
7Connectionist explanation:taking positions in themind{brain dilemmaPaul F.M.J. VerschureInstitute for NeuroinformaticsETH/University of Zurich7.1 IntroductionThe computer metaphor of cognitivism that has had such a strong inuenceon cognitive science over recent decades seems to be confronted (again) bya competitor: the brain metaphor put forward by connectionism (e.g. [Mc-Clelland and Rumelhart 1986] and [Sejnowski et al. 1988]). Connectionismassumes that mental phenomena can be explained in terms of the paral-lel activation and interaction of a large number of units (model neurons).These units are linked by connections (arti�cial synapses) which modulatethe transmitted activity. Knowledge is represented in these connections be-tween the units and learning takes place by adjusting their strength. Animportant, and much emphasized, aspect of connectionist models is theiremergent behaviour. The massive parallel interaction of a large number ofsimple units can lead to qualitatively di�erent and more interesting formsof behaviour. Successes of this connectionist approach range from mod-els of human memory (e.g. [McClelland and Rumelhart 1986]) to practicalapplications that can control the navigation of cars [Pomerleau 1989]. Aninteresting property of these models is their robustness against loss of inter-connections. This is interpreted by some as an indication of their biologicalplausibility (e.g. [Hinton et al. 1991]).An important topic in the discussion about the relevance of connection-ism for cognitive science has become the issue of levels [Estes 1988]: mustconnectionist models be interpreted at the level of physical instantiation



134 Connectionist explanation: taking positions in the mind{brain dilemmaor at the level of symbol manipulation? Critics of the connectionist move-ment (e.g. [Broadbent 1985] and [Fodor and Pylyshyn 1988]) argue that itcannot be considered an alternative to the classical cognitivist paradigm.They characterize connectionism as an attempt to de�ne a brain-like im-plementation of symbolmanipulatingmodels. Supporters of connectionism,however, emphasize that it is an alternative paradigm in the study of cog-nition that will largely contribute to our understanding of the mind{brainduality. [Smolensky 1988], for instance, claims that connectionism is themost signi�cant development in the philosophy of mind over past millen-nia.In contrast to the connectionist movement of the 1950s an importantobjective of present-day neo-connectionism is now the de�nition of a sub-symbolic bridge between the formal mind, as studied in cognitive science,and the brain, as studied in neuroscience. This objective implies that sub-symbolic connectionism has to address the question of how the symbolicdescription of psychological processes, in terms of rules and representations,provided by traditional cognitivism can be related to a non-symbolic onein terms of brain mechanisms. [Haugeland 1978] has called this the prob-lem of complete reduction. A substantial contribution to this connectionistambition has been made by [Smolensky 1987, Smolensky 1988], who hastried to explicate the subsymbolic connectionist paradigm.I will evaluate the solution of the problem of complete reduction proposedby subsymbolic connectionism by analysing NETtalk, which is often takenas the paradigmatic example of this approach, and of a closely relatednetwork model that can classify sonar targets. To further generalize theresults of this analysis a generic connectionist model, the autoassociator,will be examined.The results presented suggest that subsymbolic connectionism, as de�nedby the models analysed, is still completely dependent on the symbolic levelof description and does not live up to its promise of bridging the gap be-tween mind and brain. Therefore, this approach is facing the same problemsthat confront a cognitivistic approach.This result can be interpreted as a con�rmation of the hegemony of asymbolic approach. I, however, prefer to propose an alternative interpret-ation, which is directed at de�ning the circumstances under which the ini-tial ambition of connectionism, to �nd relations between symbolic character-izations of behaviour and biological ones, can be realized. The backgroundof this proposal is not a personal de�cit on the part of the author to dis-agree with tradition. It is based on the conclusion that the cognitivisticschool of thought is confronted with a series of fundamental problems. Theproposed alternative focuses on two questions:1. What is the nature of connectionist models and what are the criteria that



The mind{brain dilemma 135should be applied to them to render them plausible models of cognitionand behaviour?2. What should be the relationship between the dynamical view on cogni-tion inherent in connectionist models and a symbolic one?These questions bring us back to classical epistemological issues: what isknowledge and where does it come from? The two questions raised willbe used to build up an argument to address the more fundamental ones.The answer to the �rst question can be seen as the de�nition of a researchstrategy for connectionism while the answer to the second one will providea conceptual framework. The background of this discussion will be the con-trast between cognitivism and traditional connectionism: the mind{braindilemma.7.2 The mind{brain dilemmaThe paradigm that has dominated cognitive science over the last few decadescan be called `symbolic cognitive psychology' [Newell 1990]. This approachbases its explanations of behaviour on an assumed knowledge level. Thelaws which explain behaviour relate knowledge to goals according to theprinciple of rationality: roughly, a system will use its knowledge to reachits goals. `If the system wants to attain goal G and knows that to do actA will lead to attaining G, then it will do A. This law is a simple form ofrationality { that an agent will operate in its own best interest accordingto what it knows' (op. cit. p. 49).In their original proposal [Newell and Simon 1963] intended to de�ne aparadigm for explaining and studying intelligence that would relax the re-striction put forward by behaviourism that behaviour should be explainedin terms of observable events without referring to mediating processes.Moreover, they tried to avoid the use of subjective notions in the explana-tion of behaviour as was done in the school of phenomenology whose mainmethod was introspection.The empirical hypothesis put forward by this approach is that generalintelligence, as de�ned at the knowledge level, can only be displayed bysystems that can manipulate symbols: physical symbol systems [Newell andSimon 1976, Newell 1990]. General intelligence here is taken to mean thatthe system is supposed to operate in domains where `within some broadlimits anything can become a task' [Newell 1990]. This hypothesis spec-i�es the research programme of AI and can be seen as the paradigmaticexample of cognitivism. The hypothesis states that a physical symbol sys-tem (PSS) constitutes the necessary and su�cient conditions for generalintelligence. A PSS is embedded in an environment that consists of discretestates: objects and their relations. The system itself possesses a memory, aset of operators, control, input and output. The output of the system is a



136 Connectionist explanation: taking positions in the mind{brain dilemmafunction of the input. This response function is de�ned by the memory, theoperators and the control. The memory of the system consists of a numberof symbolic expressions. Symbols are taken to be patterns in a physicalmedium that stand for properties of the physical world. Symbols can againbe combined to form expressions. Expressions are stable and will persistin the system until they are explicitly changed by some operator. Symbolsdesignate states inside or outside the system by allowing the system to ac-cess additional information about these states. They acquire their meaningby being interrelated with other symbols. To access additional informationimplies that the system has to perform a search. What a symbol designatesis not given in advance. The content of an expression, however, is de�nedby the designation of the constituting symbols. The operators take sym-bols or expressions as input and produce one or more symbols as output.The control governs the behaviour of the system by interpreting symbolicexpressions: the system will carry out the processes designated by the inter-preted expression. Symbols can represent objects and their relations sincethey can designate the relevant information. The connection from symbolsto states of the outside world is established by transduction rules that mapsensory states, which relate to states of the world, onto internal symbolicrepresentations of these states.The basic rules that specify what actions the agent can generate arespeci�ed by a �nite set of logical axioms implemented by the symbols andoperators of a PSS. The knowledge of the agent becomes the logical closureof these axioms. Although the knowledge-level description of the behaviourof an agent can never be complete it allows an observer to make predic-tions about its behaviour if the knowledge and goals are known. Newell, andothers, assume that the best we can do in the explanations we give of intel-ligence, and for that matter of our own behaviour, is to try to approximatethe knowledge level.Knowledge-level explanations of intelligence and the notion of physicalsymbol systems are seen as the result of decades of work in AI and computerscience: `it is the structure of the digital computer itself (and the theoreticalanalysis of it) that reveals the nature of symbolic systems' [Newell 1990].It should not be taken as a computer metaphor but as a scienti�c theory ofthe qualitative structure of the mind which is supposed to have the samestatus as, for instance, the cell doctrine in biology.The analogy with the way in which we interact with computers is obvi-ous. To understand or de�ne the operation of a computer we mostly limitourselves to the logic of the algorithm that is executed and not to the actualactivity taking place in the hardware components. It is assumed that in or-der to understand cognition knowledge of the algorithms that the brain issupposed to execute is all that matters. This implies that we have to dropthe ideal that there is a unity of science in which all sciences are in principlereducible to physics (e.g. [Putnam 1960, Fodor 1974, Haugeland 1978]). It



The mind{brain dilemma 137is assumed that there is one `special science' of cognition which develops aformal/logical description of the rules and representations constituting it.The level of implementation is considered of minor importance.[Winograd and Flores 1986], p.15, describe the basic steps followed inthis paradigm to explain cognition as:1. Characterize the situation in terms of identi�able objects with well de�nedproperties.2. Find general rules that apply to situations in terms of those objects andproperties.3. Apply the rules to the situation of concern, drawing conclusions about whatshould be done.An inuential example of this tradition is the General Problem Solver pro-posed by [Newell and Simon 1963] which was not only capable of solvingdi�cult (logical) problems but also seemed to solve these problems in ahuman-like way. More recently [Newell 1990] has proposed the more ad-vanced SOAR architecture as a possible unifying theory of cognition.This view of cognitive science as a special science has led to an extremestance on the role that (neuro)biology plays in explaining behaviour. Sincealgorithms that are expressed in computer programs can be instantiated inan arbitrary number of di�erent implementations, it follows that we do nothave to bother with the hardware in which mental software happens to beexecuted: the brain. Basically, this way of dealing with the problem of com-plete reduction comes down to asserting that intelligence can be achievedwithout having a brain. Cognitivism limits itself to the identi�cation of thelogic of the rational mind. The problem of complete reduction is no longerrelevant since the physical instantiation of cognition in the brain does notconstitute a level of analysis that poses constraints on the symbolic andknowledge level of analysis that matters.The physical symbol systems hypothesis is often seen as the only plaus-ible model of general intelligence and having no serious competitors. One ofits virtues, regularly emphasized by its proponents (e.g. [Pylyshyn 1989]), isthat it gives us a theory to understand complex cognitive functions like lan-guage and reasoning. In fact Chomsky's theory of transformational gram-mars was an important impetus to the development of cognitivism (see[Gardner 1987] for a historical overview). We cannot forget, however, thatthis approach also has its problems, such as the implication of nativism,the related problem of symbol grounding, the frame problem, the frame ofreference problem, and the problem of situatedness. As a background forthe present discussion these problems will be briey described.The �rst problem of this position is its implied nativism. By assumingthat cognition arises out of the manipulation of rules and representationsone must explain where these primitives come from. In the case of a com-puter application we can always refer to a human programmer. In thecase of cognitivism, where a reference to a programmer would be rather



138 Connectionist explanation: taking positions in the mind{brain dilemmaawkward, one is forced to blame evolution: nativism. It is important tonote that it is not a matter of choice whether one wants to marry a cogni-tivistic orientation with nativism. The choice for cognitivism forces one tosubmit to this implication.[Newell and Simon 1976] state that if one thinks that there is nothingproblematic or mysterious about physical symbol systems and the wayin which they explain intelligence one is a child of today (today in thiscontext means the 1950s, 1960s and 1970s). Moreover, they contrast theirsolution with the classical one of Plato, where problem solving was seen asrecalling experiences from a previous occurrence. Newell and Simon claimthat this `preposterous' solution can now be replaced by a much simplerone. For a student of today (and now I mean today), however, their solutiondoes not seem that di�erent from Plato's proposal and it is certainly notunproblematic.If we take a closer look at the models developed in this paradigm wesee that they derive all their problem-solving behaviour from their prede-�ned body of knowledge. This implies that the full burden of explainingintelligence is placed on the question as to where this prede�ned body ofknowledge comes from. For Plato it was a previous life and for these sys-tems it is the creator of the program. For the explanatory value, it makeslittle di�erence. Because of the assumption behind physical symbol systemsthat they possess a complete body of knowledge from the start on, theirproponents are forced into a nativist position where all of these propertiesof the system, down to the last symbol, are genetically prede�ned.This implication, however, leads to two types of problems. The �rst is of apractical nature and the second of a principled one. By residing to nativismone assumes that the genetic code is able to store the rules and represen-tations necessary for the construction of a cognitive engine. Moreover, itmust be able to translate this into a very precisely orchestrated process ofmorphogenesis, in which billions of cells are involved. Nativism supposesthat the genetic code is able to generate very precise wiring schemes be-tween, for instance, the sensory systems and memory structures to assurethe reliable transduction of sensory states into internal representations. Thepractical problem is that the genome does not have the necessary amountof genes to be able to accomplish this job [Changeux 1985, Edelman 1987].Of the some 50 000 genes involved in realizing the whole vertebrate pheno-type only around 30 000 correspond to the brain. That they are expressedin the brain, however, does not mean that they are all necessary to developone [Miklos 1993]. This is one of the reasons to assume that the brain isnot constructed according to nativist principles, leading to very preciseand prede�ned point-to-point wiring, but on selectionist ones exploitingthe basic principles of the generation of diversity and selection by meansof di�erential ampli�cation [Changeux 1985, Edelman 1987].If one, in the face of this �rst problem, would still like to insist on the



The mind{brain dilemma 139implied nativism of cognitivism, one must still explain how, during evo-lution, all this `knowledge' could have accumulated in our genes (e.g. Pi-aget in [Piatelli-Palmarini 1980]). Some might argue that cognitivism hasnever denied learning, and also has proposed certain interesting learningmechanisms, like Newell's chunking. A closer analysis of this issue, however,reveals that this form of learning has nothing to do with acquiring `knowl-edge' from the interaction with the world. Learning in this case has beenprede�ned. It exclusively focuses on how the search in a prede�ned bodyof knowledge, the closure of the logical axioms underlying the rules andrepresentations of a PSS, can be reduced to a subset of all possible coursesof solution by means of storing successful ones; that is on chunking. Therole of learning has become one of optimizing search in a prede�ned modelof the world instead of acquiring knowledge from interacting with the realworld. (See [Verschure and Pfeifer 1993] for a further analysis.) Althoughcognitivists might not deny that organisms learn and adapt to their en-vironment, there is no place for this phenomenon in the explanation ofbehaviour they o�er.The symbol-grounding problem [Searle 1980, Harnad 1990] deals with theassignment of meaning to symbolic representations.1 In systems developedin this tradition the meaning of symbols is derived from the way they areconnected to other symbols and how they are processed. An importantassumption in the explanation o�ered by cognitivists is the transductionfunction that transforms sensory states into symbolic states. Transductionestablishes the connection between the real world and the internal worldmodel. Newell admits that in the cognitivistic approach the meaning ofsymbolic representations is not explained but is assumed [Newell 1981, p.18]. Moreover, it is taken for granted that sensors are somehow capableof reliably relating, or transducing, events in the world to their relatedinternal symbolic representations.The frame problem [McCarthy and Hayes 1969, Pylyshyn 1987] indicatesthat it is impossible to maintain a symbolic world model of a complicatedenvironment while acting in it in real time. Since the time needed to up-date this world model will increase exponentially when it becomes moreextended, the system, at a certain point, will become completely absorbedin maintaining it. This in turn will prevent it from acting. Originally thisproblem was de�ned in relation to the di�culty of drawing the right in-ference, given a logical representation. Recently it has received a moregeneral interpretation (e.g. Janlert in [Pylyshyn 1987]). It is important torealize that the frame problem cannot be solved by relying on increasing the1 The symbol-grounding problem is also used as a denominator for the class of problemsrelating to language and connectionist modelling. In this discussion I refer to a morerestricted but also more principled problem as de�ned by Searle and Harnad: howcan a symbolic system have a sense of meaning?



140 Connectionist explanation: taking positions in the mind{brain dilemmacomputing power. It relates to the principled impossibility of maintaininga consistent symbolic model of a dynamically changing world.Essentially the frame-of-reference problem [Clancey 1989, Clancey 1992]conceptualizes the relation between the observer, the designer (or the mod-eller), the artifact (e.g. the expert system, the robot), and the environment.Let us take the example of building a classical expert system. The `knowl-edge engineer' is at the same time observer and designer. He or she observesand describes in symbolic terms the problem-solving behaviour of a humanexpert. This implies the de�nition of a domain ontology, that is a categor-ization of the real-world domain by the knowledge engineer (of course,based on his or her interaction with the expert). This ontology is taken asthe basis for the system development. This has a number of consequences.First, the categories and the symbols used for them are the ones of theknowledge engineer: they are grounded in his or her experience, not in theexperience of the system. Second, this domain ontology is static.These consequences in turn lead to some problems. Given that the worldis continuously changing, a static ontology will always at some point becomeinappropriate, that is the system will not be adaptive. If a situation isencountered which cannot be appropriately captured by the ontology of asystem, its behaviour will be inadequate. Even if the system can learn, theprimitives and therefore the classes of objects and events will remain thesame. Therefore, if a system is to interact successfully with its environmentit must be able to form its own classi�cation. This classi�cation must becapable of continuously adapting to change. It must be embedded in theproperties of the system{environment interaction.If we take the human, say the user of a system, out of the previously de-scribed design loop the symbol-grounding problem becomes relevant: sincethe symbols are not grounded in the system's experience it will not beable to make the connection to the outside world. Especially for the �eldof autonomous robots, where the system has to interact with the environ-ment without the intervention of a human, this poses a problem. Sincethe symbols are observer- or designer-based it is not clear, however, whythe system should contain symbols in the �rst place. Indeed, the symbol-grounding problem can be taken as an artifact of the symbolic approach.The situatedness of intelligent systems indicates that they have to dealwith a constantly changing, partially unknowable, and unpredictable world[Simon 1969, Winograd and Flores 1986, Agre and Chapman 1987, Such-man 1987]. These systems have to act in real time since the environmentis constantly changing, largely { but not only { because of what otheragents do. The traditional symbolic approach to designing agents is to equipthem with models of their environment. These models form the basis forplanning processes which in turn are used for deciding on a particular ac-tion. But plan-based agents very quickly run into combinatorial problems(e.g. [Chapman 1987]) because in an unpredictable world many alterna-



The mind{brain dilemma 141tives must be considered. Since the environment is only partially knowablea complete model cannot be built in the �rst place. However, even if onlypartial models are developed, keeping the models up to date requires a lotof computational resources. This pertains to the frame problem that wasdiscussed earlier. Inspection of the problem of taking action in the realworld shows that it is neither necessary nor desirable to develop `complete'and very detailed plans and models (e.g. [Suchman 1987], [Winograd andFlores 1986] and [Verschure and Pfeifer 1993]).The issue of situatedness indicates that there is no simple way around thesymbol-grounding problem. In fact, cognitivism is confronted here with oneof the problems that Chomsky raised against behaviourism. In his famousreview of Skinner's theory of language, [Chomsky 1959] shows that, forinstance, the reference to stimulus control made by behaviourists is quitemeaningless outside the restricted set-up of laboratory experiments. It com-pletely rests on an a posteriori interpretation of the response by an observer,in which the relevant stimulus properties are de�ned. If a person would ut-ter `red' after seeing a red chair, the theory of stimulus control would saythat this behaviour is under the control of the stimulus property `redness'.If, however, the person would have said `chair' the relevant stimulus prop-erty would have been `chairness'. Any interpretation becomes possible interms of stimulus control. The meaning of the notion `stimulus' has lostall the objectivity it is supposed to have in the behaviourist tradition. It isno longer part of the outside physical world but is a construct ascribed tothe system by the observer. Therefore, predictions about behaviour cannotbe made any more. Chomsky sees this as a retreat to mentalistic psychol-ogy which relies on a general mysti�cation. Cognitivism, however, does notseem to fare much better than behaviourism in this respect. In the cogni-tivist tradition the rules and representations used in explaining a responsefunction are a priori ascribed to the system by the designer; they are onlyconnected to the outside world in the frame of reference of the observer ordesigner. Therefore, Chomsky's argument was not only a serious blow tobehaviourism, but also speci�ed a problem that cognitivism has not evenstarted to solve.I will not embark on a full evaluation of the cognitivist tradition, butsimply note that one pays a price for the conceptual conveniences o�eredby the knowledge level and the hypotheses of physical symbol systems putforward by this tradition. It still has to solve some serious problems. Some ofthese problems, however, seem to be a direct implication of the assumptionsunderlying this paradigm in the �rst place. These considerations form astarting point for the work that will be presented later. The conceptualissues discussed, however, indicate that there is no reason to believe thatthe cognitivistic paradigm is the only game in town. It faces some deepproblems which render it not totally convincing. This can be seen as aninvitation to explore alternatives.



142 Connectionist explanation: taking positions in the mind{brain dilemma7.3 ConnectionismAnother inuential approach in cognitive science is connectionism (e.g.[Rosenblatt 1958]). Instead of relying on an analogy with digital computers,its theorizing about cognition is closely tied to knowledge about the brain(e.g. [Hebb 1949]). Rosenblatt assumes that by interacting in its environ-ment an organism, which does not possess prior knowledge of this envi-ronment, develops preferences for speci�c responses to certain stimuli. Thedeveloping associations between stimuli and responses are related to therami�cation of distinct connection patterns in its nervous system. The clas-sical example of this approach is the perceptron proposed by [Rosenblatt1958, Rosenblatt 1962], who tried to develop a formal theoretical basisfor the study of biological intelligence. Instead of relying on symbolic logicRosenblatt founded his explanations in probability theory. In this approachthe problem of complete reduction is dissolved by rejecting a descriptionat the level of logical symbol manipulation and strictly relating cognitionto its substrate: the brain.In the days of Rosenblatt it was seen as an advantage of this approachthat it allowed psychology to stay in touch with (neuro)biology. The phe-nomena that could be modelled in connectionist systems, like pattern recog-nition, however, seemed far removed from the phenomena that should beexplained by cognitive science. The relation of this approach to association-ism, which in that period was seen as a hopeless school of thought (see forinstance the already discussed criticism of Chomsky) was seen as indicatingthat these techniques would not su�ce to explain phenomena like language[Bechtel 1989]. Moreover, [Minsky and Papert 1969] demonstrated that theperceptron was not able to perform certain computations. These resultswere interpreted as undercutting the theoretical thrust of connectionismand attention died away (or failed to increase), leaving cognitive science inthe �rm grip of cognitivism for quite some time.If we consider the two main schools of thought in cognitive science itappears that this �eld is confronted with a mind{brain dilemma. It seemsthat a complete understanding of the mind and the brain can only befound if either the (formal) mind is left out, as proposed by connectionism,or the brain is left out, as is suggested by cognitivism. The recently pro-posed approach of subsymbolic connectionism, however, wants to solve themind{brain dilemma by trying to reconcile the two seemingly orthogonalapproaches.7.4 Cognition and subsymbolsAlthough the models proposed by neo-connectionism are strongly relatedto Rosenblatt's perceptron, their theoretical context is completely di�erent.The recent attempt by [Smolensky 1988] to de�ne an alternative theoretical



Cognition and subsymbols 143framework for connectionism is not as radical as Rosenblatt's proposal.Smolensky emphasizes the importance of a subsymbolic approach towardsunderstanding cognition, which mediates between the formal mind and thedynamical brain.The subsymbolic paradigm, which was initially proposed by [Hofstadter1985], is based on developments in the present mainstream of connectionistresearch (e.g. [McClelland and Rumelhart 1986]). In this proposal the rulesand representations of cognitivism are seen as emergent properties of theinteraction of a large number of subsymbolic units. Symbols are encoded bythe `complex patterns of activity over many units. Each unit participates inmany such patterns. The interactions between individual units are simple,but these units do not have conceptual semantics: they are subconceptual'[Smolensky 1988, p. 6].The subsymbolic description of cognition is supposed to be, in princi-ple, reducible to brain processes. Or, as Smolensky puts it, `if we succeedin building symbols and symbol manipulation out of connectoplasm thenwe will have an explanation of where symbols and symbol manipulationcome from [...] With any luck we will even have an explanation how thebrain builds symbolic computation' ([Smolensky 1987, p. 141], emphasis inoriginal). The limited knowledge we have of the central nervous system isseen as the only obstacle to be overcome towards �nding this subsymbolicexplanation of cognition.The explanation of cognition o�ered by subsymbolic connectionism ischaracterized by a dimension shift from a symbolic description at the levelof complex patterns of activity to a non-symbolic one at the level of sub-symbolic units. Smolensky, however, emphasizes that `for the time being,subsymbolic models of higher processes are much more directly relatedto conceptual level accounts of these processes than to any neural account'[Smolensky 1988, p. 8]. Like others, Smolensky compares this scheme of ex-planation, subsymbolic reduction, with that of physical science. Just as clas-sical mechanics gives a useful and accurate higher-level description of theinteraction of macroscopic bodies, cognitivism gives a useful and accuratedescription of macroscopic cognitive processes. The complete descriptionsof these processes, however, have to be found at a quantum-mechanical orsubsymbolic level, respectively.Other theorists have advocated alternatives to Smolensky's account ofthe relation between the symbolic and the subsymbolic level of descrip-tion. [Churchland 1989] and [Ramsey et al. 1991], for example, argue thatthe subsymbolic explanation of a task performed by a connectionist modelshould not be located at the level of the units (where Smolensky placesit) but at the level of the formal laws that govern the behaviour of themodel (the equations determining the evolution of weights and activationpatterns in time) and/or the weights connecting the units. This alterna-tive, however, endorses the same claim: connectionist models are capable



144 Connectionist explanation: taking positions in the mind{brain dilemmaof representing and manipulating information in a qualitatively di�erentway than symbolic models.Subsymbolic connectionism proposes an alternative position to both thoseof cognitivism and traditional connectionism on the mind{brain dilemmaby postulating that a third level of description, in between the formal mindand the dynamical brain, is essential for understanding cognition. Thisclaim of a subsymbolic level distinguishes subsymbolic connectionism fromcognitivism. In assuming that cognitivism constitutes a useful, though in-complete, level of description, subsymbolic connectionism distinguishes it-self from traditional connectionism (as envisioned by, for instance, Rosen-blatt). Where the latter tried to de�ne an anti-cognitivistic alternative, thesubsymbolic connectionism tries to relate the two approaches through thesubsymbolic level of description.If subsymbolic connectionism proves to be correct, it could indeed be in-terpreted as important progress in the philosophy of mind. It would showa way out of the mind{brain dilemma by unifying the rational mind withthe dynamical brain. This justi�es a closer evaluation of the power of sub-symbolic computing. By examining the way NETtalk, and a closely relatedmodel for the classi�cation of sonar return signals, represent their task do-mains, I will try to assess the credibility of the subsymbolic promise. Withanother example, a connectionist model of Donald Duck, I will evaluate theclaims made by Churchland and Ramsey et al.7.5 The power of subsymbolic computingA standard example of a connectionist model that displays interesting emer-gent behaviour is NETtalk (the famous `parallel network that learns toread aloud') developed by [Sejnowski and Rosenberg 1986]. Proponents ofsubsymbolic connectionism assume that the hidden units (the units be-tween the input and output layers) in connectionist models like NETtalkexhibit subsymbolic representations and thus illustrate the power of sub-symbolic computing. Although the designers of NETtalk acknowledge thedi�erences between the architecture of NETtalk and the brain, they assumethat NETtalk can teach us how information (in this case letter-to-phonememappings) could be represented in `large populations of neurons' [Sejnowskiand Rosenberg 1986, p. 670]. [Churchland and Sejnowski 1989, p. 244] in-dicate that it `yields clues to how the nervous system can embody modelsof various domains of the world'.With NETtalk Sejnowski and Rosenberg have quite successfully modelledthe conversion of English text to speech. NETtalk is proposed as a connec-tionist alternative to DECtalk, a commercial product that was designed forthis task based on symbolic techniques. Two major functions must be car-ried out in order to make this conversion. First, the text must be mappedinto an abstract linguistic description consisting of phonemes, stress and



The power of subsymbolic computing 145
Figure 7.1 The architecture of NETtalk: see text for explanationsyntactic information. Second, this linguistic description must be mappedinto synthetic speech by translating the phoneme string, along with lexi-cal stress, syntactic and semantic information, into an acoustic wave form.This linguistic description is de�ned in DECtalk as a set of articulatoryfeatures that specify the parameter values for a formant speech synthe-sizer. NETtalk was designed to perform the mapping from the text to thearticulatory features directly using the same coding as applied in DECtalk.The architecture of NETtalk consists of three layers: input, hidden andoutput (Fig. 7.1). The input layer of NETtalk contains 7 identical groupsof 29 units each. Each unit in a group codes a letter of the alphabet, aword boundary, or punctuation. The hidden layer has no preassigned inter-pretation but is necessary to accomplish the mapping between the inputand the output layers. Each unit of the output layer represents one of 23articulatory features or one of 3 features representing stress and syllableboundaries. Hence, on the input and output layers, all features are repre-sented locally by single units.The network learns to associate the letter coded by the fourth group ofthe input layer with a speci�c set of pronunciation features represented bythe output layer. The other 6 groups of the input layer provide a context.To learn the pronunciation of a letter, a speci�c pattern of activation of theinput layer, representing the letter and the context, must be associated witha pattern of activation of the output layer (depicted by the black squares inthe �gure). Learning proceeds in a supervised way: the weights connectingthe units of the input, hidden and output layers will be adjusted to reducethe di�erence between the pattern of activation actually generated in the



146 Connectionist explanation: taking positions in the mind{brain dilemmaoutput layer, due to the received input from the hidden units, and whatthe pattern actually should be, as speci�ed by the training set.NETtalk was able to learn the associations between letters and phonemesand could correctly pronounce 95% of the presented words after trainingwith 50 000 words. It could correctly generalize to new cases for 78% of thepresented test words.[Rosenberg and Sejnowski 1987] (see also [Rosenberg 1986]) tried to de-termine the features coded for by the hidden units of a trained network byclustering input patterns that led to similar activation patterns of these el-ements. The cluster analysis of NETtalk showed that the activity patternsof the hidden units could be categorized into two main groups: vowels andconsonants. These results were considered to be an important proof of thepower of subsymbolic computing: they demonstrated the emergence of a`symbolic' separation of the letter-to-phoneme mapping into vowels andconsonants.According to [Sejnowski and Rosenberg 1986] NETtalk started out withno `considerable innate knowledge in the form of input and output repre-sentations that were chosen by the experimenters'. Several of the importantresults of this work, as summarized by [Churchland and Sejnowski 1989],are:1. `The representational organization [of the network] is not programmedor coded into the network; it is found by the network. In a sense it\programs" itself' [p. 239].2. `The representation is a property of the collection of hidden units, anddoes not resemble sentence-logic2 organization' [p. 239].3. `[Networks that start out with] di�erent initial conditions [...] had similarfunctional clusterings [the vowel{consonant distinction]' [p. 239].This brings them to conclude that network models like NETtalk show `howknowledge of brain architecture can contribute to the devising of likely andpowerful algorithms that can be e�ciently implemented in the architectureof the nervous system and may alter even how we construe the computa-tional problems' (p. 246).NETtalk is surrounded with an impressive set of interpretations andclaims. Again, in case this all proves to be correct, we are witnessing animportant moment in cognitive science. Given this importance a closeranalysis of this model is necessary. Since the main claim is the emergenceof a vowel{consonant distinction, this regularity should not be present inthe character{phoneme relationships expressed in the input and outputpatterns presented to NETtalk. In their article Sejnowski and Rosenberg2 For Churchland and Sejnowski, the expression `sentence-logic' refers to a symbolicapproach.



The power of subsymbolic computing 147Table 7.1 Vowels in NETtalkPhoneme Articulatory features(example)a (father) Central 2 Low Tensedc (bought) Velar Medium Unvoicede (bake) Front 2 Medium Tensedi (Pete) Front 1 High Tensedo (boat) Back 2 Medium Tensedu (lute) Back 2 High Tensedx (about) Central 2 MediumA (bite) Central 1 Front 2 Medium TensedE (set) Front 1 Front 2 MediumI (bit) Front 1 HighO (boy) Central 1 Central 2 Medium TensedU (book) Back 1 HighW (bout) Back 1 Central 2 High Medium TensedY (cute) Central 1 Front 1 Front 2 High Tensed@ (bat) Front 2 Low(one) Central 1 Front 1 Glide Low Voiced^ (but) Central 1 Lowpresent these relationships in alphabetical order. Tables 7.1 and 7.2 list thesame data set but now grouped into vowels and consonants.In Tables 7.1 and 7.2 the characters, presented to the input layer of thenetwork, are given with their related phonemes, which are presented to theoutput layer. With every character the phonetic features that specify thepronunciation of the symbol are depicted. Articulatory features that areused to code vowels and consonants are shown underlined in the categoryin which they are used the least (e.g. `Voiced' is used 21 times in codinga consonant and once in coding a vowel and is therefore underlined in thecategory `vowels'). The tables show that this overlap is limited to 4 of the51 symbols (`c', `*', `X' and `:'). The tendency for vowels and consonants tobe coded in nonoverlapping ways is violated only in the case of the lettercoded as `:' (logic). The pronunciation of the consonant `c' in this context,symbolized by `:', is coded with articulatory features that are mostly usedfor representing vowels. This, however, implies that for NETtalk `:' is avowel. In all other cases there are other non-overlapping features availablefor explicitly de�ning a vowel as a vowel and a consonant as a consonant.These results indicate that the features that are used to code about 95%of the vowels only code about 5% of the consonants and vice versa. Only8 of the 24 features show any overlap and are used for coding vowels andconsonants. Notice, however, that this overlap is always rather limited. Forinstance, the feature `Unvoiced' is used 12 times in encoding a consonant



148 Connectionist explanation: taking positions in the mind{brain dilemmaTable 7.2 Consonants: phonetic features that are used in coding both vowels andconsonants are underlined in the category in which they appear least frequentlyPhoneme Articulatory features(example)b (bet) Stop Labial Voicedd (debt) Stop Alveolar Voicedf (fin) Fricative Labial Unvoicedg (guess) Stop Velar Voicedh (head) Glide Glottal Unvoicedk (Ken) Stop Velar Unvoicedl (let) Liquid Dental Voicedm (met) Nasal Labial Voicedn (net) Nasal Alveolar Voicedp (pet) Stop Labial Unvoicedr (red) Liquid Palatal Voiceds (sit) Fricative Alveolar Unvoicedt (test) Stop Alveolar Unvoicedv (vest) Fricative Labial Voicedw (wet) Glide Labial Voicedy (yet) Glide Palatal Voicedz (zoo) Fricative Alveolar VoicedC (chin) A�ricative Alveolar UnvoicedD (this) Fricative Dental VoicedG (sing) Nasal Velar VoicedJ (gin) A�ricative Alveolar VoicedK (sexual) A�ricative Palatal Unvoiced Fricative AlveolarL (bottle) Liquid Alveolar VoicedM (absym) Nasal Dental VoicedN (button) Nasal Palatal VoicedQ (quest) A�ricative Labial Voiced Stop VelarR (bird) Liquid Velar VoicedS (shin) Fricative Palatal UnvoicedT (thin) Fricative Dental UnvoicedX (excess) A�ricative Central 1 Front 2 UnvoicedZ (leisure) Fricative Palatal Voiced! (nazi) A�ricative Dental Labial Unvoiced# (examine) A�ricative Palatal Velar Voiced: (logic) Front 1 Front 2 Highand only once in encoding a vowel. These results indicate that the emergentvowel{consonant distinction was already fully present in the input andoutput patterns presented to NETtalk. This surprising result forces us tore-evaluate the claims and interpretations made for this model.NETtalk is put forward as a model that shows emergent symbolic



The power of subsymbolic computing 149representations, demonstrating the power of subsymbolic computing. Inthe presented analysis it is shown, however, that the subsymbolic explana-tion of NETtalk's performance in pronouncing English words, expressed inthe separation of vowels and consonants, is due to the encoding suppliedby the designers of the system. The vowels are always translated to a set ofarticulatory features which themselves distinguish vowels from consonants.Therefore, it is not surprising that the hidden units of NETtalk learn todiscriminate them. NETtalk just separates patterns that are su�cientlydi�erent and groups together patterns that are su�ciently similar. Sincethe categorization in vowels and consonants was already there in the pat-terns presented, it is no surprise that the system captures this regularity.The trick of this subsymbolic `explanation' lies in the proper encoding ofthe desired symbolic behaviour into activation patterns that are presentedto the network. This encoding is made by the designers of the system,Sejnowski and Rosenberg, and not by NETtalk (or its learning algorithm).This result might sound trivial but the point is that the claimed emer-gence of symbolic behaviour from subsymbolic processing cannot be sup-ported. Let us see how this applies to the three claims of Churchland andSejnowski listed above. Claim 1 (the system �nds the representations it-self) is plainly wrong, as shown in the analysis of the patterns presentedto the model and their relation to the precoded features. The representa-tions it �nds are completely prespeci�ed in the examples it learns. Theseexamples are de�ned by the designers. Claim 2 (the representations do notresemble sentence-logic organization) must be reformulated. It would bemore appropriate to say that although the representations after learningare interpreted in terms of the activation of the hidden units, they are adirect result of the symbolic precoding made by the designers of the system(or rather the designers of DECtalk), and for that matter are completelyrelated to a symbolic analysis of language production. Claim 3 (di�erentinitial conditions lead to the same functional clustering) can now be under-stood. It is obvious that, given di�erent initial conditions, the system willalways settle into the same functional clustering because it is forced intoit by the presented target patterns (which represent the phonetic featurecoding made by the designers). This set of patterns does not change overthe di�erent experiments. Given these results, the suggestion that NETtalkis somehow helpful in understanding brain dynamics is hard to interpret.This is emphasized by the serious criticism that the used learning methodreceived for not being very brain-like (e.g. [Crick 1989]). Moreover, theclaim of Sejnowski and Rosenberg that NETtalk did not start out with`considerable' innate knowledge of the task domain cannot be supported.Not only was the network totally and unambiguously symbolically labelledat the level of input and output units, but the way these symbolic repre-sentations were engaged and associated was again explicitly coded in theset of patterns presented.



150 Connectionist explanation: taking positions in the mind{brain dilemmaThis analysis suggests that the subsymbolic strategy behind NETtalkconsists of the following steps.1. The designer of the system de�nes basic symbolic properties in whicha certain task can be described (in NETtalk articulatory features andcharacters): the knowledge the system must have to accomplish the taskis de�ned.2. These properties get translated to regularities in activation patterns pre-sented to a connectionist model (in the case of NETtalk this is expressedas which letter should be associated with which set of pronunciationfeatures). The regularities expressed in the prede�ned input-to-outputmapping encode the rules for the pronunciation of English text. Theconnectionist model learns to separate the patterns on their di�erencesand groups them together on their regularities.3. The rules, encoded in the weight distribution, are applied to input pat-terns presented to the network, which transforms them into the relatedoutput pattern. The rules encoded in the network lead to certain reg-ularities in the dynamics of the network { the activation of the outputand hidden layers { or a speci�c distribution of the weights.These three steps are amazingly similar to the three characteristics of thecognitivistic approach distinguished byWinograd and Flores. An additionalstep, not identi�ed by Winograd and Flores, is that the regularities ex-pressed in the dynamics of the network are in turn symbolically interpretedby the designer (in the case of NETtalk as a vowel{consonant distinction).The most important commonality between the cognitivistic tradition andsubsymbolic connectionism, as analysed here, is that both completely relyon designer-dependent symbolic task descriptions.Of course, the analysis of the representations formed in models likeNETtalk can be useful because `unexpected' regularities (like the vowel{consonant distinction in NETtalk) can be discovered (see also [Rosenbergand Sejnowski 1987]).3 We must not forget, however, that these discoveriesonly mean that the designers, who made the precoding, did not exactlyknow which regularities they put in. A more e�cient way to discover themcould have been to analyse these precodings directly instead of �rst makingNETtalk learn them. (For instance, the quite straightforward rearrangingof the data set presented in Table 7.1 is already quite insightful.) We haveto be very clear about the claims based on the performance of NETtalk:the vowel{consonant separation is not an emergent property of the sys-tem. Moreover, compared to systems that use a set of letter-to-sound rules(without a dictionary of exceptions), NETtalk does fairly poorly [Klatt3 It must be said, however, that every introductory text on phonetics would show thatthe sounds of vowels and consonants are each described by a di�erent set of phoneticfeatures.



Signal classi�cation and subsymbolic reduction 151
Figure 7.2 The architecture of the sonar classi�er: see text for explanation1987]. All it shows us is how we can `compile' a given designer-dependentsymbolic task description into a connectionist model.To further explore the generality of this contention, two more exam-ples will be considered. In the �rst example it will be shown that indeedno `emergent' symbolic behaviour appears when the task domain is notsymbolically de�ned a priori. The second example will show that the sug-gestions by [Churchland 1989] and [Ramsey et al. 1991], that subsymbolicreduction takes place at the `lower' level of the weights or of the `formallaws' driving a connectionist model are not supported by the nature ofthese systems.7.6 Signal classi�cation and subsymbolic reduction[Gorman and Sejnowski 1988] have used a network with an architecturesimilar to NETtalk as a classi�er of sonar signals returned by metal cylin-ders and rocks. They show that this task can be accomplished with anaccuracy of 99.8% by a network that consists of 24 hidden units (see Fig.7.2).The patterns presented to the input layer correspond to the spectralinformation of the sonar return signals. The network is trained to associatethese patterns with the corresponding two-bit pattern for cylinder [1,0] orrock [0,1]. At the input side the spectral information of an analog signalis presented and at the output side a symbolically interpretable discretecoding is employed.Gorman and Sejnowski expected that, analogously to NETtalk, the global



152 Connectionist explanation: taking positions in the mind{brain dilemmafeatures expressed in the activation patterns of the hidden units could besymbolically labelled. In this case the symbols `rocks' and `metal cylinders'seemed appropriate. Unfortunately this was not possible:`Although it is attractive to think of a hidden unit as a feature extractor,this may not be the best way to characterize a hidden unit's coding strategy.As we demonstrated, the hidden unit is capable of encoding multiple featuresand even multiple strategies simultaneously. The network is able to internallyencode pattern variations that do not decompose simply into a set of featuredimensions.' [op. cit. p. 88].Eventually Gorman and Sejnowski resort to a description in terms of rulesand strategies to illuminate the behaviour of their model. Although thiscan be very helpful in understanding the behaviour of such a complicatedmodel, it implies that the regularities expressed in the analog signal pro-jected to the input layer do not coincide with a (sub)symbolic interpreta-tion of the task by a human observer. In this case symbolic behaviour didnot `emerge' because the task domain could not be de�ned symbolically.The regularities in the spectral information presented to the input layerthat were captured by the model did not lead to activation patterns at thehidden layer that would allow a straightforward interpretation in terms ofsymbolic categories.Subsymbolic reduction as proposed by Smolensky (and others, e.g. [Church-land and Sejnowski 1989]) seems to be closely tied to the possibility ofcompletely describing the task in symbolic terms. The input to the sonarclassi�er was not precoded in discrete symbolic features. This input didnot allow a mapping into the symbolic categorization coded by the out-put units. The interpretation of network behaviour in terms of symbolsemerging from subsymbols became impossible: no symbols, no subsymbols.The analysis of the sonar classi�er suggests that subsymbolic reduction,as de�ned here, only seems to succeed if the patterns of activation of themodel are interpretable in advance in terms of discrete symbols. Hence,the success (or failure) of subsymbolic reduction only indicates whetherthe designer succeeded in describing the task domain in advance in sym-bolic terms. This example further supports the previously listed set of rulesemployed by subsymbolic connectionists.7.7 Donald Duck: the exampleAs already indicated, another subsymbolic route to understanding cog-nition is proposed by [Churchland 1989] and [Ramsey et al. 1991]. Forinstance, in [Ramsey et al. 1991] it is claimed that the coding of propos-itions in the weights of connectionist models is qualitatively di�erent froma symbolic one. With an example it will be shown, however, that also atthis level the same dependence on the symbolic description of the task bythe designer holds.



Donald Duck: the example 153Consider a connectionist model of Donald Duck who learns to representhis family relationships, such as his three nephews (the formal structure ofthis model is described in Appendix A). In the course of a day Donald Duckis confronted with Louie, Dewey and Huey. In this model I will use a modelsimilar to one presented by [McClelland and Rumelhart 1986] describinga boy representing visual impressions of dogs and their names, in orderto illustrate a way the three nephews get represented in Donald Duck'smemory. The main idea of using this model is to argue against the claimimplied by [Churchland 1989] and [Ramsey et al. 1991] that connectionistrepresentations of this kind are qualitatively di�erent in any way, and thusto issue a warning against an over-interpretation of such models.Donald's learning is modelled with an autoassociative system consistingof eight units. Every time Donald is confronted with one of the patterns for`Louie', `Dewey' or `Huey' they activate a speci�c pattern in these units.When Donald sees one of his nephews the patterns transduced to his mem-ory by his sensors are:[ +1, +1, +1, +1, -1, -1, -1, -1] = `Louie'[ +1, +1, -1, -1, +1, +1, -1, -1] = `Dewey'[ +1, -1, +1, -1, +1, -1, +1, -1] = `Huey'Donald is confronted with his nephews during 150 learning cycles. In everycycle �rst Louie presents himself to Donald, followed by Dewey and Huey.To evaluate the suggestion that the weights implementingDonald's memorysomehow constitute a subsymbolic representation of his nephews, we mustdetermine how these representations are coded in the weights. Evaluatingonly one weight (as proposed by [Ramsey et al. 1991]) is not appropriate.4The representations formed in the connections between the units can onlybe evaluated in terms of a con�guration of weights. When we have a one-layered network an appropriate technique is eigenvalue decomposition (e.g.[Anderson and Murphy 1986]). This technique provides us with the patterns(eigenvectors) coded for by the weights and their prominence (eigenvalues).The results of the decomposition of the weight matrix of Donald's memory,in terms of eigenvalues and the covered percentages, are depicted in thefollowing table.value: percentage:5.2 10-4 761.3 10-4 193.3 10-5 51.1 10-20 03.3 10-18 04 Although connectionistmodels are well known for their robustness, also called `grace-ful degradation', pattern recognition using only one weight will become a problemwith networks bigger than two units.



154 Connectionist explanation: taking positions in the mind{brain dilemma2.5 10-22 01.3 10-20 07.4 10-19 0total: 6.8 10-4 100These eigenvalues suggest that the matrix constituting the memory of Don-ald has three dimensions. The eigenvector with the largest eigenvalue ex-plains 76% of the variance of the con�guration of weights. The secondlargest explains 19%. The third largest explains 5%. The other �ve eigen-vectors each explain 0%. In the following table the values of the eigenvec-tors associated with the three non-zero eigenvalues (or the three dimensionsmaking up Donald's mind) are depicted.eigenvector 1 2 3element:1 1.000 -0.996 0.9962 0.999 -0.996 -0.9963 -0.996 -0.999 0.9964 -0.996 -0.996 -0.9965 0.996 0.996 0.9966 0.996 1.000 -0.9967 -0.994 0.993 0.9968 -0.999 0.996 -0.996When we compare these eigenvectors with the patterns which code Louie,Dewey and Huey the resemblance is striking. The three dimensions makingup the memory of Donald are exactly the patterns we have put in!Also in this example subsymbolic explanation is completely dependenton the a priori symbolic description of the task made by the designer.The symbols or propositions the network has to learn are translated bythe designer into patterns of activation conserving the category di�erencesand similarities of the symbols. Symbolic distinctions are translated to dis-tinctions between the patterns that code these symbols. By learning thesepatterns, the weights of the model will be adjusted to these distinctions.The subsymbolic representation encoded in the weights will be solely deter-mined by the properties of the patterns the designer has put in. Thus therepresentation is not qualitatively di�erent from symbolic representations,as [Churchland 1989] and [Ramsey et al. 1991] claim, but has the samedependency on the user's ontology.7.8 The status of subsymbolic computingThe above three examples all support the hypothesis that subsymbolicconnectionism, as de�ned and analysed here, is based on a circular strategy



The status of subsymbolic computing 155culminating in a category error by the designers and interpreters of thesemodels. The severity of this conclusion would make a further generalizationnecessary. It is, however, not the purpose of this chapter to provide a fullreview of the di�erent realizations subsymbolic connectionism has found incognitive science. The intention is to de�ne a conceptual framework andresearch strategy in which the connectionist ambition can be realized. It isup to the designers of connectionist models, and any other models for thatmatter, to be critical towards their own strategy and interpretations. Thedesigners of the models and their interpreters discussed here have failedto do this, leading to a further confusion about the scope and limits ofthe approach. A reasonable conclusion of the analysis presented would bethat there is a tendency in the mainstream of connectionist modelling toover-interpret models that serve solely as compilers of observer-dependentontologies. At the heart of this over-interpretation lies a category errorwhere the ontology of the designer is mistaken for that of the model he orshe de�nes.The case against subsymbolic connectionism, as analysed here, seemsconvincing enough. Although some of these models can be considered engi-neering successes, their explanational value seems minimal. They only echothe symbolic regularities the designer has put in. Like the cognitivistictradition, subsymbolic connectionism seems to start out with a symbolicanalysis of the task domain. The regularities discovered in this analysisare translated by the designer to speci�c activation patterns presented tothe model. This implies that the subsymbolic bridge between the symbolicmind and the dynamical brain is based on an unsubstantiated claim. Themodels brought forward as examples of its potential indicate that a subsym-bolic analysis is completely dependent on a symbolic one. Both Smolenskyand Newell, for instance, take symbols as patterns of activation in somehardware medium. The only di�erence between the two positions towardssymbols is that the former sees an emergent relationship between these twolevels.A frequently o�ered interpretation of the status of connectionist modelsin cognitive science is that we do not know enough about these networks tocome to a �nal evaluation (e.g. [McCloskey 1991]). The analysis presented,however, shows that we do know enough about these models to performsuch an evaluation: the subsymbolic route to understanding cognition, asde�ned and analysed here, is strongly dependent on the well-trodden sym-bolic one.A standard reply to this type of criticism is that it might be true forthese `old' examples, but in the meantime much has changed. It is truethat the last few years have seen an explosive growth in the knowledge ofthe techniques and methods of connectionist modelling. In the case of thesemore principled issues, however, not much progress has been made. Forexample, in a recent popularization of connectionist modelling as applied



156 Connectionist explanation: taking positions in the mind{brain dilemmato language and language disorders due to brain lesion, [Hinton et al. 1993](see also [Hinton et al. 1991]) present a model that is designed followingthe same strategy as NETtalk.Let me emphasize again that the purpose of this analysis is not to providea full review of the past and present use of connectionist models in cognitivescience. The analysis of the traditional cognitivistic paradigm served toidentify a number of conceptual issues relevant to solving the mind{braindilemma. The evaluation of subsymbolic connectionism showed that thisstyle of modelling does not automatically solve these problems, but in factruns the risk of importing them by implicitly following the cognitivisticexplanational scheme. It cannot be excluded that subsymbolic connection-ism can provide a way to settle the mind{brain dilemma. This promise,however, still awaits its realization.7.9 Taking connectionism seriouslyThe properties that render certain models connectionist are by reference toparallel computation, distributed representation and emergence. They com-prise a set of techniques that can be used to describe dynamical systems.These techniques, however, can be applied to model a number of di�erentbiological phenomena like the brain, the immune system, co-evolution, andauto-catalysis (for a comparison see [Farmer 1990]) to mention but a few.The school of connectionism in cognitive science proposes to use these tech-niques to study the brain and behaviour. By itself, however, using thesetechniques does not constitute a paradigm. They are neutral towards aconceptual interpretation. Therefore, their relevance to cognitive sciencedepends on the theoretical context in which they are embedded. It seemsthat in the current use of connectionist techniques three global domainscan be distinguished: symbolic models, neutral models and neural models.The �rst class of applications of connectionist techniques, symbolic mod-els, combines connectionist techniques with a cognitivistic theory expressedin a symbolic description of a task (derived using step 1 of the cognitivisticapproach). The models proposed in the `subsymbolic school' (as de�nedand described earlier) fall into this category. As demonstrated earlier, inNETtalk the symbolic analysis is expressed in the letter and phoneme re-lations which are precoded in the patterns the system has to learn. Thisstrategy of connectionist modellingmust be considered as the application ofa connectionist methodology within the traditional cognitivistic paradigm.Examples of this popular category of models are NETtalk, TRACE, thepast tense model of [McClelland and Rumelhart 1986], a recently pro-posed model by [Mitchell and Hofstadter 1990] which demonstrates the`emergence' of understanding, the models of [Seidenberg and McClelland1989], and of [Hinton et al. 1991] on language, and the model on categoricaland spatial representations presented by [Kosslyn et al. 1992]. A confusing



Taking connectionism seriously 157aspect of this type of connectionist models, as the analysis presented hasshown, is that they are supposed to be something other than they are. Thisontological fallacy is, unfortunately, not widely acknowledged. It is, for in-stance, only in the analysis presented that the ontological commitment andthe semantic interpretability of this type of connectionist models is madeexplicit.The conceptual dependence of these models on cognitivism implies thatthey have to deal with the standards set in that paradigm. They must an-swer the criticism from the cognitivist tradition (like [Fodor and Pylyshyn1988] and [Broadbent 1985]), for instance that the representations builtin connectionist models must satisfy constraints such as compositionality.Moreover, the analysis presented shows that the contribution of these mod-els to our understanding of mental phenomena is limited since they onlyecho what their designers had already expressed in their symbolic task def-inition. Hence, they can never lead to an understanding which goes beyondthe limits set by the cognitivist paradigm and its symbolic description ofbehavioural regularities.The second domain of the application of connectionist techniques, neu-tral models, strictly limits their scope to the study and application of thetechniques, independent of the question whether these models relate tocognitive processes or neural mechanisms. In contrast to the �rst class ofmodels, in this case the units are not externally labelled with symbolic in-formation, but are taken as neutral processing elements. In this perspectiveone can work on, for instance, convergence proofs and analytical methodsto study network behaviour. Examples of this approach are the evaluationof the perceptron by Minsky and Papert, work on connectionist learningrules (e.g. [Rumelhart et al. 1986] and [Ackley et al. 1985]), the relation totechniques stemming from statistical physics (e.g. [Amit 1989]), or the workon the relationship between these connectionist techniques and the conceptof universal approximation, which stems from the mathematical domain ofapproximation theory [Hornik et al. 1989]. This class of connectionist ef-forts can be seen as further improving and understanding connectionisttechniques. This understanding can be used to address engineering prob-lems like classi�cation. It is an e�ort independent of the way in which thesetechniques could be applied in the domains of neuroscience or cognitivism,and seems more to rely on formal analytical methods. Like in the previousclass of models the brain might serve as a metaphor in modelling, but it isnot seen as a constraint.A third and last class of connectionist models, neural models, relates tothe application and development of these techniques in the domain of neuro-science. Classical examples here are, for instance, the work of [Hodgkin andHuxley 1952] on modelling the properties of single neurons, or the modelproposed by [Willshaw and Malsburg 1976] on the formation of topologicalmaps. An important and more recent example of this type of research is



158 Connectionist explanation: taking positions in the mind{brain dilemmathe approach of synthetic neural modelling proposed by [Edelman 1987],[Edelman 1989] and [Edelman 1992], who tries to explain psychologicalphenomena from a (neuro)biological perspective using neural models. Thisclass of models distinguishes itself from the previous two since it is notonly inspired by the properties of the brain, but is also explicitly validatedagainst strict constraints stemming from it.It is not always possible to draw clear boundaries between these threeclasses of connectionist modelling. We have to keep in mind, however, thatthe techniques used to construct a model are neutral towards their in-terpretation. A model does not fall in the category of neural modellingjust because basic processing units are called `neurons' and their intercon-nections are called `synapses'. They only become interpretable when theconceptual framework in which they are embedded is explicated and themodels are validated against su�cient constraints. Sections 7.10 to 7.15will be devoted to de�ning such a framework and elaborating the issue ofconstraints in the context of the initial connectionist ambition of solvingthe mind{brain dilemma: to understand behaviour and the mind from theperspective of the third domain of application of connectionist techniques,namely neural models. The proposal will be split into two aspects. The �rstrelates to the methodological issues involved, while the second focuses onthe conceptual ones. This proposal will be further de�ned by discussing aconcrete model that is developed according to the principles put forward.7.10 Constraining connectionism: a research strategy[Massaro 1988] showed that a connectionist system (in particular the widelyused generalized delta procedure which is also employed in NETtalk) canbe used to model mutually exclusive psychological models of perception.This superpower of connectionist models is understandable when we realizethat the most important connectionist learning mechanisms are implemen-tations of well-known optimization techniques (like gradient descent andsimulated annealing). For instance, [Wray and Green 1991] have shownthat these modelling techniques are equivalent to traditional approximationmethods like polynomial approximation and Volterra series. Moreover,[Hornik et al. 1989] proved that any well-de�ned input{output mappingcan be approximated by a multilayered connectionist network. Hence, be-ing able to train a network to perform a certain task does not ensure thatthe network is a psychologically plausible model of this task. It shows thatone has been able to transform the task to a well-de�ned set of input{outputmappings that a powerful optimizer could learn. This implies that when wewant to use connectionist techniques to explain psychological phenomena,additional constraints must be met.Given the neutrality of connectionist techniques and the superpower ofsome of them it must be shown that they are not only capable of learning



Constraining connectionism: a research strategy 159a given input{output mapping, but also that they perform in a realisticway. Until now the opposite seems mostly to have been the case. It isdisappointing that insofar as connectionists succeed in getting their mod-els to run, practically none of them satisfy any relevant psychological or(neuro)biological constraints. Examples of this can be found in the crit-icisms raised by Massaro against popular connectionist models of speechperception based on interactive activation (e.g. [Massaro 1989]), the criti-cal analysis o�ered by Pinker and Prince of connectionist language models[Pinker and Prince 1988], or the already mentioned critique by Crick on thebiological plausibility of the standard practice of connectionist modelling[Crick 1989].The choice of constraints is, of course, closely related to the choice ofphenomena to be studied. Subsymbolic connectionism immediately triedto deal with sophisticated psychological processes such as language (whichhave also been the focus of cognitivism). Above I tried to show that theseattempts did not explain very much beyond what was already known (orcould be known) by sticking to an exclusive symbolic analysis. This, ofcourse, raises the question whether connectionism has been focusing onissues it can deal with and whether it has followed an appropriate strategy.I argue that the selection of constraints to be met by a connectionistmodel is not an arbitrary process. The minimum standard that we shouldimpose on this process is that constraints should be drawn from both thedomain of behaviour and the level of implementation, neurobiology. Thisstandard may sound rather obvious, but this simple rule does not seem tobe followed by the mainstream of connectionist modelling. As, for instance,indicated by [Uttal 1990], the functional descriptions of behavioural regu-larities provided by information processing models are in principle under-determined. This means that they can never provide su�cient constraintson (connectionist) models that try to account for these behavioural regu-larities. This argument goes back to the work of [Moore 1956] who showedthat it is in principle impossible to decide between alternative functionalmodels of an observed response function. Behavioural constraints, there-fore, cannot be taken as su�cient guidelines but must themselves be val-idated. Therefore, aside from �nding constraints at the behavioural level,it is necessary to add constraint from another level: the brain. In a moregeneral sense one could say that in modelling a certain response function,whether it is one of a behaving organism or of a �ring neuron, the levelat which this response function is observed does not su�ce as a source ofconstraints. Constraints pertaining to underlying mechanisms need to beincluded.It should be added here that Uttal believes that the brain cannot pro-vide constraints on models of behaviour since the brain is too complicatedand highly non-linear. Uttal is correct with this latter observation, butthat does not imply that relating psychological phenomena to brain mech-



160 Connectionist explanation: taking positions in the mind{brain dilemmaanisms is in principle impossible. These properties of brain dynamics in-dicate that a straightforward decomposition of those brain processes thatimplement or give rise to psychological phenomena might not be possi-ble. We should not forget, however, that the picture of brain mechanismssketched in terms of nonlinear dynamics might not be very compatiblewith the information-processing framework of psychological models. Thisrelatively recent development in natural science can also be taken as an in-dication that psychology should change its conception of the processes andmechanisms underlying the phenomena it studies. The conceptual issue ofthe mind{brain dilemma can be taken as an additional indication of theincompatibility of these levels of description.Results from neurobiology, however, cannot be the only source of inspi-ration for connectionist modelling. The data generated by this �eld willcertainly get us lost in the many details of neural functioning. It wouldbe naive to believe that we can automatically solve all sorts of issues inthe realm of the behavioural sciences by just turning towards neuroscience.Moreover, the data pertaining to certain brain structures or mechanismscan be quite confusing. For instance, in the debate on the properties ofdopamine receptors in the brains of schizophrenic patients one researchgroup reported elevated sensitivity of these receptors [Wong et al. 1986]while others found evidence for normal sensitivity [Farde et al. 1987].Does this mean that Uttal was right after all? I would claim this is not thecase. Both the study of behaviour and cognition and the inquiry into theneural substrate are developing �elds, where we do not even know whetherwe are posing the right questions. Both these levels of description { in factthe multitude of levels at which behaviour gets expressed and generated {need to be related to each other to address the indeterminacy from whichthey su�er in isolation. Behavioural, top-down, constraints are necessary togive guidance in picking the properties of brain dynamics that are crucialin understanding its functioning (see also [Clark 1989]).Only by cross-validating connectionist models against behavioural andneurobiological constraints can we expect these models to be able to con-tribute to our understanding of psychological phenomena. This strategy ofconvergent validation allows an ongoing and necessary interaction betweenthe behavioural and brain sciences. First, constraints from both domainsare integrated in a model. Next, the results of this integration process willlead to new hypotheses that can be communicated back to the involvedlevels of description and tested in these domains. This can lead to a furtherspeci�cation of the constraints applied to the model. Therefore the roleof modelling becomes one of integrating multiple levels of description and�nding convergence between them rather than mimicking the regularitiesfound at one of them.



From knowledge to adaptation: a conceptual framework 1617.11 From knowledge to adaptation: a conceptual frameworkA research strategy will not automatically lead to the understanding of aphenomenon if it is not embedded in a proper conceptual framework. Aconceptual framework can only be called `proper' when it is explicated.Subsymbolic connectionism has focused on a symbolic characterization ofbehaviour and the knowledge underlying it. The behaviour was explainedon the basis of assumed internal symbolic representations. The same istrue for traditional cognitivism. [Newell 1990], for instance, indicates thatthe knowledge level does not explain the aboutness of representations butassumes it. This can be a useful position, but still cannot, by itself, beconsidered a �rm base for theorizing (see also [Smith 1990]). Knowledgeitself, rather, seems to be a phenomenon that must be explained. [Harnad1990] has pointed out the problem of symbol grounding: from what dosymbols get their meaning? The standard strategy of cognitivism is toassume that symbols derive their meaning out of their relation to othersymbols, like the input patterns to NETtalk derive their meaning fromtheir prede�ned association with the pronunciation features. In this waywe end up in a closed loop of interrelated symbols. In the case of NETtalkthis boils down to answering the questions as to how the pronunciationfeatures got there in the �rst place and why a speci�c input pattern shouldbe associated with a speci�c output pattern.There are two approaches to explain the grounding of the knowledge ofa system. The �rst one, implied by cognitivism, is putting the responsi-bility on evolution and assuming that rules and representations are justhanded over to a system by its genetic code [Piatelli-Palmarini 1980]. Thisbrings us back to the problems of nativism discussed earlier. A more re-alistic solution supplements genetic prede�nition with learning. A systemacquires knowledge by interacting with its environment. This process isguided by the genetically de�ned set-up of the system, its phenotype, andthe properties of its environment. [Bechtel 1989] indicates that connec-tionism promises to explain the aboutness of representational states. It isexactly this promise, I think, that connectionism should focus on. It mightbe useful to explore where knowledge comes from, and how it is de�ned inthe adaptive structures that we call organism and brain, and around whichprimitives it is organized and expressed. I would like to emphasize thatthe nature of knowledge should be explored before elaborating on its use.There is no claim of originality here. This proposal is very much along thesame lines as, for instance, the school of genetic epistemology of [Piaget1971] (for an overview see [Furth 1969]).In concentrating on the capacity of connectionist systems to `learn' bychanging their structural properties, the strength of their interconnections,they provide a set of techniques which can be used in addressing the symbol-grounding problem. They can be used to study adaptive structures, like



162 Connectionist explanation: taking positions in the mind{brain dilemmathe brain. We should, however, not make these systems learn our symbolicdescriptions of speci�c tasks, but concentrate on how they can acquire thebehaviours necessary to perform these tasks out of their interaction withthe real world. This interaction is mediated by the phenotype in which thesestructures are embedded: the morphology of the body, and the propertiesof the sensors and e�ectors. This implies that, on one hand, symbols cannotbe seen as part of the internal mechanism that determines behaviour. Thisinternal mechanism must be seen as a control structure. It controls sinceit mediates and transforms sensing into acting. It is a structure since itis realized in the physical world. There is no reason to assume that thegeneral principles that generate this structure and that are implementedby it will coincide with the formal logical picture of the mind put forwardby cognitivism. Rules and representations should, therefore, be taken asobserver-dependent constructs that are used to describe the behaviouralregularities generated by the behaving system. On the other hand, thelearning methods used cannot be supervised like backpropagation. This isnot only because of its biological implausibility, but more speci�cally forits tendency to allow a human designer to compile their own ontology intoa connectionist model. It might lead to acceptable engineering, but mostde�nitely not to any insight into the functioning of the brain. The braincan only be its own teacher.A standard argument against this position is that by using supervisedlearning methods one can �nd an existence proof of a possible neural struc-ture implementinga certain function. [Churchland 1989] argues that as longas one shows that the architecture is su�ciently similar to neural anatomyand the dynamics modelled capture the general properties of neural dy-namics, then the use of a supervised learning method can be justi�ed togenerate ideas on ways in which the brain could be con�gured to performcertain tasks. Given the previous analysis we have to conclude that in thestandard examples of the subsymbolic paradigm the designers have notdemonstrated that their models satis�ed any relevant neural constraint.The main source leading to their design decisions seems to have been theirown functional task decomposition. This raises the question as to why thereis so little biological evidence supporting these models. The present analy-sis suggests that the solution to this problem has to be traced back to theontological errors the designers have made in the design of their systems.By assuming that the world presented itself in a prediscretized way, andthat learning equalled direct supervision extending to every weight in thesystem, the designers could but end up in a realm which was beyond bio-logical relevance. It is not so much the case that the proposed models wereconstructed to solve a problem in a di�erent way than the brain might doit, but that they basically tried to solve a totally di�erent problem. The�rst problem a brain has to solve, and so for any theory explaining it, ishow to categorize the world (see also [Edelman 1987]).



Interacting with the real world 163As argued before, the symbol-grounding problem, as de�ned in the strictsense, can be interpreted as an artifact of a symbolic approach. Moreover,the issue of levels and the problem of complete reduction acquire a di�erentstatus in the present proposal. As described earlier symbol manipulationis traditionally taken as a separate level of explanation that can be relatedto a level of neural implementation. Subsymbolic connectionism tried toestablish this relationship. In the present proposal, however, this type ofrelation might turn out not to be the one to look for. Before expanding onthis claim I will discuss a concrete example which illustrates the previouslyidenti�ed methodological and conceptual issues.7.12 Interacting with the real worldThis proposal is based on several assumptions relating to the nature of theinteraction between an agent and its environment.An agent is de�ned as the conglomerate of its phenotype and its controlstructure, both expressed as physical structures. I prefer to refer to thenervous system of the agent as a control structure to emphasize that inthis perspective a nervous system is modelled and not literally copied. Theprinciples expressed in the control structure must be seen as a hypothesisregarding the principles implemented in real nervous systems. At this mo-ment in the history of cognitive science it might be useful not to overstateour claims. The environment of the agent, the world, is de�ned accordingto the following assumptions.1. The real world is only partially knowable and only partially predictable.2. The world does not consist of a collection of discrete events.3. The world has its own temporal dynamics.These three assumptions have important implications for the agent. As-sumption 1 implies that there cannot be a prede�ned body of knowledgethat captures the pertinent properties of the real world. Assumption 2forces us to conceive the input to the system, its sensory states, as con-tinuously varying and not as discrete. The notion `event' is completelyconnected to the continuous interaction between a system and the world.In fact, categorization is the active creation of an event. The last assump-tion indicates that the agent is under time pressure to act. This imposes asevere constraint on the mechanisms that mediate and transform sensingto acting.The methodological implication of these assumptions is that if we wantto �nd a way to deal with the mind{brain dilemma, which is the ambitionof the connectionist programme, connectionist models should be applied inthe context of autonomous agents. This implies that the models, or controlstructures, are embodied in artifacts that have sensors and e�ectors andthat interact with the real world. They should be complete models that



164 Connectionist explanation: taking positions in the mind{brain dilemmaspan the whole domain from sensing to acting. Moreover, they should bein a constant interaction with the environment, and be able to survive init.Moreover, given these assumptions we have to conceive of autonomousagents as adaptive systems. This raises the question when and why a systemshould learn. Assumption 1 answers the why question. This does not meanthat nothing can be foreseen in advance. For instance, what the food lookslike that a speci�c animal feeds on can be predicted; where it can be foundin its environment, however, cannot be prede�ned. The empirical fact thatthe genetic code has only a limited coding capacity and can therefore notbe expected to code the complete body of knowledge might therefore implythat instead of being `short on memory' the genetic code only prede�neswhat can be prede�ned and will leave dealing with uncertainty in the realworld to the mechanisms for adaptation and learning.This proposal is not entirely new. Its synthetic aspects, for instance, goback to the work of Hull, who in the 1920s was already trying to developa mechanism that could learn according to the principles of classical con-ditioning [Hull and Baernstein 1929]. Another relation can be drawn to theemerging �eld of `new AI' [Brooks 1991a, Brooks 1991b]. Contrary to theformer the proposal not only focuses on mechanistic models but also ona speci�c theoretical framework where grounding and situatedness are keyissues. The contrast with the latter is that `new AI' seems to draw its maininspiration from engineering and intuitions about cognition. Although theintuitions relating to situatedness and embodiment seem reasonable theyhave to be placed on a more explicit base. Also, in fact, the paradigmaticexamples of the `new AI' movement su�er from the same sort of ontolog-ical problems as subsymbolic connectionism (see [Verschure et al. 1992]and [Verschure 1992] for a further analysis). In its realization the proposedframework shows a strong similarity to the work of [Edelman 1987], [Edel-man 1989] and [Edelman 1992]. The main contrast is that Edelman places astrong emphasis on the biological components of this research programme,while the present proposal is de�ned against a more conceptual analysis ofalternative approaches (see [Verschure and Pfeifer 1993] for a further anal-ysis). Moreover, Edelman contrasts his proposal with an empiricistic one,where one assumes that an adaptive system is instructed by the world. Thepresent proposal is derived from an analysis of the rationalistic perspectivebehind cognitivism.7.13 Distributed adaptive controlIn [Verschure and Coolen 1991] a connectionist model of classical condition-ing was proposed which had been developed in accordance with the researchstrategy de�ned earlier. Classical conditioning is a phenomenon that is verywell suited as a starting point for developing autonomous agents according



Distributed adaptive control 165to the demands laid out above. It is one of the basic learning mechanismsmany animals have at their disposal to adapt to their environment by form-ing associations between sensory states. It is a domain that provides a largeamount of empirical data that allows the de�nition of su�cient constraintson models that are supposed to explain it.The behavioural constraints against which this model was validated werethe Rescorla and Wagner laws of classical conditioning [Rescorla and Wag-ner 1972]. The neurobiological constraints the model had to satisfy wereno pre-wiring of associations between stimuli and response (as opposed toparadigmatic examples from the �eld of reinforcement learning, e.g. [Suttonand Barto 1981]), which brings us back to the ontological issues discussedearlier), changes in plasticity are based on local unsupervised mechanisms,and function arises out of the dynamics of populations of units. We showedthat these sets of constraints could be successfully brought together in aconnectionist structure. To incorporate this model of classical condition-ing into the conceptual framework described earlier a control structure foran autonomous robot, distributed adaptive control (DAC), was proposed[Verschure et al. 1992]. Let us focus here on the principles behind this con-trol structure and how the model pertains to the conceptual issues underconsideration.The basic idea behind this control structure is that an adaptively behav-ing system moves from a stage of coarse adaptation, which is expressed insimple genetically prede�ned reexes, to a stage of �ne-tuned adaptationas a result of its interaction with the environment. This interaction a�ectsthe behaviour of the agent through learning. The reexes are expressedin relations between primitive sensors (in this example a collision detectorand a target sensor), which in general are taken to be proximity sensors,and simple motor programs (in this case avoid and approach actions respec-tively). Moreover, the structures involved in these reexive actions form thecriteria for learning in the system. These basic properties can be viewedas a value scheme [Edelman 1987], which can be seen as de�ned by thegenetic set-up of the system: the `genetic envelope' [Changeux 1985]. Thevalue scheme de�nes the set of unconditioned stimuli and unconditionedresponses, and the basic properties of the sensory and motor systems. Inaddition to these properties, the value scheme contains the mechanism thatallows it to integrate its distal sensors into these actions. Fine-tuned adap-tation is expressed in the engaging of the distal sensors (in this case a range�nder) in these reexive sense{act relations. This latter stage of behaviouris under the control of the distal sensor and the history of the system. Thisis expressed in the way the distal sensors are connected to the motor pro-grams and the way the motor programs have changed over time (this lastproperty will not be dealt with in the present illustration). Thus the con-trol of behaviour over time shifts from the environment, through proximalsensing, to the organism, through distal sensing.



166 Connectionist explanation: taking positions in the mind{brain dilemmaThis approach immediately provides an alternative perspective on oneof the fundamental controversies in psychology: whether perception is di-rect or indirect. Both stances to this problem seem to capture a part ofbehavioural reality, since they both can be justi�ed on the basis of ex-perimental data. When we, however, include the dynamics of epigenesis,as for instance expressed in DAC, it becomes clear that these viewpointsare two extreme positions on the developmental scale. This would also �twith well-known neurophysiological data. For instance, [Hubel and Wiesel1962, Hubel and Wiesel 1968] showed that the ability to acquire certainperceptual categories depends on the presence of the right stimuli in theright critical period. Later on in epigenesis these perceptual categories in-creasingly control the interaction with the world. This would suggest thatepigenesis moves from a stage of direct perception, in which the sensa-tional invariants of the system{environment interaction get expressed inthe perceptual mechanisms of the system, to a stage of indirect perception,in which internalized environment-related categories structure perception.Hence, the `knowledge'-driven aspects of behaviour are understandable interms of an evolving adaptive system. This implies that `knowledge' under-lying the behaviour of an organism cannot be analysed disconnected fromits history.In Figure 7.3 the phenotype of an agent used in the initial set of ex-periments with DAC is depicted. This agent has to deal with a (target)approach { (obstacle) avoidance task.The left and right front sides of the system function as collision sensors.They will become active when the system touches an object at these lo-cations. Colliding constitutes an unconditioned stimulus which is mappedonto a group of units. Activation in this group will lead to a motor outputconsisting of a retract-and-turn motion (9�) in the opposite direction tothe collision. Because of its relation to an avoidance response, this group isreferred to as `the negative unconditioned stimulus' group (US{).The target detector of the system, which could be interpreted as con-sisting of two `ears', is sensitive to the di�erence in intensity detected bythese two sensors. The unconditioned response will be to turn into the di-rection where the highest intensity is sensed. The group representing thisunconditioned stimulus will be referred to as the `positive unconditionedstimulus' group (US+) since it relates to approach actions. When approachor avoidance are not activated, the default behaviour of advancing (whichcan be seen as a simple form of exploration) will be executed.The distal sensor, which senses the conditioned stimulus (CS), is a range�nder which gives an inverse distance measure. This sensor covers a regionin between -90 and 90 degrees from the front of the system and consists of37 elements which each have their own receptive �eld. These receptive �eldsdo not overlap. The angular resolution of these receptive �elds decreasesas the element is placed closer to the centre of the agent. Every element of



Distributed adaptive control 167
Figure 7.3 The agent with its sensors. 1 and 2: left and right collision sensors;3: region covered by the range �nder; 4: the receptive �eld of the target sensor; 5:location of target sensorsthe range �nder projects onto one element in the CS group. The activationof every unit of the CS group is proportional to the inverse distance in thereceptive �eld of the range �nder element that projects to it. This groupof units can be seen as responding to time to contact [Lee 1976].The group that codes the motor programs of the system, the uncon-ditioned responses, consists of a number of so-called command neuronswhich code the motor responses [Kupferman and Weiss 1978]. This groupwill be referred to as the `unconditioned response' group (UR). Wheneverone of these command neurons is activated, a speci�c motor response isautomatically executed. The connections between the US groups and theUR group are pre-wired and not modi�able.The global layout of the control structure is depicted in Figure 7.4.In addition to the already described groups that make up the anatomyof the control structure, a speci�c relation is de�ned between the approachand avoidance groups. Since it is more important for the system to avoidnearby obstacles than to approach targets (this is analogous to the conict



168 Connectionist explanation: taking positions in the mind{brain dilemma
Figure 7.4 The control structure and its relation to the environment. See text forexplanation.theory by [Miller 1959]), activation in US{ will inhibit the output of US+. Inthis case, activity in US+ cannot trigger approach actions. This inhibitiononly slowly decays, which means that US+ will be inhibited for a relativelylong period of time.In [Verschure et al. 1992] it is shown that this system can successfullylearn to avoid obstacles and �nd targets. This means that the expectedtransfer of a reexive avoidance or approach response, which is triggered byone of the proximity sensors, to a learned one, which is triggered by the dis-tal sensor, has taken place (Chapter 5 by Pfeifer and Verschure gives a shortoverview of further explorations with distributed adaptive control, such asits robustness in parameter space, tests with di�erent phenotypes, its `psy-chophysics' and its performance with di�erent sensors). In this chapter Iwill limit myself to its relevance to the conceptual issues. Before expandingon these examples I would like to emphasize some of the aspects of thepresent proposal and its realization in DAC. It is important to understandthat the experiments described here are replicated in di�erent simulationenvironments and hardware platforms, and do not represent a chance e�ect.They not only illustrate a robust way to achieve sensori-motor integration,but especially emphasize that an analysis of the methodological and con-ceptual issues raised can lead to successful modelling. Although DAC is
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Figure 7.5 Pulling out of an impasse. See text for an explanation.only a modest �rst step it clearly shows that the methodology and concep-tual framework behind it are not de�ned with reference to a promise thatawaits its realization in the future. This promise is realized. Before elab-orating on this issue the aspects of the behaviour displayed by the agentthat are pertinent to the present discussion will be discussed.When the system is trained to avoid obstacles, and is then put in adi�cult situation which it has never encountered before, it �nds the solutionshown in Figure 7.5. (For illustrative purposes the main components of thisbehaviour are redrawn { see [Verschure et al. 1992] for the original data.)The agent starts out between an obstacle (the block at the right-hand sideof the �gure) and a wall (this location is indicated with `Start'). The systemsubsequently backs out until it can make a complete turn. The symbolicdescription of this behaviour would be that a strategy to back out of di�-cult situations or for impasse resolution is executed. This is also precisely



170 Connectionist explanation: taking positions in the mind{brain dilemmathe way in which standard robot architectures deal with these types ofproblems: the execution of prede�ned strategies programmed in by the de-signer (see [Malcolm et al. 1989] for an overview of traditional and morerecent approaches in robotics). In this case, however, this behaviour has tobe explained at a more primitive level. What looks like a well-organizedbehavioural pattern from a macroscopic point of view is in fact a sequenceof local `decisions'. The �rst step of the system is to retract and turn to theleft (indicated by the dotted icons). This brings the system closer to thewall. The state of the range �nder triggers further avoidance responses: re-tract and turn to the right and so on until the impasse is left behind. Theseresponses trigger each other through the environment. Hence, behaviour atmoment t is only dependent on the sensory state produced by the situationin which the system ended up after the motion made at moment t�1. Theactual relation between this sensory state and the response made is de�nedin the connections between the di�erent neural groups (CS, US{ and US+)which express the invariants in the learning history of the agent. This chainreaction of local decisions or reactions leads to a seemingly well-organizedbehavioural pattern which can be interpreted by an observer as being de-termined by a behavioural strategy. This inferred strategy, however, has tobe seen as an emergent property of the interaction between the phenotype,its control structure, and the environment.Another example of this emergent relation between inferable behaviouralstrategies and the underlying dynamics of system{environment interactionis depicted in Figure 7.6. After having learned to avoid obstacles while try-ing to �nd a target (indicated by a black dot in the picture), the attractiveforce of the target was removed from the environment (the system couldno longer `hear' the target). When in this case the agent started to movearound from its initial position (again indicated by `Start') it found itstarget in a minimal number of steps. The most surprising behaviour, how-ever, was that the system had learned to follow a wall. Again, the standardapproach to making autonomous agents follow walls is just to prede�ne aspeci�c behavioural strategy for it [Malcolm et al. 1989, Beer 1990]. Alsoin this case, however, the behaviour emerged out of the dynamics of theinteraction between the agent and its environment. (A comparison betweenthis notion of emergence and that employed in the subsymbolic paradigmwill be made in the next section.) During its initial experiences in this en-vironment, while the attractive force of the target was present, the agentalways approached the hole in the wall, which hid the target, parallel toeither the lower or upper wall. It had ended up in this position due to thesequence of avoidance movements (see [Verschure et al. 1992] for a com-plete description of this task). The environment was set up in such a waythat the system could only detect the target when it was close to the holein the wall. This implies that only in these cases was the sensory state
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Figure 7.6 Wall following. See text for an explanation.of the range �nder associated with approach actions.5 The representationsthat were formed in this way represent sense{act relationships that can bedescribed as `when you move parallel to a wall, turn towards it'. As soonas the agent found itself parallel to a wall it would turn towards it. This inturn would trigger the avoidance group since the agent had also learned toavoid obstacles. What looks like a coherent behavioural strategy is again achain of local reactions: a sequence of approach and avoid actions. Whenthe agent, after following a wall in this way, found itself in a hole in thewall the avoid group would not be triggered any more. The agent wouldpass through the opening and locate the target. This behavioural strategywas not prede�ned in the system. Following walls was not a task that was5 This decision was made in order not to cheat. When the attractive force of the tar-get would have been equally strong in the whole environment it would in all caseshave pulled the system towards it. This would have rendered any `learned' approachbehaviour not very convincing.



172 Connectionist explanation: taking positions in the mind{brain dilemmabeing modelled here. The control structure in no way supports the process-ing of sequences. Also, this behaviour can only be understood in terms ofthe interaction of the agent with a speci�c environment over time.The full explanation of this behaviour would have the following form. Atits starting position the system �rst avoided the obstacle in front of it andturned to the right. This brought it near another obstacle, which it avoidedby turning to the left. Now the system had placed itself parallel to a wall.The following approach motion was triggered by the learned `approach par-allel walls' representation and a turn to the right is made (indicated withthe dotted icon). This behaviour activated an avoidance response (the sys-tem turned left again). As indicated, activation in US{ (which leads toavoidance movements) will inhibit the possibility of US+ (the approachresponses) to trigger an action. Until this inhibition had decreased su�-ciently to allow US+ to inuence the actions of the agent, it proceededin a straight trajectory. The next approach action could only be triggeredwhen the inhibition of US+ dropped away. This made the sequence repeatitself. Again in this case, behaviour that might be very understandable inthe macroscopic vocabulary of rules, strategies and representations can begenerated by microscopic dynamical mechanisms which do not mimic thesedescriptions.Of course these examples are disarmingly simple but they illustrate oneimportant point: although behaviour might look very understandable insymbolic terms the structures generating it might do something completelydi�erent. Now the question must be addressed as to how this approach to-wards understanding behaviour bears upon the central theme of the presentdiscussion: the mind{brain dilemma.7.14 Comparing NETtalk and DACOne could claim that like NETtalk, which was used as representing thebasic thrust of the subsymbolic approach, the discussed control structureshows no emergent properties, since in this case the emergent behaviour isalso a direct result of the way in which the designer has de�ned the systemand its environment. I would like to show that this assertion is incorrectand that there are qualitative di�erences between the two models.In NETtalk the `environment' consisted of a set of letters which had tobe mapped into the phonetic features encoded in the model. This `environ-ment' was not a physical environment accessed by the system through itssensors and inuenced by its e�ectors, but a prediscretized set of input andoutput vectors. This training set, provided by the designers, de�nes whichinput vector should be related to which output vector. By analysing theprede�ned mapping of NETtalk it was shown that the `emergent' propertiesof the model were contained in this prede�nition. The vowel{consonant dis-tinction was already unambiguously present in the precodings. Therefore,



Comparing NETtalk and DAC 173the `emergent' vowel{consonant distinction was completely predictable,given these precodings. The structure was de�ned according to the de-signer's domain ontology and learning proceeded by mirroring the designersdomain ontology expressed in the input and output vectors.The autonomous agent described had to adjust to the regularities presentin its environment of obstacles and target, guided by its basic reexes. Theworld was accessed through the sensors of the system. Its perception wasinuenced by its actions. Moreover, the world was sensed by the systemas a state of its range �nder that changed in a continuous way. What theagent in fact had to accomplish was to form its own categorization of thesesensory states. Analysing this model in the same way as NETtalk, theprede�ned components could be characterized as `when the system bumpsinto an obstacle it turns away from it' and `when the system detects atarget it will turn towards it'. These reexes were also precoded in termsof speci�c input{output relations, in this case between the US groups andthe UR group. These precodings were not symbolic, but were expressed ina causal relationship between sensors, mediating structures and actuators.Such causal relations are in the domain of dynamics. The representationswe can ascribe to the system do not relate to these prede�ned input{outputmappings, but to the way in which the distal sensor is integrated into action.This integration process is driven by the dynamic relation between thephenotype, the prede�ned values, and the properties of the environment. Byadapting to this system{environment interaction, however, the importanceof the designer-dependent reexive behaviours diminishes. Ultimately thereexive actions will be completely replaced by learned actions. Moreover,the values around which the agent was constructed are all expressed instructural terms, which makes them directly testable in a biological domain.The observed behavioural strategies, which could be called `pulling outof an impasse' and `wall following', relate to a time span of a large numberof actions. The system itself, however, acts only on the basis of immedi-ate sensory states: it is reactive. Only when we decompose the emergentbehavioural sequences into their constituting local actions, the individualmovements, can their relation to the properties of the agent and the envi-ronment be assessed. These properties do not contain the observed macro-scopic behavioural patterns that the agent exhibits. These emergent prop-erties have a temporal order that is not encoded in the control structure.Therefore, the observed emergent properties constitute a level of descrip-tion that is not related to the properties implemented in the system. Theycould not be predicted from them. These sequences of actions, behaviours,are at the interface between the agent and its environment and they areascribed to the agent by the observer.The symbolic task description which was transferred to NETtalk limitsits performance. NETtalk can never learn to pronounce words that are notdescribed in the set of phonetic features used. The central aspect here is



174 Connectionist explanation: taking positions in the mind{brain dilemmathat in these models the relationship between input and output is pre-de�ned at the most explicit level possible. One discrete and unique inputstate is associated with one unique output state: for example, `pronounceinput letter \a" with output features \central 2", \low", and \tensed"'.These systems can only master a task if it is symbolically mastered by itsdesigner: if the input and output states and the `knowledge' that connectsinput and output is properly prede�ned. These systems are in no way ableto exceed the prede�ned domain of `knowledge' through learning. Moreover,they are not robust: they will break down in any situation that was notforeseen by their designers (a well-known problem of AI). This shows astrong parallel to the way in which learning is de�ned in traditional AI(see also [Verschure and Pfeifer 1993]). Another parallel with traditional AIis that one assumes that these representational primitives can be reliablytransduced from the sensors and to the actuators.The prede�ned elements used in DAC (i.e. the value scheme) also limitthe behavioural potential of the system. This limitation, however, has acompletely di�erent nature than the prede�ned elements used in the dis-cussed subsymbolic models. In DAC the prede�nitions limit the perceptualand behavioural potential of the system: for example, if an agent only hasa range �nder it can never deal with colour. The `knowledge' that connectssensing to acting, however, is not predetermined. The system has to �gureout itself which subset of the sense{act potential is useful to �ll in, given itsinteraction with the environment: for example, how the range �nder is inte-grated in the action system. This �lling in is dependent on the phenotype,the value system, and the relation to the environment.The DAC design principles give the system an inherent robustness. Thisis also demonstrated by the way in which the presented control structuresolves problems in navigation tasks. In contrast, designers of traditional(symbolic) robot control architectures spend a lot of time de�ning all detailsof the input{output mapping that must be present in a system to enableit to deal with simple navigation tasks (see [Verschure et al. 1992] for theDAC solution to local minima in navigation tasks). This robustness is alsodemonstrated by the ease with which this control structure can be usedin di�erent experimental environments using simulations or robots (see[Mondada and Verschure 1993], its behaviour in parameter space [Almassyand Verschure 1992], its capacity for generalization [Verschure and Pfeifer1993], and secondary conditioning [Verschure and Coolen 1991].7.15 Solving the mind{brain dilemmaIt is rather ambitious claiming to be able to solve the mind{brain dilemmathat has been haunting cognitive science from its beginning. Subsymbolicconnectionism presupposed that the gap between mind and brain could beclosed by assuming that a subsymbolic level of description could mediate



Solving the mind{brain dilemma 175between a symbolic and a nonsymbolic one. The evidence presented, how-ever, indicates that this strategy did not bring the understanding of cog-nition much closer to the brain. They seemed to have lost their way in asymbolic trap.I propose another approach to the problem of complete reduction. Ashas already been indicated by many others (e.g. [Maturana 1970], [Den-nett 1978] and [Clancey 1989]), there are di�erent stances to describingcomplex systems like the brain. While cognitivists prefer to stick to a sym-bolic description of behavioural regularities, neurobiologists adopt a level ofdescription that has been called `implementational'. Each of these groupsof scientists have their own pragmatic reasons to believe that the level ofdescription to which they adhere gives them the conceptual tools they needto study the phenomena in which they are interested. Subsymbolic connec-tionism seems to be founded on the belief that the regularities captured insymbolic descriptions of a task domain reect regularities at the level ofimplementation.With the given examples from the experiments within theDAC paradigm I have tried to show that this assumption might not be gen-erally valid. Observed behavioural regularities, which can be symbolicallylabelled, do not have to relate to identical regularities in the dynamics ofthe causal structure generating them. This implies that the reduction pro-posed by subsymbolic connectionism is one that might not be very feasible.It seems that the status of these di�erent levels of description has to berede�ned.An alternative interpretation of the relation between a symbolic and aneurobiological approach, which might be more compatible with the realityof the phenomena we are studying in cognitive science, is that this relationis only present in the eye of the beholder and not in the system that is ac-tually displaying the behaviour under investigation (e.g. [Maturana 1970],[Braitenberg 1984] and [Clancey 1989]). This means that the mind{braindilemmaand the problem of complete reduction are artifacts of the di�erentconceptualizations that we, the observers of behaviour, have developed tounderstand cognition and not one that is actually present in the nature ofthe systems displaying this behaviour. The analysis presented of the DACmodel illustrates this point. The behavioural regularities observed couldonly be explained in terms of the dynamics of the ongoing interaction ofan agent and its environment. This coherence is lost when one decomposesthese behavioural sequences into their basic actions. What, however, con-stitutes a coherent behavioural sequence is de�ned by the observer and notby the acting system itself. In the example discussed the system will justavoid or approach according to its immediate sensory states. The sensorystates just before or after the executed action are of little relevance to it.When we place NETtalk into this perspective this would mean that thesymbolic precodings should be placed outside the system, back in the realworld. They de�ne the behavioural regularities that should be produced by



176 Connectionist explanation: taking positions in the mind{brain dilemmathe model, not its internal dynamics. The task itself should be performedby a system consisting of realistic sensors and e�ectors with which it thenhas to learn to pronounce English text. Only when this system consistingof arti�cial eyes, ears, vocal tract and mouth is able to do the job will theclaim of emergence in this model be substantiated. Of course, the pronun-ciation features that are prede�ned in NETtalk are one of the �rst thingsthat the system should learn, next to the ability to categorize its sensorsin such a way that characters and words can be perceived. This, however,would imply that the subsymbolic dream would be shattered anyway, sincethis system would not rely on symbols or subsymbols, but only on thetransformation of states of symbolically unlabelled neurons in its visualand/or auditive systems to activation in its vocal tract and mouth. Onlylater on could the produced regularities be labelled by an observer in sym-bolic (or subsymbolic) terms and tested against the relevant behaviouraldata (like the observation of linguists that vowels are pronounced with adi�erent set of speech actions than consonants). One could argue that sincewe know that with a limited set of phonetic features we can describe theregularities in speech production we might as well use it in our explanationof this phenomenon. We should take into account, however, that speech isa dynamic process. The categories we use to describe its regularities canvary over time (e.g. [Eimas et al. 1987]). If we rely on systems with a presetnumber of pronunciation features with static properties we will never beable to address the properties of speech as it occurs in vivo where geneticprede�ned processes are further adapted to the richness of the linguisticenvironment in which we �nd ourselves.It is in the relation between observed behavioural regularities and theinternal dynamics of control structures that emergence becomes a relevantissue. The concept of emergence is a di�cult one. I will not try to comeup with a complete de�nition here but will limit myself to the sugges-tion that any de�nition of emergence in the context of models that aredeveloped to study cognition should include time as a basic dimension.Behavioural regularities that can be symbolically labelled are expressed ina temporal domain. For instance, the pronunciation features precoded inNETtalk are induced from sounds that can only become spoken words in atemporal domain. The DAC example illustrated that observed behaviouralregularities, however, can consist of many local actions. Only through thesystem{environment interaction do these disconnected local actions becomeorganized patterns of behaviour that look meaningful and coherent to anobserver. These coherent behavioural patterns do not have to be mirroredin the dynamics of the control structure. The internal dynamics and theemergent behavioural regularities function at di�erent time scales. There-fore, it becomes crucial to study behaviour not only in an embodied mannerbut also in a temporal perspective. Otherwise, the connection to the level



Solving the mind{brain dilemma 177of behaviour, which can sometimes be symbolically labelled, will be impos-sible to make.Another example of the di�erent time domains in which observed or-dered behaviour and local dynamics take place is provided by our work onclassical conditioning [Verschure and Coolen 1991]. As mentioned earlier,this model took the Rescorla and Wagner laws of classical conditioning,which describe the development of associations between conditioned stim-uli and conditioned responses over time, as its behavioural constraints.One of these constraints, blocking, is interpreted by Rescorla and Wagneras `systems only learn when events violate their expectations'. This phe-nomenon can only be observed over a relatively long period of time. In ourmodel we showed that this behaviour can be explained by local propertiesof a learning rule which functions in a much shorter time frame where po-tentiation and depression were tied to the competition between the plasticconnections. It is not necessary to explain blocking in intentional terms,like `expectation' or other abstract psychological constructs. Small-scalenon-symbolic local dynamics su�ces.It seems that the only way to make some progress is not to try to forcea decision between a symbolic approach and a non-symbolic one (as, forinstance, critics of connectionism such as [Fodor and Pylyshyn 1988] pro-pose), but to try to assess how each of these levels of description can con-tribute to our understanding of cognition and to develop models whichbring both levels of description together. Such an integration does notrequire that one framework be reduced to the other, but acknowledgesthat symbolic accounts may provide valuable and necessary top-down con-straints on the dynamical (connectionist) systems that can be constructed.The brain provides the bottom-up constraints necessary to validate the pro-posed control structure, and in this way provides insight into the primitivesof the internal dynamics that generate the behavioural regularities we ob-serve. Moreover, by concentrating on properties of the brain (e.g. on lo-cal dynamics to perform the work and on the importance of distributedprocessing) we can be protected from postulating too much ungroundedknowledge in our models. The control structures, expressed in connection-ist terms, which incorporate these constraints will allow us to explore theprinciples of the most sophisticated system we know that generates be-haviour in its interaction with the real world: the brain. This strategy es-tablishes an ongoing interaction between the levels of description involved.In [Verschure and Pfeifer 1993] there is presented a concrete analysis thatfollows this strategy, relating Edelman's extended theory of neuronal groupselection to Newell's exemplar uni�ed theory of cognition, SOAR.Solving the mind{brain dilemma requires an approach devoid of dogmasand bandwagons in order to avoid a further fragmentation of the �eld.What is needed is a global perspective which encompasses the multitude ofdisciplines and descriptive levels of relevance, from genetics and molecular



178 Connectionist explanation: taking positions in the mind{brain dilemmabiology, with its emphasis on morphogenesis, to anthropology and linguis-tics, relating to the cultural and linguistic environment in which we arethrown. Although the main ambition of cognitive science has been to sup-port and develop such an interaction it has not been realized. One of thereasons for this situation has been that the models and theories that havebeen developed were enslaved by the ontology of their designers, like theexamples analysed which stem from the subsymbolic school of connection-ism. A move from the Platonic world of rules and representations to thereal world of the dynamics of system{environment interaction seems ap-propriate.7.16 DiscussionSubsymbolic connectionism has presented itself as a new theory of the mindthat will enlighten our view of age-old questions like the mind{body prob-lem. By analysing paradigmatic examples of this approach it was demon-strated that the explanational scheme it proposes is too problematic tobe acceptable. In the case of subsymbolic connectionism the issue of levelsseems to lead to a confusion of levels. At the heart of this problem lies themind{brain dilemma: the traditional conict between symbolic and non-symbolic approaches towards understanding the mind and the brain.It was shown that the proper relation between symbolic characterizationsof behaviour and the internal dynamics of the control structures that gen-erate it can only be established when we place both in a temporal domain.In doing so, symbolic descriptions of observed macroscopic behaviouralregularities can be related to sequences of internal microscopic dynamicalprocesses. We do not have to assume that these internal processes somehowmimic the systematicity of the symbolic constructs that we as observers ofbehaviour have ascribed to the behaving system.Subsymbolic connectionists seem to believe that this mimickingdoes takeplace. By analysing NETtalk I tried to show that this implied that theywere in fact applying a connectionist technique in the traditional symbolicparadigm. In no way did this move settle the mind{brain dilemma. An al-ternative approach would be to place the observed behavioural regularitiesoutside the system. In the case of NETtalk this means that articulatoryfeatures are extracted by an observer from overt behaviour, not from inter-nal mechanisms. These symbolic descriptions of macroscopic behaviouralregularities provide valuable guidelines in the search for the mechanismsgenerating this behaviour. Any model that is supposed to explain psy-chological processes must be validated against the behavioural regularitiescaptured by symbolic descriptions. We have to acknowledge, however, thatthe observed behaviour has to be placed at the interface between a behav-ing organism and its environment. In any analysis these two componentshave to be included. In trying to understand behaviour we cannot assume



Discussion 179that there exists a mirroring relationship between the observed behaviouralregularities and the structure and dynamics of the mechanisms that under-lie it. Therefore, in the attempt to explain control structures like the brainthe (neuro)biological constraints are as important as the behavioural ones.Only by bringing these two sources of constraints together can we �nd com-plete characterizations of the internal mechanisms that generate behaviour.Two standard objections to such a synthetic approach towards cognitionare that it is unclear how it can ever account for complicated psychologicalprocesses like problem solving, concept formation and language, and thatit resembles behaviourism.The �rst objection does not constitute a principled problem. We mustbe very clear about the status of present theories in this domain. As has al-ready been indicated, cognitivism has not produced any solid answers hereand is still facing a number of very serious problems. The only solution tothese problems can be found in relating symbolic descriptions to behavingsystems and the control structures that drive them. In this way a connectionto the necessary additional constraints from the domain of (neuro)biologycan be established. The basic problem here is that the symbolic conceptu-alizations of these phenomena and the way neural mechanisms that seem torelate to them are described do not seem very compatible. If we agree thatconnecting symbolic descriptions of behaviour to neural dynamics makessense, then this also implies that we must be prepared to reconceptual-ize our macroscopic descriptions. For the study of language, this impliesthat it has to be placed in a biological setting and not just in the abstractdomain of computations. This step towards biology can provide new in-sights. As an example we might consider the work by [Edelman 1989] whodemonstrates how, from a biological point of view, there only needs to beone basic epigenetic mechanism for the acquisition of language which issemantic in nature. This mechanism is founded in the capacity of the brainto categorize in an expanding time window. This suggestion relates to thehypothesis of semantic bootstrapping proposed by [Pinker 1984]. The basicdistinction between syntax and semantics, which has been the foundationof modern linguistics, can be dropped. Syntax is acquired by interacting ina linguistic environment: it arises out of semantics.In [Verschure, 1994] a further generalization of the principles expressedin DAC towards the domain of representing sequences of sense{act relation-ships is presented. It is shown how a simulated agent can indeed bootstrapitself to a qualitatively new level of representation by exploiting the macro-scopic regularities of its interaction with the world. This system not onlyadaptively builds up its `body of knowledge' but also develops sequences,and makes recombinations of their components. This agent also shows animprovement in its behaviour as compared with a purely reactive one. Al-though this model is a �rst exploration of this domain it does show thatpurely bottom-up principles can give rise to higher-order representations.



180 Connectionist explanation: taking positions in the mind{brain dilemmaThis implies that the classical argument against associationist approachestowards these issues { that it is not feasible how they can give rise tohigher-order cognition { has lost its validity. It is not only feasible, it hasbeen demonstrated.The second objection is not valid. One of the basic characteristics of thetype of behaviourism which is referred to in this case is that it excludedinternal mechanisms from its agenda. This was a reaction to the psycholog-ical tradition of phenomenology which completely relied on subjectivisticinterpretations of behaviour. In the approach proposed here the internalmechanisms that mediate between sensing and acting are considered cru-cial in understanding cognition. The example from the DAC paradigm il-lustrates this point. This objection is better directed against proponents ofthe cognitivistic tradition (e.g. [Fodor 1984]) who assumed that we neednot investigate actual mechanisms and `central' processes. In contrast tobehaviourism, however, the reason here is not to keep our conceptualiza-tions as objective and controllable as possible, but to place the processesthat have to account for the computational structure of cognition outsidethe �eld of empirical validation. This e�ectively means that in the studyof behaviour we can, according to the thesis of modularity, only deal withperipheral modules like perception and should forget about internal pro-cesses.Connectionism has opened up a new and very promising �eld of researchin cognitive science by re-emphasizing the importance of the brain in study-ing the mind. If, however, we allow the promise of combining psychologyand biology to deteriorate into the application of connectionist methodsin the traditional cognitivistic paradigm we should not be too surprisedif the whole endeavour slowly dies away. Connectionism can only becomepart of a new paradigm for the study of the mind, brain and behaviourwhen it appreciates the virtue of dynamics above computation. This meansthat instead of breaking cognition down into the knowledge a system mustpossess we should try to trace it back to its fundamental adaptationalmechanisms. This move towards dynamics will place symbolic characteri-zations outside the system, and behaviour back in the temporal domain ofsystem{environment interaction.AcknowledgementsThis chapter was written while the author was working at the AI lab ofthe University of Zurich. He is very much indebted to DomMassaro, DeanAllemang and Markus Stolze for their helpful comments and fruitful dis-cussions. An early version of the analysis put forward in this chapter waspresented in 1990 at a conference as part of the `Mind and Brain' project atthe Zentrum f�ur interdisziplin�are Forschung (ZiF) in Bielefeld, Germany.



Appendix A: The description of the model in section 7.7 1817.17 Appendix A: The description of the model in section 7.7In this one-layered model (or autoassociator) every element i can take on acontinuous activation value ai which ranges between -1 and 1. All elementsare connected to each other. Every connection between unit i and unit jhas a weight, wij, which modulates the transmitted signal. Every unit ireceives input from two sources. The �rst, external, source is determinedby the pattern the model has to learn. Every unit i has clamped on itan external input value, ei, which is determined by element i of the inputpattern. The other source of input is internal and is determined by thetransmitted activations of the other units and the connecting weights in themodel. For every unit i this internal input, inti, is determined by the sumof the weighted signals of the other j units (in contrast to the McClellandand Rumelhart implementation in which self-connections are allowed):inti = NXj=1 ajwij (7:1)The change of activation of unit i is determined by the total input, neti,to unit i. neti = inti + exti (7:2)The activation ai of element i at time step t + 1 is determined by theactivation at moment t and neti:ai(t+ 1) = ai(t) + �ai(t) (7:3)�ai(t) = Eneti(1� ai(t)) �Dai(t) if neti > 0 (7.4)�ai(t) = Eneti(�1� ai(t)) �Dai(t) if neti � 0 (7.5)E and D, respectively, de�ne excitation and decay. The strengths of theassociations between the units develop according towij(t+ 1) = wij(t) + �wij(t)� Cwij (7:6)where C denotes the decay of the weights. The change of the weights �wijis dependent on the error si (between the actual activation of unit i andthe expected activation ei) and the activation of unit j.�wij(t) = ��iaj(t) (7:7)where � denotes the learning rate parameter and �i is given by:�i = exti � inti (7:8)
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