system: its response to any input signal is inherent in its

response to an impulsive input signal. Once this characteristic

impulse response, or transfer response, is known, the response

of the system to any input can be predicted (Shapley and Lennie,

1985). Conversely, if the output from the system is known, then

the form of the unknown input that caused the observed

response can be derived. In our case, the latter property would

mean that we could estimate the net synaptic current from the

known action potential discharge rate. This section of the paper

determines that such a linear approximation is reasonable for

neocortical neurons.

Adaptation and Time Constants

We recorded the discharge of neurons in cat area 17 in vivo

evoked by injection of simple steps of excitatory current through

the recording pipette, i.e. the same stimulus that has been used

to evoke and classify the response of single neurons in in vitro

studies. Of a total of 176 neurons recorded extracellularly and

whose receptive fields  were mapped, 70 were impaled for

durations  ranging from a  few minutes  to  >1.5 h.  Current–

discharge curves were obtained from 45 of the impaled neurons.

For neurons in which sufficient time was available for further

measurements, the mean input impedance was 42 ± 6.2 MΩ
(mean ± SEM, n = 17), the membrane potential was –45.7 ± 1.9

mV (n = 33) and spike duration at half-height was 0.87 ± 0.05 ms

(n = 33). The mean membrane time constant determined at the

resting membrane potential was 9.4 ± 0.9 ms (n = 11). Spike

heights in the records are truncated due to anti-alias filtering

and, for fear of damage, incomplete capacitance compensation

in some cases (see Materials and Methods).

Twenty of the 45 neurons were identified morphologically.

All were pyramidal neurons with the exception of a single basket

cell.  In cases  where intracellular recording was lost before

horseradish peroxidase could be injected into the neuron, we

attempted to expel horseradish peroxidase to mark the lamina

in which the neurons were located. However, some pipettes

did not pass horseradish peroxidase and the laminar location of

15 neurons could not be defined. Figures 1–3 illustrate the

responses to intracellular injection of step depolarizing currents

for a layer 3 pyramidal cell (Fig. 1), a layer 6 pyramidal cell (Fig.

2) and a basket cell (Fig. 3).

All the neurons recorded showed some degree of adaptation,

i.e. in response to a constant current step the firing rate

decreased with time. In general the responses of neurons in vivo

were more variable than those recorded in vitro, particularly

with small amplitude currents, as we have reported previously

(Holt et al., 1996). The response became more repeatable as the

amplitude of the injected current step was increased. The

response was also more repeatable during the initial phase of

the response when the discharge rates were relatively high, as

has been reported in in vitro recording in the rat (Mainen

and Sejnowski, 1995; Nowak et al., 1997). As the neuron

adapted, its discharge became more variable. In two neurons

(one is illustrated in Fig. 3) the discharge was highly irregular

even at high amplitudes of current injection. At high current

values (2.0 nA), these two bursting neurons showed adaptation

of their discharge.

The dynamics of the adaptation were quantified by fitting an

exponential decay function to the temporal form of the in-

stantaneous spike frequency to an injected current step (Fig. 4).

In 40 of 45 neurons the adaptation function was well-fit by a

single exponential plus a constant term (mean ± SEM r
2

= 0.73 ±

0.03). The best fits were obtained for responses to the higher

stimulus currents (>1 nA). In five neurons the variability of

discharge was too great to obtain any statistically satisfactory fit,

but even these neurons showed some degree of adaptation at the

highest stimulus currents. Only one of these was recovered. It

was a basket cell (Fig. 3), which is probably the dominant class

of inhibitory neuron in cortex (Martin, 1984). The step response

of neurons was fitted separately for each amplitude of stimulus

current. The mean of these fits was used to estimate the time

constant of adaptation for the individual neurons. Some neurons

exhibited irregular spontaneous discharge of action potentials.

The significance of this activity has been discussed elsewhere

(Holt et al., 1996). The spontaneous rates of the neurons

reported here were always very low by comparison with the

steady-state rates evoked by the 1 nA current steps, and so were

ignored in the fitting of exponentials.

If the neurons were truly linear with respect to discharge,

then one would expect their time constants of adaptation to be

independent of the amplitude of their input stimuli. The time

constant varied considerably between neurons (Figs 5 and 6) and

in some neurons, the time constant of adaptation increased with

stimulus amplitude. However, the increase was less than a factor

of two over the range of currents tested (0-2 nA, Fig. 5). For a

particular neuron, the time constant of adaptation increased only

a small amount over a wide range of stimulus amplitudes (Fig. 5).

This meant it was reasonable to average all the values obtained

for a particular neuron when tested at different current

strengths, and derive the distribution of time constants of

adaptation for the whole sample of neurons (Fig. 6A).

Previously we found laminar differences in responses of

neurons to electrical pulse stimulation of the afferents (Douglas
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Figure 2. Response of a layer 6 pyramidal neuron with simple type (S2) RF to 320 ms current steps. (A) Single trial responses of neuron to increasing current injections (bottom to
top, amplitudes shown at left). (B) Reconstruction of the HRP-labelled neuron. Mean input impedance, 77 MΩ; ocular dominance group, 2; optimal orientation, 34° (range 68°);
directionally biased.

Figure 1. Response of a layer 3 pyramidal neuron with a simple type (S1) receptive field (RF) to current steps. (A) Single trial responses of neuron to increasing current injections
(bottom to top, amplitudes shown at left, 320 ms duration). (B) Reconstruction of the HRP-labelled neuron. Mean input impedance, 37 MΩ; ocular dominance group, 1; optimal
orientation, 88° (range 31°); directionally biased.
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and Martin, 1991). We thus examined the relation of the spike

adaptation time constant with depth through the cortex and

found a significant correlation (Fig. 6B). Neurons in the

superficial layers adapted much more quickly (time constants

11.5 ± 1.3 ms, n = 20) than those in the deep layers (51.4 ± 6.4

ms, n =10).

The percentage adaptation for any particular neuron was also

approximately constant (Fig. 7) at all except the highest input

currents, where the unadapted (maximum) discharge rate

saturates and so the peak is relatively lower and the percentage

adaptation is inevitably smaller. The deep layer neurons tended

to have slower and weaker adaptation than the superficial layer

neurons. The difference in the degree of adaptation was

expressed as a percentage of (peak – adapted rate)/peak (Fig. 7).

This percentage hardly changed across the range of current

amplitudes for a particular neuron (Fig. 7A). On average the

superficial layer neurons adapted 67%, whereas deep layer

neurons adapted only 51%.

Comparison of Step-current Discharge with Visually

Evoked Discharge

The discharge pattern of the neurons that we recorded in vivo

(Figs 8A and 9A) was much more irregular than is commonly

seen in vitro. These f luctuations are even more evident in the

single trial responses to visual stimuli (Figs 8D and 9D), which

presumably ref lect the irregularity of the synaptic drive of these

neurons. Indeed, such irregularities in single trials were a major

problem in the quantitative analysis of visual receptive fields and

led to the ubiquitous use of averaging techniques. It is now quite

unusual to see in the literature on in vivo experiments, records

like those illustrated in Figures 8 and 9. The repeatability of

the in vitro responses means that single-interval current–

discharge plots are conventionally used. However, because of the

additional variability in the in vivo records, we averaged the

firing frequency over the full period (320 ms) of the current

stimulus. Data for individual superficial and deep layer neurons

are illustrated in Figures 8 and 9 respectively. Our average values

are slightly higher than the fully adapted discharge rate, because

the early unadapted phase of the response was included.

However, this difference is not very large. For a neuron with a

typical time constant of adaptation of 24 ms and percentage

adaptation of ∼50%, the average discharge rate is higher than the

adapted discharge rate by ∼8%. The current–discharge relation of

the striate neurons measured in this way for all neurons was

remarkably linear (mean ± 1 SEM r2
= 0.94 ± 0.01, n = 33) over a

wide range (0–3 nA) above the threshold current (Fig. 8B). The

average current threshold was close to zero (mean ± 1 SEM =

0.09 ± 0.02 nA), suggesting that these neurons were poised close

to their thresholds. This is unlike in vitro recordings from similar

neurons, where the current threshold is usually 0.2–0.5 nA. The

linear current–discharge relationship held even for neurons with

the most irregular discharges, like that of the basket cell (Fig. 8).

The distribution of the slopes of the current–discharge

relationships is shown in Figure 10A for the population of 33

neurons. The mean of the slopes of the function was 66

spikes/s
/
nA (Fig.  10C, Table  1). The two neurons  with  the

Figure 3. Response of a layer 3 basket cell with simple type (S1) RF to 320 ms current steps. (A) Single trial responses of neuron to increasing current injections (bottom to top,
amplitudes shown at left). (B) The morphology of the HRP-labelled neuron, dendrites shown separately on left, axon on right. Mean input impedance, 22 MΩ; ocular dominance group,
4; optimal orientation, 36° (range 33°); directionally biased.
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highest slopes (Fig 10A) were outliers and were eliminated from

further consideration. The laminar location of the somata of

19/31 neurons were determined histologically (Fig. 10B). The

distribution of discharge rates for these identified neurons is

shown in Figure 11. Superficial layer neurons were recorded in

all layers except layer 1. Four neurons were located in layer 4 and

all but two of the deep layer neurons were in layer 6. For these

identified neurons the mean of the current–discharge slopes

was 51 spikes/s/nA for superficial layer and layer 4 neurons, and

106 spikes/s/nA for the deep layer neurons (Table 1). These

difference are significant (P < 0.02, Mann–Whitney U-test).

If it is assumed that the average synaptic activity changes

much more slowly than the time constant of adaptation, then net

somatic input can be readily reckoned by using the current–

discharge curve as a look-up table. In 17/31 neurons whose

current–discharge relations were known, we were also able to

measure the average and peak discharge rate during the optimal

response to visual stimulation (e.g. Figs 8D and 9D). The average

discharge rate was estimated between onset and offset of the

response, and the peak rate was the maximum rate in any

histogram bin within the response time. The mean peak net

somatic current estimated from these values was 1.09 nA, and

the mean current for the whole response was 0.64 nA (Table 1).

This method gives an approximation of the net excitatory

current that the spike generating mechanism is ‘seeing’. To take

the temporal variation of the synaptic current into account, the

method must include the kinetics of adaptation. This requires a

more general, time-dependent model of the neuronal discharge,

which is developed below.

Transduction of Current to Spikes in Model Neurons

The findings above indicate that the discharge of striate neurons

scaled with their input currents, and the time constants of their

transient phases were reasonably invariant with input current.

These findings  support the possibility that cortical neurons

could be approximated as linear systems in respect of their

current–discharge behaviour. However, in these experiments we

measured the response of the cortical neurons to step input

currents, not an impulse of input current as would be used in

ideal analyses of linear systems. There are a number of practical

reasons for using a step input rather than a pulse, but the most

important is that the action potential output of the neuron is not

a continuous variable. Instead, the action potential process

effectively samples the state of excitability of the neuron.

Measuring the response to a step current permits more samples

to be collected and so improves the accuracy with which a single

response can be assessed. Once the response to a current step

has been fitted with an exponential and offset, the impulse

transfer response can be obtained by differentiating the fitted

function.

Figure 12 outlines the procedure for obtaining the impulse

transfer response, as applied to one of the model pyramidal

neurons. The output of the model neuron was processed by the

same methods as the biological data. The adaptation of the model

neuron to the step current input was fit by the sum of an

exponential and a step function (Fig. 12A) and the transfer

response obtained by differentiation (Fig. 12B). As a check of the

method the transfer response was convolved with the known

input signal (Fig. 12C). The predicted output (Fig. 12D) was

identical with the observed output of the model neuron (Fig.

12A). In this example the prediction was tested with exactly the

same signal that was used to assess the transfer response and

thus should provide an exact fit. If the neurons were ideal linear

systems, the predictions for arbitrary waveforms ought to be

equally good. However, it is clear from the description of the

experimental data that neurons, whether real or model, are only

approximately linear. To test the usefulness of the approxima-

tion we have therefore examined the response of the model

neuron to a number of interesting waveforms, i.e. sine waves

and Hanning functions. When testing the neuron with arbitrary

waveforms, we assumed that the transfer response derived from

the response to a current step fully characterized the neuron’s

behaviour.

The response of the model neuron to a two-step input could

be predicted with reasonable accuracy. Figure 13A compares the

linear systems prediction for a discharge response to a two-step

current input with that obtained from the model pyramidal

neuron. The peak response of the neuron to the second step is

less than that predicted by the transfer response. There are two

reasons for such underestimates. Firstly, the transient response

of the real neuron saturates at high frequencies, as seen also

in Figure 13C. Secondly, reconstruction of the current input

by the deconvolution method is limited by the information about

the input signal that is contained in the output spike train.

The prediction of the transfer response is a densely sampled

(effectively continuous) function, whereas the neuronal action

potential output (whether real or simulated) represents a series

of discrete samples of its internal state at the points where action

potentials occur and is subject to undersampling errors that

depend on the frequency of discharge.

When the neuronal spike rate is high relative to the

frequencies of the input signal, then the input signal is densely

sampled by spikes, and the reconstruction by deconvolution will

be good. For a pyramidal neuron, the model indicates that the

reconstruction is very good for input signal frequencies up to 10

Hz (Fig. 14A). If the input signal falls below the threshold for

spike generation, or the input contains frequencies that are too

high for the spike mechanism to follow, then the reconstruction

deteriorates. For example, at 20 Hz (data not shown) there are

only about two instantaneous frequency samples per cycle of the

input signal, and so the quality of the reconstruction is poor. By

40 Hz (Fig. 14B) the output contains only one discharge

frequency sample per cycle of the input  (single  spikes  are

occurring on the crests of the input signal only), and so the

reconstruction recovers only an estimate of the low-frequency

(DC) component of the input signal. The following examples

show how the sampling problem affects the estimates of input

currents in some typical experimental situations.

This problem of sampling also affects the estimate of input

current obtained by deconvolution. For example, the peak

discharge response during fast transients underestimates the

continuous response obtained from the ideal linear system (Fig.

13A,C). Consequently, the deconvolution is applied to an already

degraded output signal, and so underestimates the input current

in the regions of the peak response (Fig. 13B,D). An alternative

way of stating this problem is that a silent neuron provides the

observer with no sample of its internal state and therefore no

information with which to make an estimate of the input current

that it is receiving. A corollary of this point of view is that the

slower the rate of action potential generation, the slower the

sampling rate and so the less reliable is the estimate of the input

current.

The discharge of neurons cannot be negative, so the linear

approximation will be violated where such behaviour is

predicted. The absence of negative discharge is only a minor

limitation when it relates to the prediction of an output response
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of the neuron — in practice a zero discharge is a good enough

prediction. However, the inability to represent negative output

rates has much deeper consequences when the output of the

neuron must be deconvolved with the transfer response to

estimate the input current. Obviously, if the output is required to

go negative but cannot, then the estimation of input will be

inaccurate in those regions. An example of the kind of problem

that can arise is seen in Figure 13B. The output response

(Fig. 13A, thin line) goes to zero rather than negative. But the

deconvolution makes a distinction between these two cases. If

the discharge signal is zero rather than negative, the deconvolu-

tion reports that the input signal is relaxing back to zero more

slowly than it in fact does (Fig. 13B, thick line).

Various strategies could be used to minimize these in-

accuracies. For example, estimates of input current could be

ignored where the discharge rate is either very low or zero.

Assumptions about the behaviour of the negative-going output

could be made if some properties of the input signal were

known a priori. For example, if the input signal is known to be

rectangular, then the trailing artefact can be neglected. Another

strategy would be to apply negative-going input signals in the

presence of a positive background current that would offset the

output discharge and prevent it falling to zero. An example of

this strategy is shown in Figure 14A. The input signal is a 0.3 nA

10 Hz sine wave, and would normally lead to periodic phases of

zero discharge during which the estimated input current would

be uncertain. However, when the sine wave is applied in the

presence of a 1.0 nA offset current, the discharge is always

greater than zero and the output of the neuron agrees well with

the ideal linear prediction (thick line, Fig 14A, middle). But more

Figure 4. Spike frequency responses of superficial and deep layer cortical neurons to current steps (amplitudes in nA shown at right). Measured instantaneous frequencies are
indicated by open circles. The continuous curve through the data points is the best-fit single exponential decay to a constant. The data illustrate the fast adaptation characteristics of
superficial layer neurons (A: layer 3 pyramid, simple type S1 RF, mean time constant of adaptation = 12.1 ms, mean r2 = 0.81; C: layer 2 neuron, standard complex type CST RF, mean
time constant of adaptation = 9.4, mean r2 = 0.81) compared with the deep layer pyramidal neuron (B: layer 6, simple type S2 RF, mean time constant of adaptation = 35.9 ms,
mean r2 = 0.71).
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importantly, the output of the neuron can be deconvolved to

provide a good estimate of the input sine wave current (Fig. 14A,

lower trace, thin line, input; thick line, estimate). However, even

in the presence of an offset, the frequency of firing of the neuron

limits the fidelity of the reconstruction. A 40 Hz input signal is

not recovered (Fig. 14C).

Figure 15 shows the estimates obtained by the transfer

response method for input currents of the form expected during

visual input, i.e. smoothly increasing and decreasing currents

(Douglas et al., 1991). The input currents were modelled as

Hanning functions of various amplitudes (Fig. 15, thin lines).

These signals were injected in the model neuron. The action

potential discharges were recovered, and deconvolved with the

neuron’s transfer response to yield estimates of the input current

(Fig. 15, thick lines). The responses scale well with the magni-

tude of the input current, confirming the suitability of the linear

systems approximation. In all three cases the input currents are

slightly underestimated as the discharge rate of the neuron

decreases. The underestimate is worst for the smallest amplitude

Hanning input. The underestimate is due to the dependence of

the adaptation time constant on discharge rate. For the smallest

Hanning input the neuron is always discharging at a much lower

rate than elicited during the evaluation of its transfer response

by a 1 nA step function. Consequently, the neuron’s effective

adaptation time constant will be less than the value used in the

transfer response. Because the neuron adapts more quickly, its

actual discharge sags below the predicted value. Conversely,

because the transfer response assumes a longer time constant of

adaptation, the deconvolution underestimates (Fig. 15A, thick

line) the current required to achieve the ideal discharge (Fig.

15A, thin line). Nevertheless, the simulations show that given a

reasonably linear neuron, the response of the neuron to input

currents of arbitrary waveforms can be predicted with good

accuracy.

Net Somatic Current During Visual Stimulation

The simulations with model neurons show that the transfer

response method provides a close approximation to the ideal

responses predicted by linear systems theory. In this final

section we apply the technique to real cortical neurons in order

to estimate the net current that produces the discharge during

visual stimulation. In eight neurons for which we were able to

Figure 5. Current–discharge relations and adaptation time constants for three neurons
(A: layer 3 pyramid, S1 RF; B: layer 6 pyramid, S2 RF; C: layer 2 neuron, CST RF) recorded
in vivo in cat striate cortex. The instantaneous spike frequency for the first spike interval
and the adapted discharge frequency are denoted by the filled squares and open circles
respectively. The fitted time constants of adaptation (τadaptation) over a range of current
steps are shown below

Figure 6. The time constants of adaptation for the 40/45 neurons for which single
exponential decays could be fitted. (A) Population distribution of time constants (class
interval 5 ms). The time constant for an individual neuron was taken as the average
value of the exponential functions obtained at different test currents. (B) Relationship
between the adaptation time constant (τadaptation) of a neuron and its laminar location.
Filled squares, neurons whose location was inferred from electrode depth
measurement alone (morphology unknown); filled circles, morphologically identified
pyramidal neurons; open circle, morphologically identified basket cell. The mean (± 1
SEM) time constants of adaptation for superficial and deep layer neurons were,
respectively, 11.5 ± 1.3 ms and 51.4 ± 6.4 ms. P < 0.001, t-test.

Figure 7. Percentage adaptation of discharge rate observed in cortical neurons in vivo.
Adaptation expressed as a percentage of (peak – adapted)/peak ). (A) Examples for
superficial (circles) and deep (filled squares) layer neurons. All deep layer neurons
showed a systematic decrease in percentage adaptation with increasing current. (B)
Data for all 40 neurons (class interval of 0.4 nA, bars are ± 1 SEM). Statistically
significant differences (P < 0.05) are indicated by asterisks. (C) Distribution of mean
values of percentage adaptation for all 40 neurons (mean = 63.1, ± 1 SEM = 2.5), and
according to their superficial (mean = 67.1, ± 1 SEM= 3.0, n = 20) and deep (mean
= 51.2, ± 1 SEM= 4.9, n = 10) layer locations (P = 0.01, t-test).
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Figure 8. Current–discharge characteristics and visual responses of neurons in the superficial layers of cat striate cortex (three pyramidal neurons and one basket cell). (A) Single
traces recorded during intracellular current injection of 1.0 nA. Simple type receptive field (RF) denoted by S; subscripts denote the number of discharge centres; standard complex
type denoted by CST. Latency of response of cells to electric stimulation at site OR1 were 3.3 ms (P5C1E13), 0.9 ms (P7C1E13), 3 ms (P3C2E16) and 1.9 ms (P9C1E14) (B).
Current–discharge relationships for each of the neurons at left. Each point (filled square) represents the spike rate averaged over the duration of intracellular current step. Solid line,
best fit linear regression. Horizontal arrow, the mean spike rate during visual drive. (C) Anatomical diagram showing the location in the cortex of the somata of the recorded neurons.
(D) Single traces of the response to an optimally oriented bar stimulus. (E) The receptive field and preferred stimulus for the neuron. VM, vertical meridian (degrees); HM, horizontal
meridian; arrow, preferred direction of bar movement eliciting the optimal response.

Figure 9. Current–discharge characteristics and visual responses for deep layer pyramidal neurons. Details as for Figure 8. Latency of response of cells to electric stimulation at site
OR1 were 2 ms (P4C3E12), 5 ms (P6C4E15), 2.7 ms (P1C1E16) and 2.2 ms (P2C2E16).
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Figure 10. Current–discharge relation in neurons. (A) Distribution of slopes in a sample
of 31 neurons. (B) Relationship between location of the soma and the slopes of the
current–discharge responses in 19 neurons labelled intracellularly with horseradish
peroxidase (see Fig. 4). (C). Linear regression onto the current–discharge data (solid
line, slope = 65.9 ± 6.7 SEM spikes/s/nA, n = 31). Dashed lines, 95% confidence
limits. Open and filled diamonds, mean and peak responses of neurons to visual
stimulation respectively. The somatic currents that evoke these levels of spike activity
are indicated by the vertical dashed lines. Mean and peak response currents were 0.64
and 1.1 nA.

Table 1
Characteristics of striate neurons

Parameter Units Population Mean SEM n

Current–frequency (f–I) slope spikes/s/nA all 65.9 6.7 31
superficial 50.7 5.9 13
deep 105.7 19.9 6*

peak Isyn nA all 1.1 0.14 17
superficial 1.1 0.18 10
deep 0.80 0.33 4a

average Isyn all 0.64 0.08 17
superficial 0.62 0.10 10
deep 0.54 0.15 4a

peak Isyn
(deconvolution)

all 0.62 0.15 8

*P = 0.05; anon-significant (P values were calculated with respect to superficial neurons in each
parameter category).

Figure 11. The current–discharge data separately plotted for superficial (A) and deep
(B) layer neurons. The mean (± 1 SEM) slopes for superficial and deep layer neurons
were 51 ± 6 (n = 13) and 106 ± 20 (n = 6) spikes/s/nA respectively (P < 0.02,
Mann–Whitney U-test). The mean and peak discharge responses to the optimal visual
stimulus are indicated by the open and filled diamonds. These responses correspond
respectively to net somatic currents of 0.62 and 1.13 nA for superficial neurons (n =
10), and 0.54 and 0.80 nA for deep layer neurons (n = 4).

Figure 12. Transfer response of a model layer 2/3 pyramidal neuron. (A) Exponential
adaptation function fitted to instantaneous discharge frequency of the neuron in
response to the intrasomatic current step shown in (C). (B) Transfer response obtained
by differentiating the fitted function of (A). (C) A 1 nA intrasomatic current step. (D)
Predicted output obtained by convolution of (B) with (C). The predicted response agrees
exactly with the observed response (A).

Figure 13. Simulation of responses to staircase input to a layer 2/3 pyramidal neuron.
(A) Instantaneous discharge frequency (thin line) in response to the intrasomatic
current signal shown in (B). Ideal output response (thick line), predicted by convolution
of the neuron’s transfer response with the same intrasomatic current signal applied
to the neuron. (B) Estimate of the somatic input current (thick line), obtained by
deconvolution of the neuron’s output discharge with its transfer response. The input
current is overestimated in the period following the offset of the test signal, because
the negative discharge predicted by the transfer response (thick line in A) is not
measurable in a real neuron. Thin line, ideal input current: 0.8 nA stepped to 1.5 nA. (C)
As for (A), but for reversed order of staircase current input. (D) As for (B), but for
reversed order of staircase current input. Here the model (thick line in D) correctly
predicts the input current for the step from 1.5 to 0.8 nA, because the discharge
remains positive, but overestimates the current when the current steps from 0.8 nA to
zero.
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derive an impulse response, we also recorded their responses to

visual stimulation. These data were used to obtain estimates of

the net input currents by deconvolution. The visual response

was usually to a bar passing across the receptive field of the

neuron with preferred orientation and velocity and direction.

Three examples are shown in Figure 16. The upper traces show

individual trials during which the neurons responded to visual

stimulation. The discharge of the neurons recorded in vivo

under these conditions is characteristically variable from trial to

trial, and so we averaged the response over a number of trials

to obtain the best estimate of the discharge rate in response

to visual stimulation (rate histograms, Fig. 16). Averaging

necessarily smooths the form of the output signal, and so

high-frequency f luctuations are filtered out. The lower traces of

Figure 16 show the estimates of the net somatic current obtained

by the deconvolution technique that evoked the response of the

neurons to optimal visual stimulation. The three highest peak

currents were in excess of 1 nA. The three smallest currents

were ∼0.3 nA and all were recorded from layer 6 pyramidal cells.

The average (± SEM) estimated peak somatic current of the eight

neurons was 0.62 ± 0.15 nA and the average net charge delivery

to the soma was 0.23 ± 0.05 nC.

Discussion
Our results show that pyramidal neurons observed in cat visual

cortex in vivo exhibit the same basic relationship between

excitatory current and firing frequency and the same process of

adaptation that have been observed in neurons in vitro. In this

respect the membrane properties appear to be preserved in

vivo. Qualitatively similar findings have been reported in the cat

for neurons in motor cortex (Calvin and Sypert, 1976; Baranyi et

al., 1993) and association cortical areas 5 and 7 (Nunez et al.,

1993). Clearly, the firing patterns seen in vitro are more

reproducible trial to trial (e.g. Mainen and Sejnowski, 1995;

Nowak et al., 1997) than in vivo, and this difference may be

attributed in part at least to synaptic activity. A similar

observation has been reported for cat visual cortex in vivo (Gray

Figure 14. Simulation of responses of a pyramidal neuron to intrasomatic current
injection of 10 Hz (A) and 40 Hz (B) sinusoids superimposed on a step. The input signal
of a 1 nA step, 0.3 nA amplitude sine wave of (A) 10 Hz and (B) 40 Hz, is indicated as
the thin line in lower panel. The somatic membrane potential of the model layer 5
pyramidal cell is shown in the top panel. Measured instantaneous discharge
frequencies (asterisks joined by thin lines) are plotted in the center panel. The
instantaneous frequencies are interpolated by a cubic spline (thick line, middle panel).
The interpolated signal was deconvolved with the neurons’ transfer response to obtain
the estimated input current (thick trace, lower panel). The deconvolution method
provides a good estimate (thick line) of the 10 Hz input (thin line, lower panel in A), but
recovers only the low-frequency features (thick line) of the 40 Hz input signal (thin line,
lower panel in B).

Figure 15. Simulation of responses of layer 2/3 pyramidal neuron to 0.6, 1.0 and 1.5
nA amplitude Hanning input currents. (A) Instantaneous discharge frequencies (thick
line) in response to the three intrasomatic current signals. Ideal output responses (thin
lines) predicted by convolving the neuron’s transfer response with the same
intrasomatic current signals applied to the neuron. (B) Estimate of the somatic input
currents (thick lines), obtained by deconvolving the neuron’s output discharges with its
transfer response. Thin lines, ideal input currents.

Figure 16. Visual evoked responses and input currents for superficial (A) and deep
layer pyramidal (B) neurons and the layer 3 basket cell (C). Top row are single traces of
the neuronal discharge during the passage of an optimal stimulus across the receptive
field. Middle row are the peristimulus time histograms of the spike discharge (10 trials,
bin width 20 ms). The lower traces are the estimates of the somal currents derived from
the transfer response. Time scale applies to all rows.
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and McCormick, 1996; Bringuier et al., 1997). We did not use

the lengthy test periods that were required to see the slow

changes that Schwindt et al. (1988a,b) report in vitro. Our

observations were made over the first 300 ms of adaptation,

during which the major changes in firing frequency occur.

During this period, adaptation in both hippocampal and

neocortical neurons is dominated by just one or perhaps two

calcium-dependent potassium currents (Connors et al., 1982;

Schwindt et al., 1988a,b; Berman et al.,  1989;  Aicardi  and

Schwartzkroin, 1990; Segal, 1990; Staley et al., 1992). Studies

of cortical slices in vitro indicate that the potassium currents

are sensitive to various putative neurotransmitters, including

norepinephrine, acetylcholine and serotonin (see reviews by

Nicoll et al., 1990; McCormick, 1992).

We found that the basket cell produced fast spikes and had

high frequencies of firing and showed some spike rate

adaptation at high currents. None of the three identified basket

cells recorded by Azouz et al. (1997), however, had the bursty

discharge patterns seen in this basket cell. Steriade et al. (1998)

have reported similar patterns in corticothalamic and ‘local

cortical interneurons’ of motor and association cortex. However,

their morphological data indicated that all of their neurons were

spiny or sparsely spiny, not smooth neurons like basket cells. In

our sample of superficial and deep layer pyramidal cells we did

not observe burst discharges of spikes at frequencies of 20–70

Hz in response to visual stimulation (Hubel and Wiesel, 1965;

Gray and McCormick, 1996). Low-frequency (7–20 Hz)

oscillations have been reported by Bringuier et al. (1997) in

response to visual stimulation. We have reported that

low-frequency oscillations (mean = 9.5 Hz, n = 31) can be evoked

by electrical pulse stimulation of the optic radiations combined

with visual stimulation (Ahmed et al., 1994), suggesting that this

may be one natural resonance frequency of the circuit.

We found that the adaptation of the spike discharge over time

can be well-fitted by the sum of a single exponential and a

constant. This is surprising in view of the number of different

conductances that contribute to the dynamics of action potential

generation in cortical neurons (Crill et al., 1986; Flatman et al.,

1986; Franz et al., 1986; Sutor and Zieglgansberger, 1987; Spain

et al., 1991; Traub et al., 1991). Lorenzon and Foehring (1992)

recorded from human neocortical tissue and reported that the

discharge in response to currents of 1–2 nA could be fitted by the

sum of two exponentials. Although we found that the fits with

two exponentials made little improvement on fits with one

exponential, the time constants Lorenzon and Foehring (1992)

extracted (range 10–21 ms for the first time constant, 70–159 ms

for the second) are broadly consistent with our findings.

In vitro studies have not reported a relationship between

laminar location and the time constant and magnitude of

adaptation. We found in vivo that superficial layer pyramidal

neurons have short adaptation time constants (3–24 ms),

whereas the deep layer neurons have longer ones (24–75 ms).

Moreover, the deep layer neurons adapt less completely than

superficial layer neurons. We do not know why these differences

exist in the cat visual cortex. They cannot be due to systematic

variations in the input impedance between deep and superficial

layer neurons, because the input conductance of the neuron

during discharge is dominated by the average spike conduct-

ance.  It is  possible that  these correlations could  be due to

surface/volume ratio differences between the superficial and

deep layer neurons. The calcium compartment that affects

adaptation is thought to be only a thin shell beneath the

membrane (Yamada et al., 1989), and the size of this shell would

tend to scale with surface area of the soma rather than its

volume. This would make the calcium dynamics (and

adaptation) relatively insensitive to somatic diameter. It seems,

then, that the calcium dynamics must be fundamentally different

in deep layer neurons than in superficial layer neurons. There is

some evidence for such a difference within the population of

layer 5 pyramidal neurons. Some of these neurons exhibit

bursting discharges that depend on the expression of calcium

conductances (Silva et al., 1991), potassium conductances

(Schwindt et al., 1988a,b) or calcium- dependent potassium

conductances (Berman et al., 1989; Friedman and Gutnick,

1989; Silva et al., 1991). However, most of the deep  layer

neurons recovered were in layer 6, where bursting neurons have

not been reported in vitro.

The current–discharge relation of striate neurons is

remarkably linear over a 0–2 nA range of somatic input current,

with an average slope of 66 spikes/s/nA. The large Betz cells of

the cat motor cortex in vitro have a f latter slope in their current

discharge (∼20 spikes/s/nA), but as Schwindt (1992) has noted,

also have remarkably linear input–output relationships given the

number of non-linear conductances underlying the discharge

pattern. Unlike neurons recorded in vitro, which have threshold

currents of ∼0.4 nA (Connors et al., 1982; Mason and Larkman,

1990), the striate neurons in vivo are poised close to their

threshold (Berman et  al.,  1991;  Douglas et  al., 1991).  This

finding is consistent with the observation that many cortical

neurons are spontaneously active (Gilbert, 1977; Leventhal and

Hirsch, 1978), and with the membrane potentials observed in

our intracellular studies (Berman et al., 1991; Douglas et al.,

1991). The simple linear behaviour of the neurons suggested that

the current–discharge curve could be used to estimate directly

the net somatic current resulting from synaptic activity on the

dendrites.

We have assumed that the action potentials are generated

close to the soma where the recording pipette is located.

Delivering current into the soma from a recording pipette may

not be identical to the case where the current is delivered to the

soma from synapses. The dendrites with active synapses will be

more depolarized than the soma and the dendritic voltage-

sensitive conductances are likely to be active. This means that

the soma may experience a larger dendritic conductance load in

the synaptically driven case than the pipette-driven case. These

differences are only relevant below threshold. In motoneurons

these differences were found to be so small that synaptic and

injected current have an equivalent effect in driving discharge

(Schwindt and Calvin, 1973). More recently Powers et al. (1992)

and Schwindt and Crill (1996) have used a modified voltage-

clamp technique to measure the synaptic current delivered to

the somata of neurons held at resting potential. They found that

the synaptically evoked steady-state discharge of motoneurons is

fully explained by the measured synaptic current, corrected for

the change in driving potential that occurs during sustained

discharge. The spike itself did not disrupt the transfer of current

from dendrites to soma. Indeed, the spike mechanism acts as an

imperfect voltage-clamp that restricts the somatic potential to a

range of ∼10mV above the voltage threshold for discharge

(Bernander et al., 1991; Holt and Koch, 1997) and so sinks as

much current as the dendrites (or an intrasomatic electrode) will

deliver. Thus, once the action potential discharge begins, the

average spike conductances will contribute to the conductance

load. In this respect, a space-clamp of the entire neuron would

produce misleading results in the present context, because the
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measurements of the net current would be made with an

inappropriate dendritic conductance load.

Using the simple current–discharge relation as a means of

calibrating the current delivery to the cortical neurons, we

estimated the average and peak net current delivered to these

neurons during the passage of a bar stimulus across their

receptive field was 0.64 and 1.1nA respectively. It should be

emphasized that this method estimates only the net current

delivered to the soma through the action of the active synapses.

It is insensitive to changes in the contributions of individual

synapses, or groups of synapses, that may occur due to non-

linear interactions between synapses (e.g. Shepherd et al., 1985)

or changes in the electromorphology of the neuron (Rall 1964;

Jack et al., 1975; Bernander et al., 1991). It also  does  not

discriminate between excitatory and inhibitory currents; it only

estimates the net current arriving at the soma. This net somatic

current is the current delivered to the soma from the dendrites

(or an intra-somatic pipette). It will be dissipated through the

spike conductances, the adaptation conductances and the

passive input conductance at the soma.

Powers et al. (1992) used a similar approach to our first

approximation to estimate the effective synaptic current from

the discharge of motoneurons. In their method the input current

is computed from the steady-state discharge only, and adaptation

transients are ignored. This method provides suitable estimates

when the input to the neuron changes much more slowly than

the time constants of adaptation. However, the dynamic com-

ponent cannot be entirely neglected in the neurons of striate

cortex, because the discharge of simple cells is modulated by

moving sinusoidal contrast gratings up to temporal frequencies

of 8 Hz (Maffei and Fiorentini, 1973; Ikeda and Wright, 1975;

Tolhurst and Movshon, 1975; Movshon et al., 1978). At these

high frequencies, adaptation mechanisms will affect the

discharge of the neurons.

Another approach to this problem was taken by Awiszus

(1989, 1990, 1992), who described various methods for

inferring the strength of synaptic input from action potential

output, and so would be sensitive to the temporal form of the

input. His first method makes use of a full Hodgkin–Huxley type

simulation of action potential generation, and estimates the

input current by successive approximation. At the end of each

trial, the output of the model is compared to the experimentally

observed discharge and the profile of the estimated current is

corrected. Typically, 100 such iterations must be performed

to achieve convergence. Moreover, successful convergence

depends on there being a good match between the parameters

of the Hodgkin–Huxley model and the particular real neuron

being examined. This match must be determined by ex-

periment. Clearly, this method of inferring input current does

not lend itself to real-time investigations. Awiszus’ second

method was based on the leaky integrator model of action

potential discharge. An analytical reconstruction operator was

used to recover the input current. The second method was

simpler than the first, but its application is limited to the rare

case of neurons that can be well modelled by a leaky integrator.

Our second method improves on the steady-state estimate

by using the time-course of adaptation to obtain the transfer

response of the neuron. It takes account of the adaptive be-

haviour of the neuron when estimating the somatic current so

that transient somatic currents can also be recovered. Unlike

Awiszus’ approach, our method makes no assumptions about the

biophysics that underlie the neuronal response and our estimates

can be made very rapidly. It could be calculated and used during

an impalement, for example. It is important to emphasize that

the transfer response method is only valid if the behaviour of

the neuron is approximately linear. This linearity has to be

established for each class of neuron. As we have shown, many

striate cortical neurons do behave approximately linearly with

respect to their current–discharge behaviour.

We have also shown that the form of neuronal adaptation is a

simple exponential plus a constant, and that although the time

constant of decay is not identical for all input currents, the

change is sufficiently small for the linear approximation to

remain useful, as we have demonstrated by simulation. The most

significant error in the estimation  of input current  by the

deconvolution technique occurs because the discharge rate of

the neuron cannot go negative. This leads to an overestimation of

the input current when the discharge of the neuron is low or

zero. The problem can be overcome by applying a depolarizing

offset current to the neuron so that its change in discharge is

biased around the offset (Fig. 14).

In those cells for which we were able to estimate the net

peak current by both the current–discharge method and the

deconvolution method, we found that the former method

overestimated the peak current by ∼40% with respect to values

calculated by deconvolution. This difference is explained by the

differentiating response of the neuron to transients: methods

that depend on steady-state behaviour will overestimate the net

input currents during transients. This is evident from the

current–discharge curves generated by a step input of current.

The transfer response method yields an average estimate of

∼0.6 nA for the net peak current delivered to the soma during

preferred motion of a bar stimulus. Three of the eight cells

examined had peak currents of 1 nA or more. This indicates a

substantial excitatory input to the neurons. We estimate that the

average charge delivered to the soma during the visual response

was in the region of 0.23 nC. From hippocampal neuron cultures

the estimated charge provided by a single excitatory synapse

is ∼0.2 pC (Bekkers and Stevens, 1989). If this is an appropri-

ate number for cortical  neurons, and if the total charge is

contributed by purely synaptic events, then at least 1000

excitatory  synaptic  events must  contribute to the observed

visual response.  Since each presynaptic neuron may fire at

frequencies of between 10 and 50 Hz during visual stimulation,

the number of active excitatory synapses may only be 100 or

less. However, if inhibitory synapses are simultaneously active

during visual stimulation, because of the recurrent circuitry

(Douglas et al., 1989, 1991), more excitatory synapses would be

required. Nevertheless, even were the actual number of active

excitatory synapses larger by a factor of 5–10, this would still be

a fraction of the total excitatory synapses (>5000) formed with

the neuron.

These estimates also raise the question as to what degree the

net current arriving at the soma is also conditioned by

mechanisms that limit the total current transmitted from the

dendrites to the soma. There is recent evidence from hippo-

campal slice preparations (Hoffman et al., 1997) for such a gain

control that is mediated through the A-type potassium channels

in the dendrites, which act to reduce the amplitude of the

excitatory synaptic currents. It now needs to be established what

are the contribution of the total synaptic current that arises from

the different sources of synapses converging on single neurons

and how the active conductances in the dendrites of neocortical

neurons might shape the synaptic current delivered to the soma

from the dendrites during natural stimulation.
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