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Abstract. We report on the nonlinear analysis of electroen-
cephalogram (EEG) recordings in the rabbit visual cortex.
Epileptic seizures were induced by local penicillin applica-
tion and triggered by visual stimulation. The analysis pro-
cedures for nonlinear signals have been developed over the
past few years and applied primarily to physical systems.
This is an early application to biological systems and the
first to EEG data. We find that during epileptic activity, both
global and local embedding dimensions are reduced with re-
spect to nonepileptic activity. Interestingly, these values are
very low (dE ≈ 3) and do not change between preictal and
tonic stages of epileptic activity, also the Lyapunov dimen-
sion remains constant. However, between these two stages
the manifestations of the local dynamics change quite dras-
tically, as can be seen, e.g., from the shape of the attractors.
Furthermore, the largest Lyapunov exponent is reduced by
a factor of about two in the second stage and characterizes
the difference in dynamics. Thus, the occurrence of clinical
symptoms associated with the tonic seizure activity seems
to be mainly related to the local dynamics of the nonlinear
system. These results thus seem to give a strong indication
that the dynamics remains much the same in these stages of
behavior, and changes are due to alterations in model pa-
rameters and consequent bifurcations of the observed orbits.

1 Introduction

Tools for the analysis of signals from nonlinear sources have
improved in recent years, allowing the study of observations
from nonlinear biological and physical systems to be treated
in a quantitative manner (Abarbanel 1996). When such sys-
tems have three or more degrees of freedom, they can exhibit
chaotic motions which are spectrally continuous and broad-
band. Such signals do not yield to familiar Fourier-based
analysis, but using the ideas of attractors in time domain
and classification of systems by properties of these attrac-
tors, one can make predictive models of such systems and,
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in many cases, when the freedom to vary some external pa-
rameters is possible, even control them to regular motions.

The description of nonlinear systems which exhibit chaos
is properly pursued in a multidimensional space where the
attractor is unfolded from its projection on the axis of mea-
surements. To perform this unfolding, one uses methods de-
scribed below to establish a global coordinate system whose
(integer) dimensiondE provides us with a clear sense of
the total number of degrees of freedom operating to pro-
duce the measured signals and a sense of the complexity
of the dynamics. The dynamics itself is characterized by a
local (integer) dimensiondL ≤ dE which tells us locally
how many differential equations or discrete time maps are
needed to capture the dynamic development of the source of
our signals. With these pieces of information, one can eval-
uate, from observed data alone, the stability indices called
Lyapunov exponents which characterize how rapidly nearby
orbits on the attractor diverge or converge in time. The
largest exponentλ1, if it is positive, tells us that the sys-
tem is chaotic and provides a quantitative measure of the
predictability of the observed system. Predictions based on
observations or underlying dynamic models cannot be accu-
rate for periods much longer than the order of 1/λ1. In this
paper, we apply a number of these tools to the understand-
ing of electroencephalogram (EEG) activity induced in the
rabbit visual cortex.

The application of concepts from this theory to EEG
data has provided a number of interesting insights. There
is evidence that EEG signals can be interpreted as the out-
put of a deterministic system of relatively low complex-
ity, containing highly nonlinear elements. Since the inter-
action among neurons is nonlinear, perhaps part of this is
not surprising, but the enormous number of neurons in-
volved in generating macroscopic voltage recordings makes
low complexity less obvious. There are examples both from
biological and physical systems in which one sees such
results, and typically the measurements involve an aver-
age of some kind over many inputs and over short time
scales. Indeed, this may well lie behind such observations
in EEG analyses. Several authors have used nonlinear meth-
ods to analyze EEG activity of the brain in various states,
for example (Skarda and Freeman 1987; Fell et al. 1993;
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Müller-Gerking et al. 1996). In these and similar studies,
however, the application of nonlinear analysis algorithms
does not always lead to the conclusion of low-dimensional
dynamics as was first expected. It is thus still not clear that
EEG is really a chaotic signal. If so, the questions still re-
main of whether the methods of analysis at hand are useful
instruments to describe the data and whether we can use our
knowledge of dynamic systems theory to understand some
principles of cortical functioning. The methods we employ
in this study are not so sensitive to errors or noise in the
measurements, and they have proven robust in allowing the
evaluation of Lyapunov exponents and the creation of pre-
dictive models of complex phenomena.

In our approach to these issues, we have chosen to an-
alyze the EEG of epileptic activity which constitutes an in-
teresting example of brain activity, not the least because
here there is still evidence for chaos. Furthermore, increased
understanding of the mechanisms of epilepsy promises to
be important for clinical practice. This is why a vari-
ety of studies have investigated the nonlinear properties
of epileptic seizure activity either in experimental animals
(Pijn et al. 1991; Beldhuis et al. 1993) or in clinical data
(Babloyantz and Destexhe 1986; Iasemidis et al. 1990; Lehn-
ertz and Elger 1995; Theiler 1995; Lerner 1996).

As an example, we present in Fig. 1 the EEG measured
in the visual cortex of a rabbit during stages of epileptic ac-
tivity. According to the current model of epileptogenesis in
the neocortex, an epileptic focus is surrounded by a massive
inhibitory zone, which prevents the further spread of exci-
tation to adjacent neurons. While the focus generates single
preictal spikes by massive depolarization of neurons, the sur-
rounding neurons generate long-lasting inhibitory potentials.
During the transition into the ictal phase, the inhibitory zone
becomes partially weakened, so that the spread of excitation
from within the focus is facilitated. Due to the spread of ex-
citation along anatomical interneuronal connections, larger
areas of cortical tissue become involved in the seizure, and
rhythmic potential oscillations appear in the EEG. Typically,
these oscillations have frequencies around 20-30 Hz during
the initial phase, that is, in the first few seconds. During the
so-called tonic phase, measured potentials oscillate almost
sinusoidally around 7-12 Hz, whereas clonic oscillations are
less regular. In general, these different states of activity in
epileptogenic tissue can be clearly distinguished by electro-
graphic features. We have chosen the data in Fig. 1 as an
example because the transition from preictal to tonic activ-
ity is clearly visible, and this transition often also marks the
onset of clinical symptoms.

In this paper, we report the analysis of EEG with a set of
algorithms that have recently been developed (Abarbanel et
al. 1993; Abarbanel 1996). These algorithms concentrate on
carefully constructing a working state space for the source
of our measurements using the measured voltages and their
time delays. In this space, a global dimension – number of
independent coordinates – is established which allows the
unambiguous determination of properties of the system at-
tractor. Local aspects of the dynamics on the attractor are
also identified and used in the analysis. We find that during
epileptic activity, both global and local embedding dimen-
sions are reduced with respect to nonepileptic activity. These
integer dimensions characterize the level of excitation of a

system in that they are directly related to the number of ob-
served degrees of freedom in the signal. Interestingly, these
values do not change between preictal and tonic stages of
epileptic activity. However, between two stages the local dy-
namics change quite drastically, as can be seen, e.g., from
the shape of the attractors. Furthermore, the largest Lya-
punov exponentλ1 is reduced by a factor of about two at
the transition from preictal to tonic stages of activity. A fac-
tor of two in the exponent which governs the exponential
loss of information or predictability is a significant change.
In both stages the largest Lyapunov exponent is positive,
thus proving the presence of chaos in the system.

2 Experimental

Experiments were performed in rabbits of either sex with an
average weight of 3 kg. All experimental procedures com-
ply with the Principles of Laboratory Animal Care (NIH
Publication No. 86-23). The rabbits were tracheotomized
and intubated under short-term barbiturate anesthesia. There-
after, animals were placed in a stereotactic frame and ar-
tificially ventilated under muscle relaxation (Alloferin 0.5
mg/h). Then anesthesia was continued with Fluothane (2
vol%). During the entire experiment, heart rate and CO2 end
tidal concentration were monitored to ensure proper condi-
tions. After trepanation of the skull overlying the visual cor-
tex, the dura was carefully removed and the neocortex cov-
ered with prewarmed CSF-agar (4%). This microelectrode
array was inserted perpendicular to the cortical surface. The
device consisted of 16 contacts in a row at spacings of 125
µm (Petsche et al. 1984). This setup allowed the simulta-
neous recording of EEG from within each neocortical layer.
After a 30-min pause during which the neocortical activity
stabilized at a typical background pattern of spontaneous ac-
tivity under constant anesthesia, recordings and stimulation
procedures were commenced. As stimulation, we projected
a flickering random dot pattern via an optical fiber system
to the contralateral eye. Focal epileptiform activity was in-
duced by local application of a 170 mM solution of peni-
cillin to the neocortical surface. The total fluid volume was
1 µl. As described previously, such a procedure leads to the
development of epileptiform discharges (preictal spikes by
definition) within several minutes, and ictal discharges (the
electrical phenomena during clinical seizures) after approxi-
mately 60 min (Pockberger et al. 1984). All data recordings
were stored on analog tape with bandwidth 0-1250 Hz and
digitized off-line at 1024 samples/s. In this paper, we will
only present and discuss data from 1 of the 16 channels.
This channel was located in layer V of the neocortex and
showed the highest signal-to-noise ratio in all experiments.

3 Method of analysis: stages of epileptic activity

In this section, we guide the reader through the steps of
the analysis. The data presented in Fig. 1 are a sequence of
voltage measurementsv(ti) sampled at discrete time points
ti = t0, t1, ..., tm. The goals of nonlinear dynamical analysis
are to first establish a multivariate phase space in which
the attractor of the dynamics is unfolded from its pro-
jection on the measured voltage axis. Next, one analyzes
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) Fig. 1. Electroencephalogram (EEG) from layer V of the rab-

bit’s visual cortex (area OC1). During the preictal phase, the
epileptic focus generated spikes, i.e. potential transients with a
duration of less than 70 ms. Usually, such transients as, e.g.,
the first spike at 3000 ms occur spontaneously at more or less
regular intervals of 1-2 s. Later in our experiment (starting from
8000 ms), dense preictal spikes were triggered by a flickerlight
stimulation of 1 Hz. Rather suddenly, this spiking activity was
succeeded by epileptic seizure activity (the ictal phase), which
is characterized by patterned potential oscillations, in this case
a tonic seizure. Finally, the seizure abruptly stopped and was
followed by postictal voltage depression. In this paper, we fo-
cus on the two experimental stages ‘dense preictal spikes’ and
‘tonic seizure’

the vector data in the coordinate system established this
way. The coordinates of the phase space are the voltage
v(n) = v(t0 + nτs) measured everyτs seconds starting from
some timet0 and thedE − 1 time delays of this voltage
v(n+Tk), k = 0, 1, 2, dE−1 with the time lagT an integer
indicating the multiple ofτs used in constructing the data
vectors. The vectors made this way

y(n) = [v(n), v(n + T ), v(n + 2T ), . . . , v(n + (dE − 1)T )]

(1)

replace the original scalar datav(n) in defining the system.
The vectorsy(n) of our example are shown in Fig. 2 for
preictal spikes (top) and tonic seizure activity (bottom). The
parametersdE= 2 andT = 20 ms were chosen to give a
clear visualization of the attractors. As one can see in this
figure, the attractor of the tonic phase is rather cyclic, and the
preictal spikes generate a somewhat more complex attractor.

In our analysis, we first determine the time lagT by
asking how much information is learned about the measure-
ment v(n + kT ) from the measurementv(n + (k − 1)T ) on
average over all data. This is a kind of nonlinear correlation
function because the definition of information requires the
joint distribution of the two measurements. It is called av-
erage mutual information (AMI) and can be normalized so
that AMI(T = 0) = 1. In Fig. 3 we show the AMI for the two
stages of the experiment. As expected, the curve for preictal
spikes is rather smooth, whereas there is oscillatory structure
for the tonic seizure. The time lag where the AMI falls to
20% determines a practical value forT . This criterion leads
us to aboutT = 20 ms for both stages of epileptic activity.

We begin our search for characteristics of the dynamics
by evaluating the global dimensiondE required to unfold
the attractor for the source of these data. There are several
ways to calculate estimates for this dimension. One well
established approach (Grassberger and Procaccia 1983) an-
alyzes the static distribution of the points on the attractor
and yields the correlation dimensiond2. For our data, this
algorithm leads tod2 < 3 for the tonic seizure activity (Fig.
4). In the preictal phase, we do not find a plateau, indicat-
ing thatd2 is either very large or that the applied algorithm
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Fig. 2. EEG data during preictal spikes (top) and a tonic seizure (bottom)
embedded in a two-dimensional phase space (v(t), v(t + T )), T = 20 ms.
Units are standard deviations around the mean at (0,0). Orbits have 54 (top)
and 50 (bottom) cycles
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Fig. 3. Average mutual information (Ami) calculated for EEG data taken
during preictal spikes (top) and tonic seizure (bottom)
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Fig. 4. Correlation dimensiond2 estimated for preictal spikes (top) and
tonic seizure (bottom). A plateau was reached in the tonic case, indicating
a correlation dimensiond2 < 3. For the case of preictal spikes, we could
not produce a plateau

does not yield reasonable results with our biological data.
As a conceptual disadvantage, the correlation dimension de-
scribes how the sample of points along a system orbit tend
to be distributed spatially, but there is no information about
the dynamic, temporally evolving structure of the system.

Another method directly asks the question: when has
one eliminated false crossings of the orbit with itself be-
cause the attractor was projected into a too low dimensional
space? This dimension is determined by asking in which
dimension the orbitsy(n), n = 1, 2, ... no longer intersect
each other because of the projection from high dimension
to dimensiond = 1, 2, ..., dE . This lack of overlap is estab-
lished by looking at the nearest neighbor of each pointy(n)
in dimensiond = 1, 2, ... and asking whether that neighbor
remains a neighbor in dimensiond + 1. If all nearest neigh-
bors remain neighbors as the dimension is increased, then all
points are true neighbors rather than being false neighbors
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Fig. 5. Percentage of global false nearest neighbors as a function of em-
bedding dimension for EEG data during preictal (top) and a tonic (bottom)
activity
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Fig. 6. Percentage of false nearest neighbors as a function of local em-
bedding dimension for EEG data during preictal (top) and a tonic (bottom)
activity

due to projection from a higher dimension. This false near-
est neighbors test (Abarbanel et al. 1993; Abarbanel 1996)
works robustly even in the presence of noise identifying
when a signal comes from a low-dimensional system. For
our data (Fig. 5), the percentage of false nearest neighbors
is independent of embedding dimension ford ≥ 5 in both
cases. In the case of the tonic seizure, less than 5% false
nearest neighbors remains at higher dimensions. We qual-
ify this part of the signal as noise, meaning completely un-
predictable and random. In the preictal phase, this noise
amounts to about 10%. This might explain why no corre-
lation dimensiond2 was measurable in this phase, as men-
tioned above. Using the false nearest neighbor algorithm, we
find a global dimension of aboutdE = 5 for both preictal
phase and tonic seizure.

The dynamics of the system may evolve in a dimension
lower than the global dimension required to unfold an attrac-
tor. The local dimension of the dynamicsdL is established by
going onto the attractor, as unfolded globally in dimension
dE , and asking what dimension is required locally to pro-
duce a good map from the neighborhood of a pointy(n) to
the neighborhood of the pointy(n+1) on average over the at-
tractor. When the quality of prediction becomes independent
of the number of neighborsNB and the dimension of the lo-
cal map, we have locateddL (Abarbanel and Kennel 1993).
For the preictal stage we see in Fig. 6 (top) that this occurs at
dL = 3. For the tonic seizure (bottom), this occurs atdL = 4,
telling us that a 4-dimensional dynamic system will capture
all the information in the recording during this condition.

Finally, in recounting the analysis of the intracortical
recordings, we report the local Lyapunov exponents asso-
ciated with the dynamics of the system (fig 7). They are
invariants associated with the dynamical evolution on the
attractor, and they give a sense of the instability associated
with the formation of the attractor, as well as of the ability
to make predictive models of the nonlinear system. In this
calculation, we rely on the values for the parametersT, dE ,
anddL as estimated above. The criteria for validity of this
calculation are: (i) the sum of the exponents must be less
than zero; (ii) one exponent must approach zero for great
lengths L; (iii) forward and backward calculations must give
the same results. The first of these assures us that the system
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Fig. 7. Average local Lyapunov exponents calculated from the EEG data.
For the preictal (tonic) stage 23000 (8000) data points were used. The
embedding dimension wasdE= 5, and the order of local polynomials was
taken to bedL= 3 (dL= 4). In all, 6000 initial conditions were used.

as a whole is stable and volumes in state space contract. The
absence of this property would indicate a flaw in our data,
as such a system would blow up in time. The second prop-
erty tells us that ordinary differential equations need to be
followed to describe these data. The final condition assures
us that each of the exponents is connected with dynamics.
False exponents do not exactly reverse sign when time is re-
versed, so we could identify incorrect local dimensions with
this computation.

The largest of the Lyapunov exponents (λ1) is positive
for both experimental conditions, which is strong evidence
for the presence of chaos in our intracortical recordings.
λ1 measures how quickly linear distances grow. Two points
initially separated by an infinitesimal distanceε will, on av-
erage, separate asεeλ1·t. Conversely, one may deduce a
prediction horizontH = 1/λ1 in units of milliseconds. Its
value tH = 16 ms for the flicker condition is only about
half as long as during the tonic seizure (tH = 35 ms) in
this experiment. The exponents can be used to calculate the
Lyapunov dimension of the system according to

dλ = K +

∑K
i=1λi

|λK+1| (2)

where
∑K

i=1λi > 0 while
∑K+1

i=1 λi < 0. This is a fractal
dimension expected to be similar in numerical value to the
d2 discussed above. We obtain the valuedλ= 2.4 for both
experimental conditions. This is further evidence that the
system can be described by low-dimensional dynamics.

4 Analysis of other, similar epileptic activity

In similar experiments, the same main features could be re-
produced. For example, some attractors are show in Fig. 8.
The corresponding data for the different stages of epilep-
tic activity was recorded in one continuing experiment with
short transition intervals. In the top graph, visual stimula-
tion elicited spikes until a tonic seizure emerged for a few
seconds. The tonic seizure was followed by clonic activity.
The system then returned to a second tonic seizure. Finally,
postictal spikes occurred over several minutes. During the
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Fig. 8. EEG data embedded in a two-dimensional phase space (v(t), v(t +
T )), T = 20 ms. The stages of activity are (fromtop to bottom) preictal
spikes, tonic seizure, clonic activity, again tonic seizure, postictal spikes.
Units are standard deviations around the mean at (0,0)

tonic phase, the attractors are rather cyclic. The attractors
during preictal and postictal spikes have more structure and
are very similar to each other. Note also the similarity to
Fig. 2.

To compare the results of our analysis for all experi-
ments, we have grouped the values in Table 1. For both
experimental conditions, preictal spikes and tonic seizure,
the global dimensiondE is about 5. The local dimensiondL
is somewhat lower, but again similar for both conditions.
The same is also true for the Lyapunov dimensiondλ. The
only consistent differences emerge for the prediction hori-
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Table 1. Dimensions and prediction horizontH = 1/λ1 of the EEG during
epileptic activity

Experiment T (ms) dE dL dλ tH (ms)
Triggered preictal spikes
401ep2 20 5 3
404ep1 20 5 3 2.69 10
404ep2 20 5 4 2.66 53
406ep3 20 5 4-5
406ep7 20 5 3
428fl 20 5 3 2.38 16
Tonic seizure
401ton 20 5-6 4-6 2.32 60
404ep4 20 5 4 2.24 36
406epn 20 5 4 2.46 35
406ep9 20 5 3-4 2.31 12
410ep1 20 5 4 2.69 41
428ton 20 5 4 2.37 35
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Fig. 9. Ami for the five experimental conditions (fromtop to bottom) spon-
taneous activity; flickerlight stimulation with 0.5 Hz, 5 Hz, 9 Hz; and tonic
seizure

zonstH = 1/λ1, which are in general higher during the more
regular, tonic activity.

5 Analysis of nonepileptic activity

As before, in this experiment, the EEG was recorded from
layer V in the visual cortex of an anesthetized rabbit. How-
ever, the cortex was only prepared with an epileptogenic
substance in the last of the five experimental conditions.
Figure 9 shows the AMI for (a) spontaneous activity; dur-
ing flickerlight stimulation with (b) 0.5 Hz, (c) 5 Hz, (d) 9
Hz; and (e) during the tonic phase of a seizure after appli-
cation of penicillin. First note that the highest overall curve
is found for the spontaneous activity. This indicates that
the system is engaged in some concerted idling activity and
evolving undisturbedly. During flickerlight stimulation, AMI
is reduced, and oscillatory structure appears. The oscilla-
tory behavior of the AMI becomes more pronounced with
increasing frequency of the flickerlight stimulation and is
strongest during the epileptic seizure.

In Table 2 we list the global and local embedding dimen-
sions for the five experimental conditions. The dimension-

Table 2.Dimensions and prediction horizon of the EEG during nonepileptic
activity

condition T (ms) dE dL dλ tH (ms)
Spontaneous 52 >12 >12
0.5 Hz flicker 24 6 4
5 Hz flicker 24 6 4
9 Hz flicker 24 6 4
tonic seizure 20 5 4 2.69 41

ality is highest for the resting state, despite the high AMI.
The values are smallest during the seizure.

6 Discussion

Our results show that EEG signals of epileptogenic ac-
tivity fulfill all requirements to be characterized as low-
dimensional chaos, since the global and local embedding
dimensions are low, and the largest Lyapunov exponentλ1 is
positive. Our analysis differs from earlier work primarily in
stressing those aspects of the dynamics of the source which
are connected with prediction and model building. While we
did evaluate a fractal dimension using the Lyapunov dimen-
sion, this in itself is only one piece of the overall set of tasks
in which one is interested when presented with data such as
ours. In this paper, we discussed only the determination of
an appropriate state space in which to analyze our data and
evaluated the global Lyapunov exponents to assure ourselves
that we did have chaos, to determine the predictability hori-
zon for the EEG processes and to check thatdλ is consistent
with other determinations of fractal dimension. We will re-
turn to model construction and comparison of predictions
with other aspects of these experiments in our further work.

At this point, it seems necessary to discuss the valid-
ity of determining the value of a parameter likedE or λ1
which, in theory, is only defined for stationary processes.
In the complex biological system of interest, it is clear that
only finite stretches can be singled out that may not strictly
comply with the standards for stationarity as postulated by
nonlinear systems theory. This is definitely true for the cal-
culation of the Lyapunov spectrum, which could require a
somewhat larger number of cycles of the attractor in order
to satisfy the requirement of ergodicity. In practice, we can
never satisfy the formal, rigorous mathematical requirements
associated with ergodicity and the multiplicative ergodic the-
orem which underlies the evaluation of Lyapunov exponents.
As a rule, however, it is apparent that the number of neigh-
bors used to make the local maps utilized for evaluation
of local Jacobians of the underlying dynamics is what is
critical. As the system moves around its attractor, the neigh-
borhoods of each point become more and more populated.
When a ‘small’ neighborhood of a point (say on the order
of 1% of the size of the attractor) has enough neighbors
to safely determine the local Jacobians, we may be assured
that our estimate of the Lyapunov exponents is on a sound
footing. For further details of this argument, see Abarbanel
(1996). The calculations presented in this paper meet the
criteria mentioned earlier (negative sum of exponents, one
exponent approaches zero, forward and backward calcula-
tions give same results). Therefore, it seems that we have
enough data in nearly stationary domains that our estimated
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exponents can be treated with some confidence; we cannot
give a formal bound on this, but have found the estimates to
be repeatable and somewhat independent of the choices for
characterizing the embedding space. We, therefore, have to
view the calculated values as estimates, which nevertheless
gain their significance through the reproducibility in several
experiments. In the case of low embedding dimensions (<
4), the two-dimensional representation of the attractors (Fig.
2) also makes the calculated values seem reasonable. These
absolute values may thus serve as an estimate of the type
of dynamics generated by the underlying neuronal system.
Still, in a biological system, these values have to be viewed
with caution, in particular for higher dimensions and also
for the value ofλ1. We therefore propose a qualitative ap-
proach where merely the differences of values determined
for different stages should help to characterize the complex
temporal dynamics of the epileptogenic activity.

It is usually assumed in the literature that there exists a
mathematically well-defined decrease in complexity associ-
ated with an epileptic seizure which in some sense reflects
what is evident to the naked eye. Along this line of thought,
several groups have demonstrated that some embedding di-
mension or the correlation dimensiond2 decreases before
or during the onset of a seizure (Skarda and Freeman 1987;
Pijn et al. 1991; Lehnertz and Elger 1995). It was therefore
not surprising that we would find global and local embed-
ding dimensions to be smaller in the epileptic case than in
the case of spontaneous activity. As an aside, the dimension
related to flickerlight-driven activity of the visual cortex lies
in between the two extreme cases. However, the embedding
dimensions turned out to be essentially the same for preictal
spiking activity and tonic seizure activity.

Here it is interesting to note that the dimensionality of
the system does not change, even though preictal and ic-
tal stage are clearly distinguishable from the voltage traces
and from a clinical point of view in that epileptic symptoms
only occur during tonic or clonic seizure activity. However, a
considerable change takes place in the local dynamics as can
be judged from the attractor-plots. This is potentially quite
good news from the point of view of modeling the EEG pro-
cesses involved here. If the model is basically the same in
each domain but the parameters of the model have altered,
our task in identifying good models is much simplified. We
need not seek different functional forms or numbers of de-
grees of freedom for different macroscopic regimes, but in-
stead can seek a bifurcation-like behavior of one underlying
model. Furthermore, we found the highest local Lyapunov
exponentλ1 related to tonic seizure activity to be lower than
during preictal spikes by a factor of about two. This means
that the calculation of the local Lyapunov spectrum allows
us to distinguish the two stages of epilepsy. In a related work
by Iasemidis et al. (1990), it was shown that by calculating
only λ1, the transition from resting activity to seizure activity
could be monitored. From a physical point of view, a drop of
λ1 by a factor of 2 indicates a largely increased predictabil-
ity of the dynamics of the system during the seizure. Our
calculation of the whole spectrum of Lyapunov exponents
gives us the further possibility to calculate the Lyapunov
dimensiondλ. In accordance with the other two measures
of dimensiondE anddL, dλ also yields the same value for
preictal spikes and tonic activity. Sincedλ depends on the

sum of manyλi (Eq. 2), this means that lower exponents
compensate for the change of the largest componentλ1. The
following picture emerges: the dynamics of the EEG system
seems to be restricted to about 3 dimensions; even a change
in the epileptic state, i.e. a drastic change in the dynamics,
does not change this dimensionality. Thus, the occurrence of
clinical symptoms during the tonic stage seems to be mainly
related to the local dynamics of the nonlinear system, and as
noted above, representing this dynamics in various regimes
appears much more approachable than one might have sur-
miseda priori.

In this paper, we have restricted ourselves to investigat-
ing the validity of nonlinear systems theory to EEG data
recorded from always the same site and depth in the neo-
cortex. That is, of course only a first step in understanding
the relevance of this theory to epilepsy, since epileptic ac-
tivity is typically characterized by an interaction of neurons
spread out over significant distances (Petsche et al. 1984;
Pockberger et al. 1984). To begin with, preictal spikes are
generated by distinct spatio-temporal patterns of current
sources and sinks distributed within different layers in one
cortical column. The transition to ictal behavior is then
thought to result from an interaction between several cor-
tical columns which are located a few millimeters apart. In
this way, several subfoci entertain the oscillations in electri-
cal potential as they are observed in the course of tonic or
clonic seizures. Future work will therefore also analyze this
spatial scale of epileptic activity.

In conclusion, we have presented a comprehensive in-
vestigation of embedding dimensions and local dynamics on
a data set of EEG during epileptiform activity in the neo-
cortex. Our consistent finding of low-dimensional attractors
with dE ≈ 3 suggests that the underlying processes may
be simple enough to be identifiable. The dynamics during
preictal and tonic stages of epileptic activity seem to remain
much the same, and changes of the system’s behavior are
due to bifurcations of the orbit. On the basis of nonlinear
systems theory, powerful techniques have been developed
to control chaos in the hippocampus by minimal electrical
stimulation (Schiff et al. 1994). Integrating nonlinear sys-
tems theory also into a concept of basic mechanisms of
epilepsy in the neocortex thus seems very promising, both
scientifically and clinically.
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