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On Convex Hull Violation by Superpositions 
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Recently, we observed a violation of the convex hull principle for the super- 
imposed multifractals with measure, which we found difficult to explain in a 
simple way. Using the generalized entropy point of view for the description, we 
are able to resolve this problem. 
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The theory of  fractals ~-5) has at tracted much interest since singular 
measures of  multifractal structure ~6~ were shown to characterize strange 
attractors,<7) diffusionS8, 9~ and scattering processes, ~4" ~0) turbulence, fractal 
diffusion-limited aggregation,  ~3~ etc. The range of  applications was recently 
extended to cover even more  complex cases by considering so-called spa- 
tially extended systems/I1~ In a generalized sense, the system investigated 
below belongs to this class. 

Often in experiments the full multifractal structure of  the object cannot  
be accessed. What  can be observed is a fractal structure which typically has 
a measure on it which is not  propor t ional  to its length scales. This measure 
can be the p roduc t  of  a partial overlap due to a projection from higher 
dimensional  spaces. Or, the measure can arise quite naturally as the sum 
of  different probabil i ty measures at tached to the same Can tor  structure. 
For  this whole class of  problems, only few theoretical results have been 
obtained. 

In ref. 12, the superposit ion of  two binary multifractals was considered 
and the behavior  of  thef (~) - func t ion  ~3" 5 7~ was discussed for this system. It  
was shown that  (in addit ion to first order  phase transitions which can be 
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expected to appear), transitions of second order emerge, under specific 
conditions which could not be formulated in "natural" terms. Along with 
the second order phase transition, a violation of the convex hull principle 
for entropy functions was observed. In the present contribution, this 
phenomenon is explained in a simple way using the generalized entropy 
point of view. The present discussion applies to a wider context because the 
generalized entropy point of view comprises all kinds of specific entropy 
properties and thus goes beyond the discussion in ref. 12. Suppose as in 
ref. 12 that the sources of the superposition are complete, self-similar 
~t-scale multifractals. Each of these sources is then determined by the 
probabilities p~, ie  { 1, 2 ..... M}, and the associated length scales li .~1-3) 
The hierarchic structure of this multiplicative process is captured in the 
generalized partition sum 16' 7, 12 17) 

Z(q,p,N)=~pql~ (1) 
J 

where N denotes the level of the construction hierarchy. Here j e/~rN is the 
symbolic address of an allowed contribution to the hierarchic process 
(for multiplicative measures we have Pj=PlPlP2" ' "  if j =  {1, 1, 2,...} and 
allowed means that Pi va 0). The probabilities are normalized: Z i  Pi = 1. In 
order to label M independent sources we use the index k. Accordingly, the 
system is characterized by the set of quantities pi(k),  li(k), i = 1 ..... M and 
k = 1 ..... M. In the following we consider the case of the superposition p of 
M multifractal measures, i.e., /~ =Y.kp (k ) ,  where k = 1,..., M. A simple 
situation arises if the supports of the k measures are the same and the 
measures are multiplicative. This implies that l~(k)= l~ for all i =  1 ..... 2~t 
and k = 1,..., M. For ful l  binary (i.e., 2~t = 2) grammar the partition sum of 
the superposition has the form 

Z(q, fl, N) =j~o= k ~ n(k) p l (k)J  p2(k) ~u-j) (l~l(2N-J)) 1~ (2) 

In this formula the parameters re(k), k =  1, 2, are the weights of the 
contributions of the involved multifractals (Zk r~(k)= 1). For 2~t> 2, the 
binomial coefficient has to be replaced by more involved expressions; non- 
full grammars may sometimes be reduced to full grammars of different 
typeJ 17) Letting ~ = j /N,  in order to evaluate the partition sum, Z is written 
as an integral (~2~ 

Z(q, fl, N) ~ e-Ng(~, q, fl) d~ (3) 
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with, specifying for the simplest case M = 2, 3~r = 2, 

g(~, q, fl) = ~ln(~) + ( 1 - ~) In( 1 - r 

+ (~[ - q l n ( p z (  1 )) - flln(l 1)] 

+ (1 - ~)[ - q l n ( p 2 ( 1 ) )  - f l ln (12)] )  0(~ - ~o) 

+ (~[ - q l n ( p , ( 2 ) )  - flln(l, )] 

+ ( 1 - ~)[ - qln(p2(2))  - flln(12) ] ) 0(r - ~) (4) 

where O(x) denotes the step-function. The special value (0 is characterized 
by the equality of the two contributions; it has the value (o--  [ 1 + In(p~( l )/ 
p l (2 ) ) / ln (p2(1) /p2(2) ) ]  ~-I~. Fractals reveal a deep connection to more 
traditional fields of physics due to a (formal) equivalence of multifractals 
with spin systems, t~s) In analogy to the latter, thermodynamic quantities 
are defined, and nonanalytic behavior of these functions can be interpreted 
as phase transition phenomena, t19) Using this language, F(q, f l )-- l imN_ o~ 
In[Z(q,  fl, N ) ] / N  is the generalized free energy, and we have F(q, f l ) =  
- g ( ( ( q ,  fl), q, fl) where ((q, fl) determines the maximum of the integrand 
in Eq. (3) by minimizing the function g, for given q and ft. The generalized 
entropy function S(a, e) t~3) arises as the Legendre transform of F(q, fl) as 

S(a, e) = F(q, fl) + q ~  + fie (5) 

Here, e = - O F ( q ,  fl)/Ofl is the local scaling rate of the support and the 
"local" dimension appears as a = - ( O F ( q ,  fl)/Oq)/e. Note that it may be 
preferable to change the sign of e in order to express a different interpreta- 
tion of the length scales. 

For the discussion of the generalized entropy spectrum we first recall 
that the general case without superposition does not show phase transi- 
tions. For a system of ternary grammar, a typical entropy function appears 
as a smooth sheet over the scaling plane (e, a). t13~ On a line in this sheet, 
the function f ( a )  is evaluated. It is a simple consequence of the definition 
o f f ( a )  : - -S(a ,  e)/el~tq): F(q. fl(q))=O that this line can be thought to emerge 
from a simple experiment: Hold a ruler parallel to the e axis, while the left 
end of the ruler is at the origin of the coordinate system. Move the ruler 
now towards higher a-values, with one end still tied to the (e = 0, a)-axis, 
without making any rotation with respect to the e-axis. The tangential 
points of the ruler with the entropy surface form the line along whichf (a )  
is evaluated. By a projection of this line the trace of f ( a )  in the (e, a)-plane 
is obtained. The entropy function of a single binary system degenerates into 
a sheet with one-dimensional support due to the fact that the function 
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(p, q ) ~  (e, 0~) is not injective 17" 15~ (in the presence of phase transitions, a 
two-dimensional support can be obtained.) 

Let us consider the f(00-curve of the superimposed system. In a naive 
approach, one would associate the convex hull of the individual entropy 
functions with the superimposed system. This, however, is not correct in 
the present case. If we consider the superposition of two binary systems, we 
start off with two sheets in the scaling plane (e, ~). These sheets have to 
intersect, and that there are only four cases: the two cases shown in Fig. 1 
and two more cases obtained from their reflection about a line parallel to 
the a-axis through their point of intersection. We will discuss only the 
situations shown in Fig. 1, for the two remaining cases analogous 
arguments apply. Each symbolic address j triggers one specific logarithmic 
length scale e. However, each of the length scales is associated with two 
different measure exponents ek, k =  1 ..... M =  2. The measure exponents 
correspond to probabilities, which themselves correspond to the measure 
on the Cantor piece labeled by j. In the asymptotic limit N ~ oo the largest 
probability dominates (in our setting, ~2 P(J):~ and not (~2 P(J)k )  u is relevant 

(a) 

(b) 

E 

f(c~)~ 
(x 

Fig. h Support obtained for a system of 2 binary sources (light lines} with relevant branches 
(heavy lines) in the (e, c0-plane. The f(~)-spectrum is evaluated along the dashed lines; dots 
indicate the phase transition points. The graph off(s) itself is shown by heavy lines; light lines 
indicate the f(c~)-curves associated with the two systems before superposition. (a) Both 
individual entropy sheets are ascending, (b) one is ascending, the other is descending. 

Note: The f(c()-curve of the superimposed system is not obtained from the convex hull 
of the contributions. 
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for the measure!). The largest P(J)k corresponds to the smallest o~(j)k. 
Therefore, only the smallest 0~ will survive. As a consequence, the upper 
wings are cut off for the entropy function of the superimposed system. 

If for the superimposed system q is monitored from oo to - ~ ,  in 
Fig. 1 the ruler starts moving up the branch which provides the lowest 
0~-value. At (q = 1, fl = 0), invariably a phase transition appears, because at 
this parameter set the free energies of both branches are zero. On the two 
branches, the free energies grow at different rates, which yields a first order 
transition. ~12) The intersection point of the two branches is characterized by 
the equality of the free energies, the length- and the measure exponents, 
respectively. This point therefore corresponds to the second intersection 
point of the f(00-curves. In case (a) of Fig. 1, where both individual 
entropy curves are ascending, for q ~ -  ~ .  f0c follows the more narrow 
individual curve until zero entropy is reached. In case (b), the f(a)-curve 
has to stop at the intersection point. Because of the above characterization 
of the intersection point, the point itself can be understood as a phase of 
its own in the free energy picture. Entering into this phase can therefore be 
interpreted as a second order phase transition. In both cases, the resulting 
entropy function is not obtained from the convex hull of the contributing 
individual f(ct)-functions. 

In addition to f(00 other specific entropy functions can be con- 
sidered,(16) which all arise by restriction of S(e, ~) according to some condi- 
tions (e.g., the restriction to fl = 0 yields the Legendre transform g(A) of the 
R~nyi entropies K(q)). (2~ Most of these specific entropy functions also 
undergo a first order transition. Actually, the whole area between the two 
branches is an area of first order transitions which has to be added to the 
traces shown in Fig. 1. We see this more clearly if we consider the super- 
position of M = 2  ternary systems (see ref. 21). We note that for such a 
system, instead of the second order phase transition point, a transition 
line emerges. Increasing the number of contributing ternary maps with 
randomly chosen sets of probabilities yields an asymptotic entropy func- 
tion. The convergence towards this asymptotic function is very fast (the 
form is established already for M ~  25). When such "universal" entropy 
functions of different grammatical types are compared, it is found that 
universal entropy functions of simpler grammatical type are identical with 
a part of the universal entropy function of higher grammatical type. (22) 

In conclusion we were able to explain a violation of the convex hull 
principle in a straightforward way. We found that the generalized entropy 
representation provides an excellent tool for the understanding of phase 
transition effects in multifractals. Our approach can be extended to cover 
other specific entropy functions; it is not restricted to the discussion of 

f(~). 
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