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7.1 Introduction

The computer metaphor of cognitivism that has had such a strong influence
on cognitive science over recent decades seems to be confronted (again) by
a competitor: the brain metaphor put forward by connectionism (e.g. [Mc-
Clelland and Rumelhart 1986] and [Sejnowski et al. 1988]). Connectionism
assumes that mental phenomena can be explained in terms of the paral-
lel activation and interaction of a large number of units (model neurons).
These units are linked by connections (artificial synapses) which modulate
the transmitted activity. Knowledge is represented in these connections be-
tween the units and learning takes place by adjusting their strength. An
important, and much emphasized, aspect of connectionist models is their
emergent behaviour. The massive parallel interaction of a large number of
simple units can lead to qualitatively different and more interesting forms
of behaviour. Successes of this connectionist approach range from mod-
els of human memory (e.g. [McClelland and Rumelhart 1986]) to practical
applications that can control the navigation of cars [Pomerleau 1989]. An
interesting property of these models is their robustness against loss of inter-
connections. This is interpreted by some as an indication of their biological
plausibility (e.g. [Hinton et al. 1991]).

An important topic in the discussion about the relevance of connection-
ism for cognitive science has become the issue of levels [Estes 1988]: must
connectionist models be interpreted at the level of physical instantiation



134 Connectionist explanation: taking positions in the mind—brain dilemma

or at the level of symbol manipulation? Critics of the connectionist move-
ment (e.g. [Broadbent 1985] and [Fodor and Pylyshyn 1988]) argue that it
cannot be considered an alternative to the classical cognitivist paradigm.
They characterize connectionism as an attempt to define a brain-like im-
plementation of symbol manipulating models. Supporters of connectionism,
however, emphasize that it is an alternative paradigm in the study of cog-
nition that will largely contribute to our understanding of the mind—brain
duality. [Smolensky 1988], for instance, claims that connectionism is the
most significant development in the philosophy of mind over past millen-
nia.

In contrast to the connectionist movement of the 1950s an important
objective of present-day neo-connectionism is now the definition of a sub-
symbolic bridge between the formal mind, as studied in cognitive science,
and the brain, as studied in neuroscience. This objective implies that sub-
symbolic connectionism has to address the question of how the symbolic
description of psychological processes, in terms of rules and representations,
provided by traditional cognitivism can be related to a non-symbolic one
in terms of brain mechanisms. [Haugeland 1978] has called this the prob-
lem of complete reduction. A substantial contribution to this connectionist
ambition has been made by [Smolensky 1987, Smolensky 1988], who has
tried to explicate the subsymbolic connectionist paradigm.

I will evaluate the solution of the problem of complete reduction proposed
by subsymbolic connectionism by analysing NETtalk, which is often taken
as the paradigmatic example of this approach, and of a closely related
network model that can classify sonar targets. To further generalize the
results of this analysis a generic connectionist model, the autoassociator,
will be examined.

The results presented suggest that subsymbolic connectionism, as defined
by the models analysed, is still completely dependent on the symbolic level
of description and does not live up to its promise of bridging the gap be-
tween mind and brain. Therefore, this approach is facing the same problems
that confront a cognitivistic approach.

This result can be interpreted as a confirmation of the hegemony of a
symbolic approach. I, however, prefer to propose an alternative interpret-
ation, which is directed at defining the circumstances under which the ini-
tial ambition of connectionism, to find relations between symbolic character-
izations of behaviour and biological ones, can be realized. The background
of this proposal is not a personal deficit on the part of the author to dis-
agree with tradition. It is based on the conclusion that the cognitivistic
school of thought is confronted with a series of fundamental problems. The
proposed alternative focuses on two questions:

1. What is the nature of connectionist models and what are the criteria that
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should be applied to them to render them plausible models of cognition
and behaviour?

2. What should be the relationship between the dynamical view on cogni-
tion inherent in connectionist models and a symbolic one?

These questions bring us back to classical epistemological issues: what is
knowledge and where does it come from? The two questions raised will
be used to build up an argument to address the more fundamental ones.
The answer to the first question can be seen as the definition of a research
strategy for connectionism while the answer to the second one will provide
a conceptual framework. The background of this discussion will be the con-
trast between cognitivism and traditional connectionism: the mind-brain
dilemma.

7.2 The mind-brain dilemma

The paradigm that has dominated cognitive science over the last few decades
can be called ‘symbolic cognitive psychology’ [Newell 1990]. This approach
bases its explanations of behaviour on an assumed knowledge level. The
laws which explain behaviour relate knowledge to goals according to the
principle of rationality: roughly, a system will use its knowledge to reach
its goals. ‘If the system wants to attain goal G and knows that to do act
A will lead to attaining G, then it will do A. This law is a simple form of
rationality — that an agent will operate in 1ts own best interest according
to what it knows’ (op. cit. p. 49).

In their original proposal [Newell and Simon 1963] intended to define a
paradigm for explaining and studying intelligence that would relax the re-
striction put forward by behaviourism that behaviour should be explained
in terms of observable events without referring to mediating processes.
Moreover, they tried to avoid the use of subjective notions in the explana-
tion of behaviour as was done in the school of phenomenology whose main
method was introspection.

The empirical hypothesis put forward by this approach is that general
intelligence, as defined at the knowledge level, can only be displayed by
systems that can manipulate symbols: physical symbol systems [Newell and
Simon 1976, Newell 1990]. General intelligence here is taken to mean that
the system is supposed to operate in domains where ‘within some broad
limits anything can become a task’ [Newell 1990]. This hypothesis spec-
ifies the research programme of Al and can be seen as the paradigmatic
example of cognitivism. The hypothesis states that a physical symbol sys-
tem (PSS) constitutes the necessary and sufficient conditions for general
intelligence. A PSS is embedded in an environment that consists of discrete
states: objects and their relations. The system itself possesses a memory, a
set of operators, control, input and output. The output of the system is a
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function of the input. This response function is defined by the memory, the
operators and the control. The memory of the system consists of a number
of symbolic expressions. Symbols are taken to be patterns in a physical
medium that stand for properties of the physical world. Symbols can again
be combined to form expressions. Expressions are stable and will persist
in the system until they are explicitly changed by some operator. Symbols
designate states inside or outside the system by allowing the system to ac-
cess additional information about these states. They acquire their meaning
by being interrelated with other symbols. To access additional information
implies that the system has to perform a search. What a symbol designates
is not given in advance. The content of an expression, however, is defined
by the designation of the constituting symbols. The operators take sym-
bols or expressions as input and produce one or more symbols as output.
The control governs the behaviour of the system by interpreting symbolic
expressions: the system will carry out the processes designated by the inter-
preted expression. Symbols can represent objects and their relations since
they can designate the relevant information. The connection from symbols
to states of the outside world is established by transduction rules that map
sensory states, which relate to states of the world, onto internal symbolic
representations of these states.

The basic rules that specify what actions the agent can generate are
specified by a finite set of logical axioms implemented by the symbols and
operators of a PSS. The knowledge of the agent becomes the logical closure
of these axioms. Although the knowledge-level description of the behaviour
of an agent can never be complete it allows an observer to make predic-
tions about 1ts behaviour if the knowledge and goals are known. Newell, and
others, assume that the best we can do in the explanations we give of intel-
ligence, and for that matter of our own behaviour, is to try to approximate
the knowledge level.

Knowledge-level explanations of intelligence and the notion of physical
symbol systems are seen as the result of decades of work in Al and computer
science: ‘it is the structure of the digital computer itself (and the theoretical
analysis of it) that reveals the nature of symbolic systems’ [Newell 1990].
It should not be taken as a computer metaphor but as a scientific theory of
the qualitative structure of the mind which is supposed to have the same
status as, for instance, the cell doctrine in biology.

The analogy with the way in which we interact with computers i1s obvi-
ous. To understand or define the operation of a computer we mostly limit
ourselves to the logic of the algorithm that is executed and not to the actual
activity taking place in the hardware components. It is assumed that in or-
der to understand cognition knowledge of the algorithms that the brain is
supposed to execute is all that matters. This implies that we have to drop
the ideal that there is a unity of science in which all sciences are in principle
reducible to physics (e.g. [Putnam 1960, Fodor 1974, Haugeland 1978]). Tt
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is assumed that there is one ‘special science’ of cognition which develops a
formal/logical description of the rules and representations constituting it.
The level of implementation is considered of minor importance.
[Winograd and Flores 1986], p.15, describe the basic steps followed in
this paradigm to explain cognition as:
1. Characterize the situation in terms of identifiable objects with well defined
properties.
2. Find general rules that apply to situations in terms of those objects and
properties.
3. Apply the rules to the situation of concern, drawing conclusions about what

should be done.

An influential example of this tradition i1s the General Problem Solver pro-
posed by [Newell and Simon 1963] which was not only capable of solving
difficult (logical) problems but also seemed to solve these problems in a
human-like way. More recently [Newell 1990] has proposed the more ad-
vanced SOAR architecture as a possible unifying theory of cognition.

This view of cognitive science as a special science has led to an extreme
stance on the role that (neuro)biology plays in explaining behaviour. Since
algorithms that are expressed in computer programs can be instantiated in
an arbitrary number of different implementations, it follows that we do not
have to bother with the hardware in which mental software happens to be
executed: the brain. Basically, this way of dealing with the problem of com-
plete reduction comes down to asserting that intelligence can be achieved
without having a brain. Cognitivism limits itself to the identification of the
logic of the rational mind. The problem of complete reduction is no longer
relevant since the physical instantiation of cognition in the brain does not
constitute a level of analysis that poses constraints on the symbolic and
knowledge level of analysis that matters.

The physical symbol systems hypothesis is often seen as the only plaus-
ible model of general intelligence and having no serious competitors. One of
its virtues, regularly emphasized by its proponents (e.g. [Pylyshyn 1989]), is
that it gives us a theory to understand complex cognitive functions like lan-
guage and reasoning. In fact Chomsky’s theory of transformational gram-
mars was an important impetus to the development of cognitivism (see
[Gardner 1987] for a historical overview). We cannot forget, however, that
this approach also has its problems, such as the implication of nativism,
the related problem of symbol grounding, the frame problem, the frame of
reference problem, and the problem of situatedness. As a background for
the present discussion these problems will be briefly described.

The first problem of this position is its implied nativism. By assuming
that cognition arises out of the manipulation of rules and representations
one must explain where these primitives come from. In the case of a com-
puter application we can always refer to a human programmer. In the
case of cognitivism, where a reference to a programmer would be rather
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awkward, one is forced to blame evolution: nativism. It is important to
note that it is not a matter of choice whether one wants to marry a cogni-
tivistic orientation with nativism. The choice for cognitivism forces one to
submit to this implication.

[Newell and Simon 1976] state that if one thinks that there is nothing
problematic or mysterious about physical symbol systems and the way
in which they explain intelligence one is a child of today (today in this
context means the 1950s, 1960s and 1970s). Moreover, they contrast their
solution with the classical one of Plato, where problem solving was seen as
recalling experiences from a previous occurrence. Newell and Simon claim
that this ‘preposterous’ solution can now be replaced by a much simpler
one. For a student of today (and now I mean today), however, their solution
does not seem that different from Plato’s proposal and it is certainly not
unproblematic.

If we take a closer look at the models developed in this paradigm we
see that they derive all their problem-solving behaviour from their prede-
fined body of knowledge. This implies that the full burden of explaining
intelligence is placed on the question as to where this predefined body of
knowledge comes from. For Plato it was a previous life and for these sys-
tems it is the creator of the program. For the explanatory value, it makes
little difference. Because of the assumption behind physical symbol systems
that they possess a complete body of knowledge from the start on, their
proponents are forced into a nativist position where all of these properties
of the system, down to the last symbol, are genetically predefined.

This implication, however, leads to two types of problems. The first is of a
practical nature and the second of a principled one. By residing to nativism
one assumes that the genetic code is able to store the rules and represen-
tations necessary for the construction of a cognitive engine. Moreover, it
must be able to translate this into a very precisely orchestrated process of
morphogenesis, in which billions of cells are involved. Nativism supposes
that the genetic code is able to generate very precise wiring schemes be-
tween, for instance, the sensory systems and memory structures to assure
the reliable transduction of sensory states into internal representations. The
practical problem is that the genome does not have the necessary amount
of genes to be able to accomplish this job [Changeux 1985, Edelman 1987].
Of the some 50 000 genes involved in realizing the whole vertebrate pheno-
type only around 30 000 correspond to the brain. That they are expressed
in the brain, however, does not mean that they are all necessary to develop
one [Miklos 1993]. This is one of the reasons to assume that the brain is
not constructed according to nativist principles, leading to very precise
and predefined point-to-point wiring, but on selectionist ones exploiting
the basic principles of the generation of diversity and selection by means
of differential amplification [Changeux 1985, Edelman 1987].

If one, in the face of this first problem, would still like to insist on the
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implied nativism of cognitivism, one must still explain how, during evo-
lution, all this ‘knowledge’ could have accumulated in our genes (e.g. Pi-
aget in [Piatelli-Palmarini 1980]). Some might argue that cognitivism has
never denied learning, and also has proposed certain interesting learning
mechanisms, like Newell’s chunking. A closer analysis of this issue, however,
reveals that this form of learning has nothing to do with acquiring ‘knowl-
edge’ from the interaction with the world. Learning in this case has been
predefined. It exclusively focuses on how the search in a predefined body
of knowledge, the closure of the logical axioms underlying the rules and
representations of a PSS, can be reduced to a subset of all possible courses
of solution by means of storing successful ones; that is on chunking. The
role of learning has become one of optimizing search in a predefined model
of the world instead of acquiring knowledge from interacting with the real
world. (See [Verschure and Pfeifer 1993] for a further analysis.) Although
cognitivists might not deny that organisms learn and adapt to their en-
vironment, there is no place for this phenomenon in the explanation of
behaviour they offer.

The symbol-grounding problem [Searle 1980, Harnad 1990] deals with the
assignment of meaning to symbolic representations.! In systems developed
in this tradition the meaning of symbols is derived from the way they are
connected to other symbols and how they are processed. An important
assumption in the explanation offered by cognitivists is the transduction
function that transforms sensory states into symbolic states. Transduction
establishes the connection between the real world and the internal world
model. Newell admits that in the cognitivistic approach the meaning of
symbolic representations is not explained but is assumed [Newell 1981, p.
18]. Moreover, it is taken for granted that sensors are somehow capable
of reliably relating, or transducing, events in the world to their related
internal symbolic representations.

The frame problem [McCarthy and Hayes 1969, Pylyshyn 1987] indicates
that it is impossible to maintain a symbolic world model of a complicated
environment while acting in it in real time. Since the time needed to up-
date this world model will increase exponentially when it becomes more
extended, the system, at a certain point, will become completely absorbed
in maintaining it. This in turn will prevent it from acting. Originally this
problem was defined in relation to the difficulty of drawing the right in-
ference, given a logical representation. Recently it has received a more
general interpretation (e.g. Janlert in [Pylyshyn 1987]). It is important to
realize that the frame problem cannot be solved by relying on increasing the

1 The symbol-grounding problem is also used as a denominator for the class of problems
relating to language and connectionist modelling. In this discussion I refer to a more
restricted but also more principled problem as defined by Searle and Harnad: how
can a symbolic system have a sense of meaning?
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computing power. It relates to the principled impossibility of maintaining
a consistent symbolic model of a dynamically changing world.

Essentially the frame-of-reference problem [Clancey 1989, Clancey 1992]
conceptualizes the relation between the observer, the designer (or the mod-
eller), the artifact (e.g. the expert system, the robot), and the environment.
Let us take the example of building a classical expert system. The ‘knowl-
edge engineer’ is at the same time observer and designer. He or she observes
and describes in symbolic terms the problem-solving behaviour of a human
expert. This implies the definition of a domain ontology, that is a categor-
ization of the real-world domain by the knowledge engineer (of course,
based on his or her interaction with the expert). This ontology is taken as
the basis for the system development. This has a number of consequences.
First, the categories and the symbols used for them are the ones of the
knowledge engineer: they are grounded in his or her experience, not in the
experience of the system. Second, this domain ontology is static.

These consequences in turn lead to some problems. Given that the world
is continuously changing, a static ontology will always at some point become
inappropriate, that is the system will not be adaptive. If a situation is
encountered which cannot be appropriately captured by the ontology of a
system, its behaviour will be inadequate. Even if the system can learn, the
primitives and therefore the classes of objects and events will remain the
same. Therefore, if a system 1s to interact successfully with its environment
it must be able to form its own classification. This classification must be
capable of continuously adapting to change. It must be embedded in the
properties of the system—environment interaction.

If we take the human, say the user of a system, out of the previously de-
scribed design loop the symbol-grounding problem becomes relevant: since
the symbols are not grounded in the system’s experience it will not be
able to make the connection to the outside world. Especially for the field
of autonomous robots, where the system has to interact with the environ-
ment without the intervention of a human, this poses a problem. Since
the symbols are observer- or designer-based it is not clear, however, why
the system should contain symbols in the first place. Indeed, the symbol-
grounding problem can be taken as an artifact of the symbolic approach.

The situatedness of intelligent systems indicates that they have to deal
with a constantly changing, partially unknowable, and unpredictable world
[Simon 1969, Winograd and Flores 1986, Agre and Chapman 1987, Such-
man 1987]. These systems have to act in real time since the environment
is constantly changing, largely — but not only — because of what other
agents do. The traditional symbolic approach to designing agents is to equip
them with models of their environment. These models form the basis for
planning processes which in turn are used for deciding on a particular ac-
tion. But plan-based agents very quickly run into combinatorial problems
(e.g. [Chapman 1987]) because in an unpredictable world many alterna-
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tives must be considered. Since the environment is only partially knowable
a complete model cannot be built in the first place. However, even if only
partial models are developed, keeping the models up to date requires a lot
of computational resources. This pertains to the frame problem that was
discussed earlier. Inspection of the problem of taking action in the real
world shows that it is neither necessary nor desirable to develop ‘complete’
and very detailed plans and models (e.g. [Suchman 1987], [Winograd and
Flores 1986] and [Verschure and Pfeifer 1993]).

The 1ssue of situatedness indicates that there is no simple way around the
symbol-grounding problem. In fact, cognitivism is confronted here with one
of the problems that Chomsky raised against behaviourism. In his famous
review of Skinner’s theory of language, [Chomsky 1959] shows that, for
instance, the reference to stimulus control made by behaviourists is quite
meaningless outside the restricted set-up of laboratory experiments. It com-
pletely rests on an a posterioriinterpretation of the response by an observer,
in which the relevant stimulus properties are defined. If a person would ut-
ter ‘red’ after seeing a red chair, the theory of stimulus control would say
that this behaviour is under the control of the stimulus property ‘redness’.
If, however, the person would have said ‘chair’ the relevant stimulus prop-
erty would have been ‘chairness’. Any interpretation becomes possible in
terms of stimulus control. The meaning of the notion ‘stimulus’ has lost
all the objectivity it is supposed to have in the behaviourist tradition. It is
no longer part of the outside physical world but is a construct ascribed to
the system by the observer. Therefore, predictions about behaviour cannot
be made any more. Chomsky sees this as a retreat to mentalistic psychol-
ogy which relies on a general mystification. Cognitivism, however, does not
seem to fare much better than behaviourism in this respect. In the cogni-
tivist tradition the rules and representations used in explaining a response
function are @ prior: ascribed to the system by the designer; they are only
connected to the outside world in the frame of reference of the observer or
designer. Therefore, Chomsky’s argument was not only a serious blow to
behaviourism, but also specified a problem that cognitivism has not even
started to solve.

I will not embark on a full evaluation of the cognitivist tradition, but
simply note that one pays a price for the conceptual conveniences offered
by the knowledge level and the hypotheses of physical symbol systems put
forward by this tradition. It still has to solve some serious problems. Some of
these problems, however, seem to be a direct implication of the assumptions
underlying this paradigm in the first place. These considerations form a
starting point for the work that will be presented later. The conceptual
issues discussed, however, indicate that there is no reason to believe that
the cognitivistic paradigm is the only game in town. It faces some deep
problems which render it not totally convincing. This can be seen as an
invitation to explore alternatives.
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7.3 Connectionism

Another influential approach in cognitive science is connectionism (e.g.
[Rosenblatt 1958]). Instead of relying on an analogy with digital computers,
its theorizing about cognition is closely tied to knowledge about the brain
(e.g. [Hebb 1949]). Rosenblatt assumes that by interacting in its environ-
ment an organism, which does not possess prior knowledge of this envi-
ronment, develops preferences for specific responses to certain stimuli. The
developing associations between stimuli and responses are related to the
ramification of distinct connection patterns in 1ts nervous system. The clas-
sical example of this approach is the perceptron proposed by [Rosenblatt
1958, Rosenblatt 1962], who tried to develop a formal theoretical basis
for the study of biological intelligence. Instead of relying on symbolic logic
Rosenblatt founded his explanations in probability theory. In this approach
the problem of complete reduction is dissolved by rejecting a description
at the level of logical symbol manipulation and strictly relating cognition
to its substrate: the brain.

In the days of Rosenblatt it was seen as an advantage of this approach
that it allowed psychology to stay in touch with (neuro)biology. The phe-
nomena that could be modelled in connectionist systems, like pattern recog-
nition, however, seemed far removed from the phenomena that should be
explained by cognitive science. The relation of this approach to association-
ism, which in that period was seen as a hopeless school of thought (see for
instance the already discussed criticism of Chomsky) was seen as indicating
that these techniques would not suffice to explain phenomena like language
[Bechtel 1989]. Moreover, [Minsky and Papert 1969] demonstrated that the
perceptron was not able to perform certain computations. These results
were interpreted as undercutting the theoretical thrust of connectionism
and attention died away (or failed to increase), leaving cognitive science in
the firm grip of cognitivism for quite some time.

If we consider the two main schools of thought in cognitive science it
appears that this field is confronted with a mind—brain dilemma. It seems
that a complete understanding of the mind and the brain can only be
found if either the (formal) mind is left out, as proposed by connectionism,
or the brain is left out, as is suggested by cognitivism. The recently pro-
posed approach of subsymbolic connectionism, however, wants to solve the
mind-brain dilemma by trying to reconcile the two seemingly orthogonal
approaches.

7.4 Cognition and subsymbols

Although the models proposed by neo-connectionism are strongly related
to Rosenblatt’s perceptron, their theoretical context is completely different.
The recent attempt by [Smolensky 1988] to define an alternative theoretical
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framework for connectionism is not as radical as Rosenblatt’s proposal.
Smolensky emphasizes the importance of a subsymbolic approach towards
understanding cognition, which mediates between the formal mind and the
dynamical brain.

The subsymbolic paradigm, which was initially proposed by [Hofstadter
1985], is based on developments in the present mainstream of connectionist
research (e.g. [McClelland and Rumelhart 1986]). In this proposal the rules
and representations of cognitivism are seen as emergent properties of the
interaction of a large number of subsymbolic units. Symbols are encoded by
the ‘complex patterns of activity over many units. Each unit participates in
many such patterns. The interactions between individual units are simple,
but these units do not have conceptual semantics: they are subconceptual’
[Smolensky 1988, p. 6].

The subsymbolic description of cognition is supposed to be, in princi-
ple, reducible to brain processes. Or, as Smolensky puts it, ‘if we succeed
in building symbols and symbol manipulation out of connectoplasm then
we will have an explanation of where symbols and symbol manipulation
come from [...] With any luck we will even have an explanation how the
brain builds symbolic computation’ ([Smolensky 1987, p. 141], emphasis in
original). The limited knowledge we have of the central nervous system is
seen as the only obstacle to be overcome towards finding this subsymbolic
explanation of cognition.

The explanation of cognition offered by subsymbolic connectionism is
characterized by a dimension shift from a symbolic description at the level
of complex patterns of activity to a non-symbolic one at the level of sub-
symbolic units. Smolensky, however, emphasizes that ‘for the time being,
subsymbolic models of higher processes are much more directly related
to conceptual level accounts of these processes than to any neural account’
[Smolensky 1988, p. 8]. Like others, Smolensky compares this scheme of ex-
planation, subsymbolic reduction, with that of physical science. Just as clas-
sical mechanics gives a useful and accurate higher-level description of the
interaction of macroscopic bodies, cognitivism gives a useful and accurate
description of macroscopic cognitive processes. The complete descriptions
of these processes, however, have to be found at a quantum-mechanical or
subsymbolic level, respectively.

Other theorists have advocated alternatives to Smolensky’s account of
the relation between the symbolic and the subsymbolic level of descrip-
tion. [Churchland 1989] and [Ramsey et al. 1991], for example, argue that
the subsymbolic explanation of a task performed by a connectionist model
should not be located at the level of the units (where Smolensky places
it) but at the level of the formal laws that govern the behaviour of the
model (the equations determining the evolution of weights and activation
patterns in time) and/or the weights connecting the units. This alterna-
tive, however, endorses the same claim: connectionist models are capable
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of representing and manipulating information in a qualitatively different
way than symbolic models.

Subsymbolic connectionism proposes an alternative position to both those
of cognitivism and traditional connectionism on the mind-brain dilemma
by postulating that a third level of description, in between the formal mind
and the dynamical brain, is essential for understanding cognition. This
claim of a subsymbolic level distinguishes subsymbolic connectionism from
cognitivism. In assuming that cognitivism constitutes a useful, though in-
complete, level of description, subsymbolic connectionism distinguishes it-
self from traditional connectionism (as envisioned by, for instance, Rosen-
blatt). Where the latter tried to define an anti-cognitivistic alternative, the
subsymbolic connectionism tries to relate the two approaches through the
subsymbolic level of description.

If subsymbolic connectionism proves to be correct, it could indeed be in-
terpreted as important progress in the philosophy of mind. It would show
a way out of the mind-brain dilemma by unifying the rational mind with
the dynamical brain. This justifies a closer evaluation of the power of sub-
symbolic computing. By examining the way NETtalk, and a closely related
model for the classification of sonar return signals, represent their task do-
mains, I will try to assess the credibility of the subsymbolic promise. With
another example, a connectionist model of Donald Duck, I will evaluate the
claims made by Churchland and Ramsey et al.

7.5 The power of subsymbolic computing

A standard example of a connectionist model that displays interesting emer-
gent behaviour is NETtalk (the famous ‘parallel network that learns to
read aloud’) developed by [Sejnowski and Rosenberg 1986]. Proponents of
subsymbolic connectionism assume that the hidden units (the units be-
tween the input and output layers) in connectionist models like NETtalk
exhibit subsymbolic representations and thus illustrate the power of sub-
symbolic computing. Although the designers of NETtalk acknowledge the
differences between the architecture of NETtalk and the brain, they assume
that NETtalk can teach us how information (in this case letter-to-phoneme
mappings) could be represented in ‘large populations of neurons’ [Sejnowski
and Rosenberg 1986, p. 670]. [Churchland and Sejnowski 1989, p. 244] in-
dicate that 1t ‘yields clues to how the nervous system can embody models
of various domains of the world’.

With NETtalk Sejnowski and Rosenberg have quite successfully modelled
the conversion of English text to speech. NETtalk 1s proposed as a connec-
tionist alternative to DECtalk, a commercial product that was designed for
this task based on symbolic techniques. Two major functions must be car-
ried out in order to make this conversion. First, the text must be mapped
into an abstract linguistic description consisting of phonemes, stress and
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Figure 7.1 The architecture of NETtalk: see text for explanation

syntactic information. Second, this linguistic description must be mapped
into synthetic speech by translating the phoneme string, along with lexi-
cal stress, syntactic and semantic information, into an acoustic wave form.
This linguistic description is defined in DECtalk as a set of articulatory
features that specify the parameter values for a formant speech synthe-
sizer. NETtalk was designed to perform the mapping from the text to the
articulatory features directly using the same coding as applied in DECtalk.

The architecture of NETtalk consists of three layers: input, hidden and
output (Fig. 7.1). The input layer of NETtalk contains 7 identical groups
of 29 units each. Each unit in a group codes a letter of the alphabet, a
word boundary, or punctuation. The hidden layer has no preassigned inter-
pretation but is necessary to accomplish the mapping between the input
and the output layers. Each unit of the output layer represents one of 23
articulatory features or one of 3 features representing stress and syllable
boundaries. Hence, on the input and output layers, all features are repre-
sented locally by single units.

The network learns to associate the letter coded by the fourth group of
the input layer with a specific set of pronunciation features represented by
the output layer. The other 6 groups of the input layer provide a context.
To learn the pronunciation of a letter, a specific pattern of activation of the
input layer, representing the letter and the context, must be associated with
a pattern of activation of the output layer (depicted by the black squares in
the figure). Learning proceeds in a supervised way: the weights connecting
the units of the input, hidden and output layers will be adjusted to reduce
the difference between the pattern of activation actually generated in the
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output layer, due to the received input from the hidden units, and what
the pattern actually should be, as specified by the training set.

NETtalk was able to learn the associations between letters and phonemes
and could correctly pronounce 95% of the presented words after training
with 50 000 words. It could correctly generalize to new cases for 78% of the
presented test words.

[Rosenberg and Sejnowski 1987] (see also [Rosenberg 1986]) tried to de-
termine the features coded for by the hidden units of a trained network by
clustering input patterns that led to similar activation patterns of these el-
ements. The cluster analysis of NETtalk showed that the activity patterns
of the hidden units could be categorized into two main groups: vowels and
consonants. These results were considered to be an important proof of the
power of subsymbolic computing: they demonstrated the emergence of a
‘symbolic’ separation of the letter-to-phoneme mapping into vowels and
consonants.

According to [Sejnowski and Rosenberg 1986] NETtalk started out with
no ‘considerable innate knowledge in the form of input and output repre-
sentations that were chosen by the experimenters’. Several of the important
results of this work, as summarized by [Churchland and Sejnowski 1989],
are:

1. ‘The representational organization [of the network] is not programmed
or coded into the network; it is found by the network. In a sense it
“programs” itself’ [p. 239].

2. ‘The representation 1s a property of the collection of hidden units, and
does not resemble sentence-logic? organization’ [p. 239].

3. ‘[Networks that start out with] different initial conditions [...] had similar
functional clusterings [the vowel-consonant distinction]’ [p. 239].

This brings them to conclude that network models like NETtalk show ‘how
knowledge of brain architecture can contribute to the devising of likely and
powerful algorithms that can be efficiently implemented in the architecture
of the nervous system and may alter even how we construe the computa-
tional problems’ (p. 246).

NETtalk is surrounded with an impressive set of interpretations and
claims. Again, in case this all proves to be correct, we are witnessing an
important moment in cognitive science. Given this importance a closer
analysis of this model is necessary. Since the main claim is the emergence
of a vowel-consonant distinction, this regularity should not be present in
the character—phoneme relationships expressed in the input and output
patterns presented to NETtalk. In their article Sejnowski and Rosenberg

2 For Churchland and Sejnowski, the expression ‘sentence-logic’ refers to a symbolic
approach.
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Table 7.1 Vowels in NETtalk

Phoneme Articulatory  features

(example)

a (father) Central 2 Low Tensed
¢ (bought) Velar Medium  Unvoiced
e (bake) Front 2 Medium Tensed
i (Pete) Front 1 High Tensed
o (boat) Back 2 Medium Tensed
u (lute) Back 2 High Tensed
x (about) Central 2 Medium

A (bite) Central 1 Front 2 Medium Tensed
E (set) Front 1 Front 2 Medium

I (bit) Front 1 High

O (boy) Central 1 Central 2 Medium Tensed
U (book)  Back 1 High

W (bout) Back 1 Central 2 High Medium Tensed
Y (cute) Central 1 Front 1 Front 2 High Tensed
@ (bat) Front 2 Low

(one) Central 1 Front 1 Glide Low Voiced
* (but) Central 1 Low

present these relationships in alphabetical order. Tables 7.1 and 7.2 list the
same data set but now grouped into vowels and consonants.

In Tables 7.1 and 7.2 the characters, presented to the input layer of the
network, are given with their related phonemes, which are presented to the
output layer. With every character the phonetic features that specify the
pronunciation of the symbol are depicted. Articulatory features that are
used to code vowels and consonants are shown underlined in the category
in which they are used the least (e.g. “Voiced’ is used 21 times in coding
a consonant and once in coding a vowel and is therefore underlined in the
category ‘vowels’). The tables show that this overlap is limited to 4 of the
51 symbols (‘¢’, *¥’, ‘X" and ¢."). The tendency for vowels and consonants to
be coded in nonoverlapping ways is violated only in the case of the letter
coded as “’ (logic). The pronunciation of the consonant ‘¢’ in this context,
symbolized by ‘., is coded with articulatory features that are mostly used
for representing vowels. This, however, implies that for NETtalk " 1s a
vowel. In all other cases there are other non-overlapping features available
for explicitly defining a vowel as a vowel and a consonant as a consonant.
These results indicate that the features that are used to code about 95%
of the vowels only code about 5% of the consonants and vice versa. Only
8 of the 24 features show any overlap and are used for coding vowels and
consonants. Notice, however, that this overlap is always rather limited. For
instance, the feature ‘Unvoiced’ is used 12 times in encoding a consonant
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Table 7.2 Consonants: phonetic features that are used in coding both vowels and
consonants are underlined in the category in which they appear least frequently

Phoneme Articulatory  features

(example)

b (bet) Stop Labial Voiced

d (debt) Stop Alveolar Voiced

f (fin) Fricative Labial Unvoiced

g (guess) Stop Velar Voiced

h (head) Glide Glottal Unvoiced

k (Ken) Stop Velar Unvoiced

1 (let) Liquid Dental Voiced

m (met) Nasal Labial Voiced

n (net) Nasal Alveolar Voiced

p (pet) Stop Labial Unvoiced

r (red) Liquid Palatal Voiced

s (sit) Fricative Alveolar Unvoiced

t (test) Stop Alveolar Unvoiced

v (vest) Fricative Labial Voiced

w (wet) Glide Labial Voiced

y (yet) Glide Palatal Voiced

z (z00) Fricative Alveolar Voiced

C (chin) Affricative Alveolar Unvoiced

D (this) Fricative Dental Voiced

G (sing) Nasal Velar Voiced

J (gin) Affricative Alveolar Voiced

K (sexual) Affricative Palatal Unvoiced  Fricative  Alveolar
L (bottle) Liquid Alveolar Voiced

M (absym) Nasal Dental Voiced

N (button) Nasal Palatal Voiced

Q (quest) Affricative Labial Voiced Stop Velar
R (bird) Liquid Velar Voiced

S (shin) Fricative Palatal Unvoiced

T (thin) Fricative Dental Unvoiced

X (excess) Affricative Central 1 Front 2 Unvoiced
Z (leisure) Fricative Palatal Voiced

! (nazi) Affricative Dental Labial Unvoiced
# (examine)  Affricative Palatal Velar Voiced
: (logic) Front 1 Front 2 High

and only once in encoding a vowel. These results indicate that the emergent
vowel—consonant distinction was already fully present in the input and
output patterns presented to NETtalk. This surprising result forces us to
re-evaluate the claims and interpretations made for this model.

NETtalk is put forward as a model that shows emergent symbolic
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representations, demonstrating the power of subsymbolic computing. In
the presented analysis i1t is shown, however, that the subsymbolic explana-
tion of NETtalk’s performance in pronouncing English words, expressed in
the separation of vowels and consonants, is due to the encoding supplied
by the designers of the system. The vowels are always translated to a set of
articulatory features which themselves distinguish vowels from consonants.
Therefore, i1t is not surprising that the hidden units of NETtalk learn to
discriminate them. NETtalk just separates patterns that are sufficiently
different and groups together patterns that are sufficiently similar. Since
the categorization in vowels and consonants was already there in the pat-
terns presented, 1t is no surprise that the system captures this regularity.
The trick of this subsymbolic ‘explanation’ lies in the proper encoding of
the desired symbolic behaviour into activation patterns that are presented
to the network. This encoding is made by the designers of the system,
Sejnowski and Rosenberg, and not by NETtalk (or its learning algorithm).

This result might sound trivial but the point is that the claimed emer-
gence of symbolic behaviour from subsymbolic processing cannot be sup-
ported. Let us see how this applies to the three claims of Churchland and
Sejnowski listed above. Claim 1 (the system finds the representations it-
self) is plainly wrong, as shown in the analysis of the patterns presented
to the model and their relation to the precoded features. The representa-
tions it finds are completely prespecified in the examples it learns. These
examples are defined by the designers. Claim 2 (the representations do not
resemble sentence-logic organization) must be reformulated. Tt would be
more appropriate to say that although the representations after learning
are interpreted in terms of the activation of the hidden units, they are a
direct result of the symbolic precoding made by the designers of the system
(or rather the designers of DECtalk), and for that matter are completely
related to a symbolic analysis of language production. Claim 3 (different
initial conditions lead to the same functional clustering) can now be under-
stood. It 1s obvious that, given different initial conditions, the system will
always settle into the same functional clustering because it is forced into
it by the presented target patterns (which represent the phonetic feature
coding made by the designers). This set of patterns does not change over
the different experiments. Given these results, the suggestion that NETtalk
is somehow helpful in understanding brain dynamics is hard to interpret.
This is emphasized by the serious criticism that the used learning method
received for not being very brain-like (e.g. [Crick 1989]). Moreover, the
claim of Sejnowski and Rosenberg that NETtalk did not start out with
‘considerable’ innate knowledge of the task domain cannot be supported.
Not only was the network totally and unambiguously symbolically labelled
at the level of input and output units, but the way these symbolic repre-
sentations were engaged and associated was again explicitly coded in the
set of patterns presented.
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This analysis suggests that the subsymbolic strategy behind NETtalk
consists of the following steps.

1. The designer of the system defines basic symbolic properties in which
a certain task can be described (in NETtalk articulatory features and
characters): the knowledge the system must have to accomplish the task

1s defined.

2. These properties get translated to regularities in activation patterns pre-
sented to a connectionist model (in the case of NETtalk this is expressed
as which letter should be associated with which set of pronunciation
features). The regularities expressed in the predefined input-to-output
mapping encode the rules for the pronunciation of English text. The
connectionist model learns to separate the patterns on their differences
and groups them together on their regularities.

3. The rules, encoded in the weight distribution, are applied to input pat-
terns presented to the network, which transforms them into the related
output pattern. The rules encoded in the network lead to certain reg-
ularities in the dynamics of the network — the activation of the output
and hidden layers — or a specific distribution of the weights.

These three steps are amazingly similar to the three characteristics of the
cognitivistic approach distinguished by Winograd and Flores. An additional
step, not identified by Winograd and Flores, is that the regularities ex-
pressed in the dynamics of the network are in turn symbolically interpreted
by the designer (in the case of NETtalk as a vowel-consonant distinction).
The most important commonality between the cognitivistic tradition and
subsymbolic connectionism, as analysed here, is that both completely rely
on designer-dependent symbolic task descriptions.

Of course, the analysis of the representations formed in models like
NETtalk can be useful because ‘unexpected’ regularities (like the vowel-
consonant distinction in NETtalk) can be discovered (see also [Rosenberg
and Sejnowski 1987]).3 We must not forget, however, that these discoveries
only mean that the designers, who made the precoding, did not exactly
know which regularities they put in. A more efficient way to discover them
could have been to analyse these precodings directly instead of first making
NETtalk learn them. (For instance, the quite straightforward rearranging
of the data set presented in Table 7.1 is already quite insightful.) We have
to be very clear about the claims based on the performance of NETtalk:
the vowel-consonant separation is not an emergent property of the sys-
tem. Moreover, compared to systems that use a set of letter-to-sound rules
(without a dictionary of exceptions), NETtalk does fairly poorly [Klatt

3 It must be said, however, that every introductory text on phonetics would show that
the sounds of vowels and consonants are each described by a different set of phonetic
features.
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| Mine [1,0]/ Rock [0,1]
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Figure 7.2 The architecture of the sonar classifier: see text for explanation

1987]. All it shows us is how we can ‘compile’ a given designer-dependent
symbolic task description into a connectionist model.

To further explore the generality of this contention, two more exam-
ples will be considered. In the first example it will be shown that indeed
no ‘emergent’ symbolic behaviour appears when the task domain is not
symbolically defined @ priori. The second example will show that the sug-
gestions by [Churchland 1989] and [Ramsey et al. 1991], that subsymbolic
reduction takes place at the ‘lower’ level of the weights or of the ‘formal
laws’ driving a connectionist model are not supported by the nature of
these systems.

7.6 Signal classification and subsymbolic reduction

[Gorman and Sejnowski 1988] have used a network with an architecture
similar to NETtalk as a classifier of sonar signals returned by metal cylin-
ders and rocks. They show that this task can be accomplished with an
accuracy of 99.8% by a network that consists of 24 hidden units (see Fig.
7.2).

The patterns presented to the input layer correspond to the spectral
information of the sonar return signals. The network is trained to associate
these patterns with the corresponding two-bit pattern for cylinder [1,0] or
rock [0,1]. At the input side the spectral information of an analog signal
is presented and at the output side a symbolically interpretable discrete
coding is employed.

Gorman and Sejnowski expected that, analogously to NETtalk, the global
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features expressed in the activation patterns of the hidden units could be
symbolically labelled. In this case the symbols ‘rocks’” and ‘metal cylinders’
seemed appropriate. Unfortunately this was not possible:

‘Although it is attractive to think of a hidden unit as a feature extractor,
this may not be the best way to characterize a hidden unit’s coding strategy.
As we demonstrated, the hidden unit is capable of encoding multiple features
and even multiple strategies simultaneously. The network is able to internally
encode pattern variations that do not decompose simply into a set of feature
dimensions.’ [op. cit. p. 88].

Eventually Gorman and Sejnowski resort to a description in terms of rules
and strategies to illuminate the behaviour of their model. Although this
can be very helpful in understanding the behaviour of such a complicated
model, it implies that the regularities expressed in the analog signal pro-
jected to the input layer do not coincide with a (sub)symbolic interpreta-
tion of the task by a human observer. In this case symbolic behaviour did
not ‘emerge’ because the task domain could not be defined symbolically.
The regularities in the spectral information presented to the input layer
that were captured by the model did not lead to activation patterns at the
hidden layer that would allow a straightforward interpretation in terms of
symbolic categories.

Subsymbolic reduction as proposed by Smolensky (and others, e.g. [Church-
land and Sejnowski 1989]) seems to be closely tied to the possibility of
completely describing the task in symbolic terms. The input to the sonar
classifier was not precoded in discrete symbolic features. This input did
not allow a mapping into the symbolic categorization coded by the out-
put units. The interpretation of network behaviour in terms of symbols
emerging from subsymbols became impossible: no symbols, no subsymbols.

The analysis of the sonar classifier suggests that subsymbolic reduction,
as defined here, only seems to succeed if the patterns of activation of the
model are interpretable in advance in terms of discrete symbols. Hence,
the success (or failure) of subsymbolic reduction only indicates whether
the designer succeeded in describing the task domain in advance in sym-
bolic terms. This example further supports the previously listed set of rules
employed by subsymbolic connectionists.

7.7 Donald Duck: the example

As already indicated, another subsymbolic route to understanding cog-
nition is proposed by [Churchland 1989] and [Ramsey et al. 1991]. For
instance, in [Ramsey et al. 1991] it is claimed that the coding of propos-
itions in the weights of connectionist models is qualitatively different from
a symbolic one. With an example it will be shown, however, that also at
this level the same dependence on the symbolic description of the task by
the designer holds.
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Consider a connectionist model of Donald Duck who learns to represent
his family relationships, such as his three nephews (the formal structure of
this model is described in Appendix A). In the course of a day Donald Duck
1s confronted with Louie, Dewey and Huey. In this model I will use a model
similar to one presented by [McClelland and Rumelhart 1986] describing
a boy representing visual impressions of dogs and their names, in order
to illustrate a way the three nephews get represented in Donald Duck’s
memory. The main idea of using this model is to argue against the claim
implied by [Churchland 1989] and [Ramsey et «l. 1991] that connectionist
representations of this kind are qualitatively different in any way, and thus
to issue a warning against an over-interpretation of such models.

Donald’s learning is modelled with an autoassociative system consisting
of eight units. Every time Donald is confronted with one of the patterns for
‘Louie’, ‘Dewey’ or ‘Huey’ they activate a specific pattern in these units.
When Donald sees one of his nephews the patterns transduced to his mem-
ory by his sensors are:

[ +1, +1, +1, +1, -1, -1, -1, -1] = ‘Louie’
[ +1, +1, -1, -1, +1, +1, -1, -1] = ‘Dewey’
[ +1, -1, +1, -1, +1, -1, +1, -1] = ‘Huey’

Donald is confronted with his nephews during 150 learning cycles. In every
cycle first Louie presents himself to Donald, followed by Dewey and Huey.
To evaluate the suggestion that the weights implementing Donald’s memory
somehow constitute a subsymbolic representation of his nephews, we must
determine how these representations are coded in the weights. Evaluating
only one weight (as proposed by [Ramsey et al. 1991]) is not appropriate.?
The representations formed in the connections between the units can only
be evaluated in terms of a configuration of weights. When we have a one-
layered network an appropriate technique is eigenvalue decomposition (e.g.
[Anderson and Murphy 1986]). This technique provides us with the patterns
(eigenvectors) coded for by the weights and their prominence (eigenvalues).
The results of the decomposition of the weight matrix of Donald’s memory,
in terms of eigenvalues and the covered percentages, are depicted in the
following table.

value: percentage:
5.2 10-4 76
1.3 10-4 19
3.3 10-5 5
1.1 10-20 0
3.3 10-18 0

4 Although connectionist models are well known for their robustness, also called ‘grace-
ful degradation’, pattern recognition using only one weight will become a problem
with networks bigger than two units.
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2.5 10-22 0
1.3 10-20 0
7.4 10-19 0
total: 6.8 10-4 100

These eigenvalues suggest that the matrix constituting the memory of Don-
ald has three dimensions. The eigenvector with the largest eigenvalue ex-
plains 76% of the variance of the configuration of weights. The second
largest explains 19%. The third largest explains 5%. The other five eigen-
vectors each explain 0%. In the following table the values of the eigenvec-
tors associated with the three non-zero eigenvalues (or the three dimensions
making up Donald’s mind) are depicted.

eigenvector 1 2 3
element:
1 1.000 -0.996 0.9986
2 0.999 -0.996 -0.996
3 -0.996 -0.999 0.996
4 -0.996 -0.996 -0.996
5 0.996 0.996 0.996
6 0.996 1.000 -0.996
7 -0.994 0.993 0.996

8 -0.999 0.996 -0.996

When we compare these eigenvectors with the patterns which code Louie,
Dewey and Huey the resemblance is striking. The three dimensions making
up the memory of Donald are exactly the patterns we have put in!

Also in this example subsymbolic explanation is completely dependent
on the a priori symbolic description of the task made by the designer.
The symbols or propositions the network has to learn are translated by
the designer into patterns of activation conserving the category differences
and similarities of the symbols. Symbolic distinctions are translated to dis-
tinctions between the patterns that code these symbols. By learning these
patterns, the weights of the model will be adjusted to these distinctions.
The subsymbolic representation encoded in the weights will be solely deter-
mined by the properties of the patterns the designer has put in. Thus the
representation 1s not qualitatively different from symbolic representations,
as [Churchland 1989] and [Ramsey et al. 1991] claim, but has the same
dependency on the user’s ontology.

7.8 The status of subsymbolic computing

The above three examples all support the hypothesis that subsymbolic
connectionism, as defined and analysed here, 1s based on a circular strategy
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culminating in a category error by the designers and interpreters of these
models. The severity of this conclusion would make a further generalization
necessary. It is, however, not the purpose of this chapter to provide a full
review of the different realizations subsymbolic connectionism has found in
cognitive science. The intention is to define a conceptual framework and
research strategy in which the connectionist ambition can be realized. It is
up to the designers of connectionist models, and any other models for that
matter, to be critical towards their own strategy and interpretations. The
designers of the models and their interpreters discussed here have failed
to do this, leading to a further confusion about the scope and limits of
the approach. A reasonable conclusion of the analysis presented would be
that there is a tendency in the mainstream of connectionist modelling to
over-interpret models that serve solely as compilers of observer-dependent
ontologies. At the heart of this over-interpretation lies a category error
where the ontology of the designer is mistaken for that of the model he or
she defines.

The case against subsymbolic connectionism, as analysed here, seems
convincing enough. Although some of these models can be considered engi-
neering successes, their explanational value seems minimal. They only echo
the symbolic regularities the designer has put in. Like the cognitivistic
tradition, subsymbolic connectionism seems to start out with a symbolic
analysis of the task domain. The regularities discovered in this analysis
are translated by the designer to specific activation patterns presented to
the model. This implies that the subsymbolic bridge between the symbolic
mind and the dynamical brain is based on an unsubstantiated claim. The
models brought forward as examples of its potential indicate that a subsym-
bolic analysis is completely dependent on a symbolic one. Both Smolensky
and Newell, for instance, take symbols as patterns of activation in some
hardware medium. The only difference between the two positions towards
symbols is that the former sees an emergent relationship between these two
levels.

A frequently offered interpretation of the status of connectionist models
in cognitive science is that we do not know enough about these networks to
come to a final evaluation (e.g. [McCloskey 1991]). The analysis presented,
however, shows that we do know enough about these models to perform
such an evaluation: the subsymbolic route to understanding cognition, as
defined and analysed here, is strongly dependent on the well-trodden sym-
bolic one.

A standard reply to this type of criticism is that it might be true for
these ‘old’ examples, but in the meantime much has changed. It is true
that the last few years have seen an explosive growth in the knowledge of
the techniques and methods of connectionist modelling. In the case of these
more principled issues, however, not much progress has been made. For
example, in a recent popularization of connectionist modelling as applied
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to language and language disorders due to brain lesion, [Hinton et al. 1993]
(see also [Hinton et al. 1991]) present a model that is designed following
the same strategy as NETtalk.

Let me emphasize again that the purpose of this analysis is not to provide
a full review of the past and present use of connectionist models in cognitive
science. The analysis of the traditional cognitivistic paradigm served to
identify a number of conceptual issues relevant to solving the mind-brain
dilemma. The evaluation of subsymbolic connectionism showed that this
style of modelling does not automatically solve these problems, but in fact
runs the risk of importing them by implicitly following the cognitivistic
explanational scheme. It cannot be excluded that subsymbolic connection-
ism can provide a way to settle the mind—brain dilemma. This promise,
however, still awaits its realization.

7.9 Taking connectionism seriously

The properties that render certain models connectionist are by reference to
parallel computation, distributed representation and emergence. They com-
prise a set of techniques that can be used to describe dynamical systems.
These techniques, however, can be applied to model a number of different
biological phenomena like the brain, the immune system, co-evolution, and
auto-catalysis (for a comparison see [Farmer 1990]) to mention but a few.
The school of connectionism in cognitive science proposes to use these tech-
niques to study the brain and behaviour. By itself, however, using these
techniques does not constitute a paradigm. They are neutral towards a
conceptual interpretation. Therefore, their relevance to cognitive science
depends on the theoretical context in which they are embedded. It seems
that in the current use of connectionist techniques three global domains
can be distinguished: symbolic models; neutral models and neural models.

The first class of applications of connectionist techniques, symbolic mod-
els, combines connectionist techniques with a cognitivistic theory expressed
in a symbolic description of a task (derived using step 1 of the cognitivistic
approach). The models proposed in the ‘subsymbolic school’ (as defined
and described earlier) fall into this category. As demonstrated earlier, in
NETtalk the symbolic analysis is expressed in the letter and phoneme re-
lations which are precoded in the patterns the system has to learn. This
strategy of connectionist modelling must be considered as the application of
a connectionist methodology within the traditional cognitivistic paradigm.
Examples of this popular category of models are NETtalk, TRACE, the
past tense model of [McClelland and Rumelhart 1986], a recently pro-
posed model by [Mitchell and Hofstadter 1990] which demonstrates the
‘emergence’ of understanding, the models of [Seidenberg and McClelland
1989], and of [Hinton et al. 1991] on language, and the model on categorical
and spatial representations presented by [Kosslyn et al. 1992]. A confusing
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aspect of this type of connectionist models, as the analysis presented has
shown, is that they are supposed to be something other than they are. This
ontological fallacy is, unfortunately, not widely acknowledged. It is, for in-
stance, only in the analysis presented that the ontological commitment and
the semantic interpretability of this type of connectionist models is made
explicit.

The conceptual dependence of these models on cognitivism implies that
they have to deal with the standards set in that paradigm. They must an-
swer the criticism from the cognitivist tradition (like [Fodor and Pylyshyn
1988] and [Broadbent 1985]), for instance that the representations built
in connectionist models must satisfy constraints such as compositionality.
Moreover, the analysis presented shows that the contribution of these mod-
els to our understanding of mental phenomena is limited since they only
echo what their designers had already expressed in their symbolic task def-
inition. Hence, they can never lead to an understanding which goes beyond
the limits set by the cognitivist paradigm and its symbolic description of
behavioural regularities.

The second domain of the application of connectionist techniques, neu-
tral models, strictly limits their scope to the study and application of the
techniques, independent of the question whether these models relate to
cognitive processes or neural mechanisms. In contrast to the first class of
models, in this case the units are not externally labelled with symbolic in-
formation, but are taken as neutral processing elements. In this perspective
one can work on, for instance, convergence proofs and analytical methods
to study network behaviour. Examples of this approach are the evaluation
of the perceptron by Minsky and Papert, work on connectionist learning
rules (e.g. [Rumelhart et al. 1986] and [Ackley et al. 1985]), the relation to
techniques stemming from statistical physics (e.g. [Amit 1989]), or the work
on the relationship between these connectionist techniques and the concept
of universal approximation, which stems from the mathematical domain of
approximation theory [Hornik et al. 1989]. This class of connectionist ef-
forts can be seen as further improving and understanding connectionist
techniques. This understanding can be used to address engineering prob-
lems like classification. It is an effort independent of the way in which these
techniques could be applied in the domains of neuroscience or cognitivism,
and seems more to rely on formal analytical methods. Like in the previous
class of models the brain might serve as a metaphor in modelling, but it is
not seen as a constraint.

A third and last class of connectionist models, neural models, relates to
the application and development of these techniques in the domain of neuro-
science. Classical examples here are, for instance, the work of [Hodgkin and
Huxley 1952] on modelling the properties of single neurons, or the model
proposed by [Willshaw and Malsburg 1976] on the formation of topological
maps. An important and more recent example of this type of research is
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the approach of synthetic neural modelling proposed by [Edelman 1987],
[Edelman 1989] and [Edelman 1992], who tries to explain psychological
phenomena from a (neuro)biological perspective using neural models. This
class of models distinguishes itself from the previous two since it is not
only inspired by the properties of the brain, but is also explicitly validated
against strict constraints stemming from it.

It 1s not always possible to draw clear boundaries between these three
classes of connectionist modelling. We have to keep in mind, however, that
the techniques used to construct a model are neutral towards their in-
terpretation. A model does not fall in the category of neural modelling
just because basic processing units are called ‘neurons’ and their intercon-
nections are called ‘synapses’. They only become interpretable when the
conceptual framework in which they are embedded is explicated and the
models are validated against sufficient constraints. Sections 7.10 to 7.15
will be devoted to defining such a framework and elaborating the issue of
constraints in the context of the initial connectionist ambition of solving
the mind-brain dilemma: to understand behaviour and the mind from the
perspective of the third domain of application of connectionist techniques,
namely neural models. The proposal will be split into two aspects. The first
relates to the methodological issues involved, while the second focuses on
the conceptual ones. This proposal will be further defined by discussing a
concrete model that is developed according to the principles put forward.

7.10 Constraining connectionism: a research strategy

[Massaro 1988] showed that a connectionist system (in particular the widely
used generalized delta procedure which is also employed in NETtalk) can
be used to model mutually exclusive psychological models of perception.
This superpower of connectionist models is understandable when we realize
that the most important connectionist learning mechanisms are implemen-
tations of well-known optimization techniques (like gradient descent and
simulated annealing). For instance, [Wray and Green 1991] have shown
that these modelling techniques are equivalent to traditional approximation
methods like polynomial approximation and Volterra series. Moreover,
[Hornik et al. 1989] proved that any well-defined input—output mapping
can be approximated by a multilayered connectionist network. Hence, be-
ing able to train a network to perform a certain task does not ensure that
the network is a psychologically plausible model of this task. It shows that
one has been able to transform the task to a well-defined set of input—output
mappings that a powerful optimizer could learn. This implies that when we
want to use connectionist techniques to explain psychological phenomena,
additional constraints must be met.

Given the neutrality of connectionist techniques and the superpower of
some of them it must be shown that they are not only capable of learning
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a given input—output mapping, but also that they perform in a realistic
way. Until now the opposite seems mostly to have been the case. It is
disappointing that insofar as connectionists succeed in getting their mod-
els to run, practically none of them satisfy any relevant psychological or
(neuro)biological constraints. Examples of this can be found in the crit-
icisms raised by Massaro against popular connectionist models of speech
perception based on interactive activation (e.g. [Massaro 1989]), the criti-
cal analysis offered by Pinker and Prince of connectionist language models
[Pinker and Prince 1988], or the already mentioned critique by Crick on the
biological plausibility of the standard practice of connectionist modelling
[Crick 1989].

The choice of constraints is, of course, closely related to the choice of
phenomena to be studied. Subsymbolic connectionism immediately tried
to deal with sophisticated psychological processes such as language (which
have also been the focus of cognitivism). Above I tried to show that these
attempts did not explain very much beyond what was already known (or
could be known) by sticking to an exclusive symbolic analysis. This, of
course, raises the question whether connectionism has been focusing on
issues it can deal with and whether it has followed an appropriate strategy.

I argue that the selection of constraints to be met by a connectionist
model is not an arbitrary process. The minimum standard that we should
impose on this process is that constraints should be drawn from both the
domain of behaviour and the level of implementation, neurobiology. This
standard may sound rather obvious, but this simple rule does not seem to
be followed by the mainstream of connectionist modelling. As, for instance,
indicated by [Uttal 1990], the functional descriptions of behavioural regu-
larities provided by information processing models are in principle under-
determined. This means that they can never provide sufficient constraints
on (connectionist) models that try to account for these behavioural regu-
larities. This argument goes back to the work of [Moore 1956] who showed
that 1t is in principle impossible to decide between alternative functional
models of an observed response function. Behavioural constraints, there-
fore, cannot be taken as sufficient guidelines but must themselves be val-
idated. Therefore, aside from finding constraints at the behavioural level,
it 1s necessary to add constraint from another level: the brain. In a more
general sense one could say that in modelling a certain response function,
whether it is one of a behaving organism or of a firing neuron, the level
at which this response function is observed does not suffice as a source of
constraints. Constraints pertaining to underlying mechanisms need to be
included.

It should be added here that Uttal believes that the brain cannot pro-
vide constraints on models of behaviour since the brain is too complicated
and highly non-linear. Uttal is correct with this latter observation, but
that does not imply that relating psychological phenomena to brain mech-
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anisms is in principle impossible. These properties of brain dynamics in-
dicate that a straightforward decomposition of those brain processes that
implement or give rise to psychological phenomena might not be possi-
ble. We should not forget, however, that the picture of brain mechanisms
sketched in terms of nonlinear dynamics might not be very compatible
with the information-processing framework of psychological models. This
relatively recent development in natural science can also be taken as an in-
dication that psychology should change its conception of the processes and
mechanisms underlying the phenomena it studies. The conceptual issue of
the mind-brain dilemma can be taken as an additional indication of the
incompatibility of these levels of description.

Results from neurobiology, however, cannot be the only source of inspi-
ration for connectionist modelling. The data generated by this field will
certainly get us lost in the many details of neural functioning. It would
be naive to believe that we can automatically solve all sorts of issues in
the realm of the behavioural sciences by just turning towards neuroscience.
Moreover, the data pertaining to certain brain structures or mechanisms
can be quite confusing. For instance, in the debate on the properties of
dopamine receptors in the brains of schizophrenic patients one research
group reported elevated sensitivity of these receptors [Wong el al. 1986]
while others found evidence for normal sensitivity [Farde et al. 1987].

Does this mean that Uttal was right after all? I would claim this is not the
case. Both the study of behaviour and cognition and the inquiry into the
neural substrate are developing fields, where we do not even know whether
we are posing the right questions. Both these levels of description — in fact
the multitude of levels at which behaviour gets expressed and generated —
need to be related to each other to address the indeterminacy from which
they suffer in 1solation. Behavioural, top-down, constraints are necessary to
give guidance in picking the properties of brain dynamics that are crucial
in understanding its functioning (see also [Clark 1989]).

Only by cross-validating connectionist models against behavioural and
neurobiological constraints can we expect these models to be able to con-
tribute to our understanding of psychological phenomena. This strategy of
convergent validation allows an ongoing and necessary interaction between
the behavioural and brain sciences. First, constraints from both domains
are integrated in a model. Next, the results of this integration process will
lead to new hypotheses that can be communicated back to the involved
levels of description and tested in these domains. This can lead to a further
specification of the constraints applied to the model. Therefore the role
of modelling becomes one of integrating multiple levels of description and
finding convergence between them rather than mimicking the regularities
found at one of them.



From knowledge to adaptation: a conceptual framework 161

7.11 From knowledge to adaptation: a conceptual framework

A research strategy will not automatically lead to the understanding of a
phenomenon if it is not embedded in a proper conceptual framework. A
conceptual framework can only be called ‘proper’ when it is explicated.
Subsymbolic connectionism has focused on a symbolic characterization of
behaviour and the knowledge underlying it. The behaviour was explained
on the basis of assumed internal symbolic representations. The same is
true for traditional cognitivism. [Newell 1990], for instance, indicates that
the knowledge level does not explain the aboutness of representations but
assumes 1t. This can be a useful position, but still cannot, by itself, be
considered a firm base for theorizing (see also [Smith 1990]). Knowledge
itself, rather, seems to be a phenomenon that must be explained. [Harnad
1990] has pointed out the problem of symbol grounding: from what do
symbols get their meaning? The standard strategy of cognitivism is to
assume that symbols derive their meaning out of their relation to other
symbols, like the input patterns to NETtalk derive their meaning from
their predefined association with the pronunciation features. In this way
we end up in a closed loop of interrelated symbols. In the case of NETtalk
this boils down to answering the questions as to how the pronunciation
features got there in the first place and why a specific input pattern should
be associated with a specific output pattern.

There are two approaches to explain the grounding of the knowledge of
a system. The first one, implied by cognitivism, is putting the responsi-
bility on evolution and assuming that rules and representations are just
handed over to a system by its genetic code [Piatelli-Palmarini 1980]. This
brings us back to the problems of nativism discussed earlier. A more re-
alistic solution supplements genetic predefinition with learning. A system
acquires knowledge by interacting with its environment. This process is
guided by the genetically defined set-up of the system, its phenotype, and
the properties of its environment. [Bechtel 1989] indicates that connec-
tionism promises to explain the aboutness of representational states. It is
exactly this promise, I think, that connectionism should focus on. It might
be useful to explore where knowledge comes from, and how it is defined in
the adaptive structures that we call organism and brain, and around which
primitives it is organized and expressed. I would like to emphasize that
the nature of knowledge should be explored before elaborating on its use.
There is no claim of originality here. This proposal is very much along the
same lines as, for instance, the school of genetic epistemology of [Piaget
1971] (for an overview see [Furth 1969]).

In concentrating on the capacity of connectionist systems to ‘learn’ by
changing their structural properties, the strength of their interconnections,
they provide a set of techniques which can be used in addressing the symbol-
grounding problem. They can be used to study adaptive structures, like
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the brain. We should, however, not make these systems learn our symbolic
descriptions of specific tasks, but concentrate on how they can acquire the
behaviours necessary to perform these tasks out of their interaction with
the real world. This interaction 1s mediated by the phenotype in which these
structures are embedded: the morphology of the body, and the properties
of the sensors and effectors. This implies that, on one hand, symbols cannot
be seen as part of the internal mechanism that determines behaviour. This
internal mechanism must be seen as a control structure. It controls since
it mediates and transforms sensing into acting. It 1s a structure since it
is realized in the physical world. There is no reason to assume that the
general principles that generate this structure and that are implemented
by it will coincide with the formal logical picture of the mind put forward
by cognitivism. Rules and representations should, therefore, be taken as
observer-dependent constructs that are used to describe the behavioural
regularities generated by the behaving system. On the other hand, the
learning methods used cannot be supervised like backpropagation. This is
not only because of its biological implausibility, but more specifically for
its tendency to allow a human designer to compile their own ontology into
a connectionist model. It might lead to acceptable engineering, but most
definitely not to any insight into the functioning of the brain. The brain
can only be its own teacher.

A standard argument against this position is that by using supervised
learning methods one can find an existence proof of a possible neural struc-
ture implementing a certain function. [Churchland 1989] argues that as long
as one shows that the architecture is sufficiently similar to neural anatomy
and the dynamics modelled capture the general properties of neural dy-
namics, then the use of a supervised learning method can be justified to
generate ideas on ways in which the brain could be configured to perform
certain tasks. Given the previous analysis we have to conclude that in the
standard examples of the subsymbolic paradigm the designers have not
demonstrated that their models satisfied any relevant neural constraint.
The main source leading to their design decisions seems to have been their
own functional task decomposition. This raises the question as to why there
is so little biological evidence supporting these models. The present analy-
sis suggests that the solution to this problem has to be traced back to the
ontological errors the designers have made in the design of their systems.
By assuming that the world presented itself in a prediscretized way, and
that learning equalled direct supervision extending to every weight in the
system, the designers could but end up in a realm which was beyond bio-
logical relevance. It is not so much the case that the proposed models were
constructed to solve a problem in a different way than the brain might do
it, but that they basically tried to solve a totally different problem. The
first problem a brain has to solve, and so for any theory explaining it, is
how to categorize the world (see also [Edelman 1987]).



Interacting with the real world 163

As argued before, the symbol-grounding problem, as defined in the strict
sense, can be interpreted as an artifact of a symbolic approach. Moreover,
the issue of levels and the problem of complete reduction acquire a different
status in the present proposal. As described earlier symbol manipulation
is traditionally taken as a separate level of explanation that can be related
to a level of neural implementation. Subsymbolic connectionism tried to
establish this relationship. In the present proposal, however, this type of
relation might turn out not to be the one to look for. Before expanding on
this claim I will discuss a concrete example which illustrates the previously
identified methodological and conceptual issues.

7.12 Interacting with the real world

This proposal is based on several assumptions relating to the nature of the
interaction between an agent and its environment.

An agent is defined as the conglomerate of its phenotype and its control
structure, both expressed as physical structures. I prefer to refer to the
nervous system of the agent as a control structure to emphasize that in
this perspective a nervous system is modelled and not literally copied. The
principles expressed in the control structure must be seen as a hypothesis
regarding the principles implemented in real nervous systems. At this mo-
ment in the history of cognitive science it might be useful not to overstate
our claims. The environment of the agent, the world, is defined according
to the following assumptions.

1. The real world is only partially knowable and only partially predictable.
2. The world does not consist of a collection of discrete events.
3. The world has its own temporal dynamics.

These three assumptions have important implications for the agent. As-
sumption 1 implies that there cannot be a predefined body of knowledge
that captures the pertinent properties of the real world. Assumption 2
forces us to conceive the input to the system, its sensory states, as con-
tinuously varying and not as discrete. The notion ‘event’ is completely
connected to the continuous interaction between a system and the world.
In fact, categorization is the active creation of an event. The last assump-
tion indicates that the agent is under time pressure to act. This imposes a
severe constraint on the mechanisms that mediate and transform sensing
to acting.

The methodological implication of these assumptions is that if we want
to find a way to deal with the mind—brain dilemma, which is the ambition
of the connectionist programme, connectionist models should be applied in
the context of autonomous agents. This implies that the models, or control
structures, are embodied in artifacts that have sensors and effectors and
that interact with the real world. They should be complete models that
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span the whole domain from sensing to acting. Moreover, they should be
in a constant interaction with the environment, and be able to survive in
it.

Moreover, given these assumptions we have to conceive of autonomous
agents as adaptive systems. This raises the question when and why a system
should learn. Assumption 1 answers the why question. This does not mean
that nothing can be foreseen in advance. For instance, what the food looks
like that a specific animal feeds on can be predicted; where it can be found
in 1ts environment, however, cannot be predefined. The empirical fact that
the genetic code has only a limited coding capacity and can therefore not
be expected to code the complete body of knowledge might therefore imply
that instead of being ‘short on memory’ the genetic code only predefines
what can be predefined and will leave dealing with uncertainty in the real
world to the mechanisms for adaptation and learning.

This proposal 1s not entirely new. Its synthetic aspects, for instance, go
back to the work of Hull, who in the 1920s was already trying to develop
a mechanism that could learn according to the principles of classical con-
ditioning [Hull and Baernstein 1929]. Another relation can be drawn to the
emerging field of ‘new AT’ [Brooks 1991a, Brooks 1991b]. Contrary to the
former the proposal not only focuses on mechanistic models but also on
a specific theoretical framework where grounding and situatedness are key
issues. The contrast with the latter is that ‘new Al seems to draw its main
inspiration from engineering and intuitions about cognition. Although the
intuitions relating to situatedness and embodiment seem reasonable they
have to be placed on a more explicit base. Also, in fact, the paradigmatic
examples of the ‘new A’ movement suffer from the same sort of ontolog-
ical problems as subsymbolic connectionism (see [Verschure et al. 1992]
and [Verschure 1992] for a further analysis). In its realization the proposed
framework shows a strong similarity to the work of [Edelman 1987], [Edel-
man 1989] and [Edelman 1992]. The main contrast is that Edelman places a
strong emphasis on the biological components of this research programme,
while the present proposal is defined against a more conceptual analysis of
alternative approaches (see [Verschure and Pfeifer 1993] for a further anal-
ysis). Moreover, Edelman contrasts his proposal with an empiricistic one,
where one assumes that an adaptive system is instructed by the world. The
present proposal is derived from an analysis of the rationalistic perspective
behind cognitivism.

7.13 Distributed adaptive control

In [Verschure and Coolen 1991] a connectionist model of classical condition-
ing was proposed which had been developed in accordance with the research
strategy defined earlier. Classical conditioning is a phenomenon that is very
well suited as a starting point for developing autonomous agents according
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to the demands laid out above. It is one of the basic learning mechanisms
many animals have at their disposal to adapt to their environment by form-
ing associations between sensory states. It is a domain that provides a large
amount of empirical data that allows the definition of sufficient constraints
on models that are supposed to explain it.

The behavioural constraints against which this model was validated were
the Rescorla and Wagner laws of classical conditioning [Rescorla and Wag-
ner 1972]. The neurobiological constraints the model had to satisfy were
no pre-wiring of associations between stimuli and response (as opposed to
paradigmatic examples from the field of reinforcement learning, e.g. [Sutton
and Barto 1981]), which brings us back to the ontological issues discussed
earlier), changes in plasticity are based on local unsupervised mechanisms,
and function arises out of the dynamics of populations of units. We showed
that these sets of constraints could be successfully brought together in a
connectionist structure. To incorporate this model of classical condition-
ing into the conceptual framework described earlier a control structure for
an autonomous robot, distributed adaptive control (DAC), was proposed
[Verschure et al. 1992]. Let us focus here on the principles behind this con-
trol structure and how the model pertains to the conceptual issues under
consideration.

The basic idea behind this control structure is that an adaptively behav-
ing system moves from a stage of coarse adaptation, which is expressed in
simple genetically predefined reflexes, to a stage of fine-tuned adaptation
as a result of its interaction with the environment. This interaction affects
the behaviour of the agent through learning. The reflexes are expressed
in relations between primitive sensors (in this example a collision detector
and a target sensor), which in general are taken to be proximity sensors,
and simple motor programs (in this case avoid and approach actions respec-
tively). Moreover, the structures involved in these reflexive actions form the
criteria for learning in the system. These basic properties can be viewed
as a value scheme [Edelman 1987], which can be seen as defined by the
genetic set-up of the system: the ‘genetic envelope’ [Changeux 1985]. The
value scheme defines the set of unconditioned stimuli and unconditioned
responses, and the basic properties of the sensory and motor systems. In
addition to these properties, the value scheme contains the mechanism that
allows 1t to integrate its distal sensors into these actions. Fine-tuned adap-
tation is expressed in the engaging of the distal sensors (in this case a range
finder) in these reflexive sense—act relations. This latter stage of behaviour
is under the control of the distal sensor and the history of the system. This
is expressed in the way the distal sensors are connected to the motor pro-
grams and the way the motor programs have changed over time (this last
property will not be dealt with in the present illustration). Thus the con-
trol of behaviour over time shifts from the environment, through proximal
sensing, to the organism, through distal sensing.
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This approach immediately provides an alternative perspective on one
of the fundamental controversies in psychology: whether perception is di-
rect or indirect. Both stances to this problem seem to capture a part of
behavioural reality, since they both can be justified on the basis of ex-
perimental data. When we, however, include the dynamics of epigenesis,
as for instance expressed in DAC, it becomes clear that these viewpoints
are two extreme positions on the developmental scale. This would also fit
with well-known neurophysiological data. For instance, [Hubel and Wiesel
1962, Hubel and Wiesel 1968] showed that the ability to acquire certain
perceptual categories depends on the presence of the right stimuli in the
right critical period. Later on in epigenesis these perceptual categories in-
creasingly control the interaction with the world. This would suggest that
epigenesis moves from a stage of direct perception, in which the sensa-
tional invariants of the system—environment interaction get expressed in
the perceptual mechanisms of the system, to a stage of indirect perception,
in which internalized environment-related categories structure perception.
Hence, the ‘knowledge’-driven aspects of behaviour are understandable in
terms of an evolving adaptive system. This implies that ‘knowledge’ under-
lying the behaviour of an organism cannot be analysed disconnected from
its history.

In Figure 7.3 the phenotype of an agent used in the initial set of ex-
periments with DAC is depicted. This agent has to deal with a (target)
approach — (obstacle) avoidance task.

The left and right front sides of the system function as collision sensors.
They will become active when the system touches an object at these lo-
cations. Colliding constitutes an unconditioned stimulus which is mapped
onto a group of units. Activation in this group will lead to a motor output
consisting of a retract-and-turn motion (9°) in the opposite direction to
the collision. Because of its relation to an avoidance response, this group is
referred to as ‘the negative unconditioned stimulus’ group (US-).

The target detector of the system, which could be interpreted as con-
sisting of two ‘ears’; is sensitive to the difference in intensity detected by
these two sensors. The unconditioned response will be to turn into the di-
rection where the highest intensity is sensed. The group representing this
unconditioned stimulus will be referred to as the ‘positive unconditioned
stimulus’ group (US+) since it relates to approach actions. When approach
or avoidance are not activated, the default behaviour of advancing (which
can be seen as a simple form of exploration) will be executed.

The distal sensor, which senses the conditioned stimulus (CS), is a range
finder which gives an inverse distance measure. This sensor covers a region
in between -90 and 90 degrees from the front of the system and consists of
37 elements which each have their own receptive field. These receptive fields
do not overlap. The angular resolution of these receptive fields decreases
as the element is placed closer to the centre of the agent. Every element of
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Figure 7.3 The agent with its sensors. 1 and 2: left and right collision sensors;
8: region covered by the range finder; 4: the receptive field of the target sensor; 5:
location of target sensors

the range finder projects onto one element in the CS group. The activation
of every unit of the CS group is proportional to the inverse distance in the
receptive field of the range finder element that projects to it. This group
of units can be seen as responding to time to contact [Lee 1976].

The group that codes the motor programs of the system, the uncon-
ditioned responses, consists of a number of so-called command neurons
which code the motor responses [Kupferman and Weiss 1978]. This group
will be referred to as the ‘unconditioned response’ group (UR). Whenever
one of these command neurons is activated, a specific motor response is
automatically executed. The connections between the US groups and the
UR group are pre-wired and not modifiable.

The global layout of the control structure is depicted in Figure 7.4.

In addition to the already described groups that make up the anatomy
of the control structure, a specific relation is defined between the approach
and avoidance groups. Since it is more important for the system to avoid
nearby obstacles than to approach targets (this is analogous to the conflict
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Figure 7.4 The control structure and its relation to the environment. See text for
explanation.

theory by [Miller 1959]), activation in US— will inhibit the output of US+. In
this case, activity in US+ cannot trigger approach actions. This inhibition
only slowly decays, which means that US+ will be inhibited for a relatively
long period of time.

In [Verschure et al. 1992] it is shown that this system can successfully
learn to avoid obstacles and find targets. This means that the expected
transfer of a reflexive avoidance or approach response, which is triggered by
one of the proximity sensors, to a learned one, which 1s triggered by the dis-
tal sensor, has taken place (Chapter 5 by Pfeifer and Verschure gives a short
overview of further explorations with distributed adaptive control, such as
its robustness in parameter space, tests with different phenotypes, its ‘psy-
chophysics” and its performance with different sensors). In this chapter I
will limit myself to its relevance to the conceptual issues. Before expanding
on these examples I would like to emphasize some of the aspects of the
present proposal and its realization in DAC. It is important to understand
that the experiments described here are replicated in different simulation
environments and hardware platforms, and do not represent a chance effect.
They not only illustrate a robust way to achieve sensori-motor integration,
but especially emphasize that an analysis of the methodological and con-
ceptual issues raised can lead to successful modelling. Although DAC is
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Figure 7.5 Pulling out of an impasse. See text for an explanation.

only a modest first step it clearly shows that the methodology and concep-
tual framework behind it are not defined with reference to a promise that
awaits its realization in the future. This promise is realized. Before elab-
orating on this issue the aspects of the behaviour displayed by the agent
that are pertinent to the present discussion will be discussed.

When the system is trained to avoid obstacles, and is then put in a
difficult situation which it has never encountered before, it finds the solution
shown in Figure 7.5. (For illustrative purposes the main components of this
behaviour are redrawn — see [Verschure et al. 1992] for the original data.)

The agent starts out between an obstacle (the block at the right-hand side
of the figure) and a wall (this location is indicated with ‘Start”). The system
subsequently backs out until 1t can make a complete turn. The symbolic
description of this behaviour would be that a strategy to back out of diffi-
cult situations or for impasse resolution is executed. This is also precisely
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the way in which standard robot architectures deal with these types of
problems: the execution of predefined strategies programmed in by the de-
signer (see [Malcolm et al. 1989] for an overview of traditional and more
recent approaches in robotics). In this case, however, this behaviour has to
be explained at a more primitive level. What looks like a well-organized
behavioural pattern from a macroscopic point of view is in fact a sequence
of local ‘decisions’. The first step of the system is to retract and turn to the
left (indicated by the dotted icons). This brings the system closer to the
wall. The state of the range finder triggers further avoidance responses: re-
tract and turn to the right and so on until the impasse is left behind. These
responses trigger each other through the environment. Hence, behaviour at
moment t is only dependent on the sensory state produced by the situation
in which the system ended up after the motion made at moment ¢ — 1. The
actual relation between this sensory state and the response made is defined
in the connections between the different neural groups (CS, US- and US+)
which express the invariants in the learning history of the agent. This chain
reaction of local decisions or reactions leads to a seemingly well-organized
behavioural pattern which can be interpreted by an observer as being de-
termined by a behavioural strategy. This inferred strategy, however, has to
be seen as an emergent property of the interaction between the phenotype,
its control structure, and the environment.

Another example of this emergent relation between inferable behavioural
strategies and the underlying dynamics of system—environment interaction
is depicted in Figure 7.6. After having learned to avoid obstacles while try-
ing to find a target (indicated by a black dot in the picture), the attractive
force of the target was removed from the environment (the system could
no longer ‘hear’ the target). When in this case the agent started to move
around from its initial position (again indicated by ‘Start’) it found its
target in a minimal number of steps. The most surprising behaviour, how-
ever, was that the system had learned to follow a wall. Again, the standard
approach to making autonomous agents follow walls is just to predefine a
specific behavioural strategy for it [Malcolm et al. 1989, Beer 1990]. Also
in this case, however, the behaviour emerged out of the dynamics of the
interaction between the agent and its environment. (A comparison between
this notion of emergence and that employed in the subsymbolic paradigm
will be made in the next section.) During its initial experiences in this en-
vironment, while the attractive force of the target was present, the agent
always approached the hole in the wall, which hid the target, parallel to
either the lower or upper wall. It had ended up in this position due to the
sequence of avoidance movements (see [Verschure et al. 1992] for a com-
plete description of this task). The environment was set up in such a way
that the system could only detect the target when it was close to the hole
in the wall. This implies that only in these cases was the sensory state
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Figure 7.6 Wall following. See text for an explanation.

of the range finder associated with approach actions.® The representations
that were formed in this way represent sense—act relationships that can be
described as ‘when you move parallel to a wall, turn towards it’. As soon
as the agent found itself parallel to a wall it would turn towards it. This in
turn would trigger the avoidance group since the agent had also learned to
avoid obstacles. What looks like a coherent behavioural strategy is again a
chain of local reactions: a sequence of approach and avoid actions. When
the agent, after following a wall in this way, found itself in a hole in the
wall the avoid group would not be triggered any more. The agent would
pass through the opening and locate the target. This behavioural strategy
was not predefined in the system. Following walls was not a task that was

5 This decision was made in order not to cheat. When the attractive force of the tar-
get would have been equally strong in the whole environment it would in all cases
have pulled the system towards it. This would have rendered any ‘learned’ approach
behaviour not very convincing.
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being modelled here. The control structure in no way supports the process-
ing of sequences. Also, this behaviour can only be understood in terms of
the interaction of the agent with a specific environment over time.

The full explanation of this behaviour would have the following form. At
its starting position the system first avoided the obstacle in front of it and
turned to the right. This brought it near another obstacle, which it avoided
by turning to the left. Now the system had placed itself parallel to a wall.
The following approach motion was triggered by the learned ‘approach par-
allel walls’ representation and a turn to the right is made (indicated with
the dotted icon). This behaviour activated an avoidance response (the sys-
tem turned left again). As indicated, activation in US— (which leads to
avoidance movements) will inhibit the possibility of US+ (the approach
responses) to trigger an action. Until this inhibition had decreased suffi-
ciently to allow US+ to influence the actions of the agent, it proceeded
in a straight trajectory. The next approach action could only be triggered
when the inhibition of US4+ dropped away. This made the sequence repeat
itself. Again in this case, behaviour that might be very understandable in
the macroscopic vocabulary of rules, strategies and representations can be
generated by microscopic dynamical mechanisms which do not mimic these
descriptions.

Of course these examples are disarmingly simple but they illustrate one
important point: although behaviour might look very understandable in
symbolic terms the structures generating it might do something completely
different. Now the question must be addressed as to how this approach to-
wards understanding behaviour bears upon the central theme of the present
discussion: the mind—brain dilemma.

7.14 Comparing NETtalk and DAC

One could claim that like NETtalk, which was used as representing the
basic thrust of the subsymbolic approach, the discussed control structure
shows no emergent properties, since in this case the emergent behaviour is
also a direct result of the way in which the designer has defined the system
and 1its environment. I would like to show that this assertion is incorrect
and that there are qualitative differences between the two models.

In NETtalk the ‘environment’ consisted of a set of letters which had to
be mapped into the phonetic features encoded in the model. This ‘environ-
ment’ was not a physical environment accessed by the system through its
sensors and influenced by its effectors, but a prediscretized set of input and
output vectors. This training set, provided by the designers, defines which
input vector should be related to which output vector. By analysing the
predefined mapping of NETtalk it was shown that the ‘emergent’ properties
of the model were contained in this predefinition. The vowel-consonant dis-
tinction was already unambiguously present in the precodings. Therefore,
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the ‘emergent’ vowel-consonant distinction was completely predictable,
given these precodings. The structure was defined according to the de-
signer’s domain ontology and learning proceeded by mirroring the designers
domain ontology expressed in the input and output vectors.

The autonomous agent described had to adjust to the regularities present
in its environment of obstacles and target, guided by its basic reflexes. The
world was accessed through the sensors of the system. Its perception was
influenced by its actions. Moreover, the world was sensed by the system
as a state of its range finder that changed in a continuous way. What the
agent in fact had to accomplish was to form its own categorization of these
sensory states. Analysing this model in the same way as NETtalk, the
predefined components could be characterized as ‘when the system bumps
into an obstacle 1t turns away from it’ and ‘when the system detects a
target 1t will turn towards it’. These reflexes were also precoded in terms
of specific input—output relations, in this case between the US groups and
the UR group. These precodings were not symbolic, but were expressed in
a causal relationship between sensors, mediating structures and actuators.
Such causal relations are in the domain of dynamics. The representations
we can ascribe to the system do not relate to these predefined input—output
mappings, but to the way in which the distal sensor is integrated into action.
This integration process is driven by the dynamic relation between the
phenotype, the predefined values, and the properties of the environment. By
adapting to this system—environment interaction, however, the importance
of the designer-dependent reflexive behaviours diminishes. Ultimately the
reflexive actions will be completely replaced by learned actions. Moreover,
the values around which the agent was constructed are all expressed in
structural terms, which makes them directly testable in a biological domain.

The observed behavioural strategies, which could be called ‘pulling out
of an impasse’ and ‘wall following’, relate to a time span of a large number
of actions. The system itself, however, acts only on the basis of immedi-
ate sensory states: it is reactive. Only when we decompose the emergent
behavioural sequences into their constituting local actions, the individual
movements, can their relation to the properties of the agent and the envi-
ronment be assessed. These properties do not contain the observed macro-
scopic behavioural patterns that the agent exhibits. These emergent prop-
erties have a temporal order that is not encoded in the control structure.
Therefore, the observed emergent properties constitute a level of descrip-
tion that is not related to the properties implemented in the system. They
could not be predicted from them. These sequences of actions, behaviours,
are at the interface between the agent and its environment and they are
ascribed to the agent by the observer.

The symbolic task description which was transferred to NETtalk limits
its performance. NETtalk can never learn to pronounce words that are not
described in the set of phonetic features used. The central aspect here is
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that in these models the relationship between input and output is pre-
defined at the most explicit level possible. One discrete and unique input
state is associated with one unique output state: for example, ‘pronounce
input letter “a” with output features “central 2”7, “low”, and “tensed”’.
These systems can only master a task if it is symbolically mastered by its
designer: if the input and output states and the ‘knowledge’ that connects
input and output is properly predefined. These systems are in no way able
to exceed the predefined domain of ‘knowledge’ through learning. Moreover,
they are not robust: they will break down in any situation that was not
foreseen by their designers (a well-known problem of AI). This shows a
strong parallel to the way in which learning is defined in traditional Al
(see also [Verschure and Pfeifer 1993]). Another parallel with traditional AT
1s that one assumes that these representational primitives can be reliably
transduced from the sensors and to the actuators.

The predefined elements used in DAC (i.e. the value scheme) also limit
the behavioural potential of the system. This limitation, however, has a
completely different nature than the predefined elements used in the dis-
cussed subsymbolic models. In DAC the predefinitions limit the perceptual
and behavioural potential of the system: for example, if an agent only has
a range finder 1t can never deal with colour. The ‘knowledge’ that connects
sensing to acting, however, is not predetermined. The system has to figure
out itself which subset of the sense—act potential is useful to fill in, given its
interaction with the environment: for example, how the range finder is inte-
grated in the action system. This filling in is dependent on the phenotype,
the value system, and the relation to the environment.

The DAC design principles give the system an inherent robustness. This
is also demonstrated by the way in which the presented control structure
solves problems in navigation tasks. In contrast, designers of traditional
(symbolic) robot control architectures spend a lot of time defining all details
of the input—output mapping that must be present in a system to enable
it to deal with simple navigation tasks (see [Verschure et al. 1992] for the
DAC solution to local minima in navigation tasks). This robustness is also
demonstrated by the ease with which this control structure can be used
in different experimental environments using simulations or robots (see
[Mondada and Verschure 1993], its behaviour in parameter space [Almassy
and Verschure 1992], its capacity for generalization [Verschure and Pfeifer
1993], and secondary conditioning [Verschure and Coolen 1991].

7.15 Solving the mind—brain dilemma

It is rather ambitious claiming to be able to solve the mind—brain dilemma
that has been haunting cognitive science from its beginning. Subsymbolic
connectionism presupposed that the gap between mind and brain could be
closed by assuming that a subsymbolic level of description could mediate
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between a symbolic and a nonsymbolic one. The evidence presented, how-
ever, indicates that this strategy did not bring the understanding of cog-
nition much closer to the brain. They seemed to have lost their way in a
symbolic trap.

I propose another approach to the problem of complete reduction. As
has already been indicated by many others (e.g. [Maturana 1970], [Den-
nett 1978] and [Clancey 1989]), there are different stances to describing
complex systems like the brain. While cognitivists prefer to stick to a sym-
bolic description of behavioural regularities, neurobiologists adopt a level of
description that has been called ‘implementational’. Each of these groups
of scientists have their own pragmatic reasons to believe that the level of
description to which they adhere gives them the conceptual tools they need
to study the phenomena in which they are interested. Subsymbolic connec-
tionism seems to be founded on the belief that the regularities captured in
symbolic descriptions of a task domain reflect regularities at the level of
implementation. With the given examples from the experiments within the
DAC paradigm I have tried to show that this assumption might not be gen-
erally valid. Observed behavioural regularities, which can be symbolically
labelled, do not have to relate to identical regularities in the dynamics of
the causal structure generating them. This implies that the reduction pro-
posed by subsymbolic connectionism is one that might not be very feasible.
It seems that the status of these different levels of description has to be
redefined.

An alternative interpretation of the relation between a symbolic and a
neurobiological approach, which might be more compatible with the reality
of the phenomena we are studying in cognitive science, is that this relation
is only present in the eye of the beholder and not in the system that 1s ac-
tually displaying the behaviour under investigation (e.g. [Maturana 1970],
[Braitenberg 1984] and [Clancey 1989]). This means that the mind-brain
dilemma and the problem of complete reduction are artifacts of the different
conceptualizations that we, the observers of behaviour, have developed to
understand cognition and not one that is actually present in the nature of
the systems displaying this behaviour. The analysis presented of the DAC
model illustrates this point. The behavioural regularities observed could
only be explained in terms of the dynamics of the ongoing interaction of
an agent and its environment. This coherence is lost when one decomposes
these behavioural sequences into their basic actions. What, however, con-
stitutes a coherent behavioural sequence is defined by the observer and not
by the acting system itself. In the example discussed the system will just
avoid or approach according to its immediate sensory states. The sensory
states just before or after the executed action are of little relevance to it.

When we place NETtalk into this perspective this would mean that the
symbolic precodings should be placed outside the system, back in the real
world. They define the behavioural regularities that should be produced by



176 Connectionist explanation: taking positions in the mind—brain dilemma

the model, not its internal dynamics. The task itself should be performed
by a system consisting of realistic sensors and effectors with which it then
has to learn to pronounce English text. Only when this system consisting
of artificial eyes, ears, vocal tract and mouth is able to do the job will the
claim of emergence in this model be substantiated. Of course, the pronun-
ciation features that are predefined in NETtalk are one of the first things
that the system should learn, next to the ability to categorize its sensors
in such a way that characters and words can be perceived. This, however,
would imply that the subsymbolic dream would be shattered anyway, since
this system would not rely on symbols or subsymbols, but only on the
transformation of states of symbolically unlabelled neurons in its visual
and/or auditive systems to activation in its vocal tract and mouth. Only
later on could the produced regularities be labelled by an observer in sym-
bolic (or subsymbolic) terms and tested against the relevant behavioural
data (like the observation of linguists that vowels are pronounced with a
different set of speech actions than consonants). One could argue that since
we know that with a limited set of phonetic features we can describe the
regularities in speech production we might as well use it in our explanation
of this phenomenon. We should take into account, however, that speech is
a dynamic process. The categories we use to describe its regularities can
vary over time (e.g. [Eimas et al. 1987]). If we rely on systems with a preset
number of pronunciation features with static properties we will never be
able to address the properties of speech as it occurs in vivo where genetic
predefined processes are further adapted to the richness of the linguistic
environment in which we find ourselves.

It is in the relation between observed behavioural regularities and the
internal dynamics of control structures that emergence becomes a relevant
issue. The concept of emergence is a difficult one. I will not try to come
up with a complete definition here but will limit myself to the sugges-
tion that any definition of emergence in the context of models that are
developed to study cognition should include time as a basic dimension.
Behavioural regularities that can be symbolically labelled are expressed in
a temporal domain. For instance, the pronunciation features precoded in
NETtalk are induced from sounds that can only become spoken words in a
temporal domain. The DAC example illustrated that observed behavioural
regularities, however, can consist of many local actions. Only through the
system—environment interaction do these disconnected local actions become
organized patterns of behaviour that look meaningful and coherent to an
observer. These coherent behavioural patterns do not have to be mirrored
in the dynamics of the control structure. The internal dynamics and the
emergent behavioural regularities function at different time scales. There-
fore, it becomes crucial to study behaviour not only in an embodied manner
but also in a temporal perspective. Otherwise, the connection to the level



Solving the mind-brain dilemma 177

of behaviour, which can sometimes be symbolically labelled, will be impos-
sible to make.

Another example of the different time domains in which observed or-
dered behaviour and local dynamics take place is provided by our work on
classical conditioning [Verschure and Coolen 1991]. As mentioned earlier,
this model took the Rescorla and Wagner laws of classical conditioning,
which describe the development of associations between conditioned stim-
uli and conditioned responses over time, as its behavioural constraints.
One of these constraints, blocking, i1s interpreted by Rescorla and Wagner
as ‘systems only learn when events violate their expectations’. This phe-
nomenon can only be observed over a relatively long period of time. In our
model we showed that this behaviour can be explained by local properties
of a learning rule which functions in a much shorter time frame where po-
tentiation and depression were tied to the competition between the plastic
connections. It is not necessary to explain blocking in intentional terms,
like ‘expectation’ or other abstract psychological constructs. Small-scale
non-symbolic local dynamics suffices.

It seems that the only way to make some progress is not to try to force
a decision between a symbolic approach and a non-symbolic one (as, for
instance, critics of connectionism such as [Fodor and Pylyshyn 1988] pro-
pose), but to try to assess how each of these levels of description can con-
tribute to our understanding of cognition and to develop models which
bring both levels of description together. Such an integration does not
require that one framework be reduced to the other, but acknowledges
that symbolic accounts may provide valuable and necessary top-down con-
straints on the dynamical (connectionist) systems that can be constructed.
The brain provides the bottom-up constraints necessary to validate the pro-
posed control structure, and in this way provides insight into the primitives
of the internal dynamics that generate the behavioural regularities we ob-
serve. Moreover, by concentrating on properties of the brain (e.g. on lo-
cal dynamics to perform the work and on the importance of distributed
processing) we can be protected from postulating too much ungrounded
knowledge in our models. The control structures, expressed in connection-
ist terms, which incorporate these constraints will allow us to explore the
principles of the most sophisticated system we know that generates be-
haviour in its interaction with the real world: the brain. This strategy es-
tablishes an ongoing interaction between the levels of description involved.
In [Verschure and Pfeifer 1993] there is presented a concrete analysis that
follows this strategy, relating Edelman’s extended theory of neuronal group
selection to Newell’s exemplar unified theory of cognition, SOAR.

Solving the mind-brain dilemma requires an approach devoid of dogmas
and bandwagons in order to avoid a further fragmentation of the field.
What is needed is a global perspective which encompasses the multitude of
disciplines and descriptive levels of relevance, from genetics and molecular
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biology, with its emphasis on morphogenesis, to anthropology and linguis-
tics, relating to the cultural and linguistic environment in which we are
thrown. Although the main ambition of cognitive science has been to sup-
port and develop such an interaction it has not been realized. One of the
reasons for this situation has been that the models and theories that have
been developed were enslaved by the ontology of their designers, like the
examples analysed which stem from the subsymbolic school of connection-
ism. A move from the Platonic world of rules and representations to the
real world of the dynamics of system—environment interaction seems ap-
propriate.

7.16 Discussion

Subsymbolic connectionism has presented itself as a new theory of the mind
that will enlighten our view of age-old questions like the mind-body prob-
lem. By analysing paradigmatic examples of this approach it was demon-
strated that the explanational scheme it proposes is too problematic to
be acceptable. In the case of subsymbolic connectionism the issue of levels
seems to lead to a confusion of levels. At the heart of this problem lies the
mind-brain dilemma: the traditional conflict between symbolic and non-
symbolic approaches towards understanding the mind and the brain.

It was shown that the proper relation between symbolic characterizations
of behaviour and the internal dynamics of the control structures that gen-
erate it can only be established when we place both in a temporal domain.
In doing so, symbolic descriptions of observed macroscopic behavioural
regularities can be related to sequences of internal microscopic dynamical
processes. We do not have to assume that these internal processes somehow
mimic the systematicity of the symbolic constructs that we as observers of
behaviour have ascribed to the behaving system.

Subsymbolic connectionists seem to believe that this mimicking does take
place. By analysing NETtalk I tried to show that this implied that they
were in fact applying a connectionist technique in the traditional symbolic
paradigm. In no way did this move settle the mind-brain dilemma. An al-
ternative approach would be to place the observed behavioural regularities
outside the system. In the case of NETtalk this means that articulatory
features are extracted by an observer from overt behaviour, not from inter-
nal mechanisms. These symbolic descriptions of macroscopic behavioural
regularities provide valuable guidelines in the search for the mechanisms
generating this behaviour. Any model that is supposed to explain psy-
chological processes must be validated against the behavioural regularities
captured by symbolic descriptions. We have to acknowledge, however, that
the observed behaviour has to be placed at the interface between a behav-
ing organism and its environment. In any analysis these two components
have to be included. In trying to understand behaviour we cannot assume
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that there exists a mirroring relationship between the observed behavioural
regularities and the structure and dynamics of the mechanisms that under-
lie it. Therefore, in the attempt to explain control structures like the brain
the (neuro)biological constraints are as important as the behavioural ones.
Only by bringing these two sources of constraints together can we find com-
plete characterizations of the internal mechanisms that generate behaviour.

Two standard objections to such a synthetic approach towards cognition
are that it is unclear how it can ever account for complicated psychological
processes like problem solving, concept formation and language, and that
it resembles behaviourism.

The first objection does not constitute a principled problem. We must
be very clear about the status of present theories in this domain. As has al-
ready been indicated, cognitivism has not produced any solid answers here
and is still facing a number of very serious problems. The only solution to
these problems can be found in relating symbolic descriptions to behaving
systems and the control structures that drive them. In this way a connection
to the necessary additional constraints from the domain of (neuro)biology
can be established. The basic problem here is that the symbolic conceptu-
alizations of these phenomena and the way neural mechanisms that seem to
relate to them are described do not seem very compatible. If we agree that
connecting symbolic descriptions of behaviour to neural dynamics makes
sense, then this also implies that we must be prepared to reconceptual-
ize our macroscopic descriptions. For the study of language, this implies
that it has to be placed in a biological setting and not just in the abstract
domain of computations. This step towards biology can provide new in-
sights. As an example we might consider the work by [Edelman 1989] who
demonstrates how, from a biological point of view, there only needs to be
one basic epigenetic mechanism for the acquisition of language which is
semantic in nature. This mechanism is founded in the capacity of the brain
to categorize in an expanding time window. This suggestion relates to the
hypothesis of semantic bootstrapping proposed by [Pinker 1984]. The basic
distinction between syntax and semantics, which has been the foundation
of modern linguistics, can be dropped. Syntax is acquired by interacting in
a linguistic environment: it arises out of semantics.

In [Verschure, 1994] a further generalization of the principles expressed
in DAC towards the domain of representing sequences of sense—act relation-
ships is presented. It is shown how a simulated agent can indeed bootstrap
itself to a qualitatively new level of representation by exploiting the macro-
scopic regularities of its interaction with the world. This system not only
adaptively builds up its ‘body of knowledge’ but also develops sequences,
and makes recombinations of their components. This agent also shows an
improvement in its behaviour as compared with a purely reactive one. Al-
though this model is a first exploration of this domain it does show that
purely bottom-up principles can give rise to higher-order representations.
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This implies that the classical argument against associationist approaches
towards these issues — that it is not feasible how they can give rise to
higher-order cognition — has lost its validity. It 1s not only feasible, it has
been demonstrated.

The second objection is not valid. One of the basic characteristics of the
type of behaviourism which is referred to in this case is that it excluded
internal mechanisms from its agenda. This was a reaction to the psycholog-
ical tradition of phenomenology which completely relied on subjectivistic
interpretations of behaviour. In the approach proposed here the internal
mechanisms that mediate between sensing and acting are considered cru-
cial in understanding cognition. The example from the DAC paradigm il-
lustrates this point. This objection is better directed against proponents of
the cognitivistic tradition (e.g. [Fodor 1984]) who assumed that we need
not investigate actual mechanisms and ‘central’ processes. In contrast to
behaviourism, however, the reason here is not to keep our conceptualiza-
tions as objective and controllable as possible, but to place the processes
that have to account for the computational structure of cognition outside
the field of empirical validation. This effectively means that in the study
of behaviour we can, according to the thesis of modularity, only deal with
peripheral modules like perception and should forget about internal pro-
cesses.

Connectionism has opened up a new and very promising field of research
in cognitive science by re-emphasizing the importance of the brain in study-
ing the mind. If, however, we allow the promise of combining psychology
and biology to deteriorate into the application of connectionist methods
in the traditional cognitivistic paradigm we should not be too surprised
if the whole endeavour slowly dies away. Connectionism can only become
part of a new paradigm for the study of the mind, brain and behaviour
when it appreciates the virtue of dynamics above computation. This means
that instead of breaking cognition down into the knowledge a system must
possess we should try to trace it back to its fundamental adaptational
mechanisms. This move towards dynamics will place symbolic characteri-
zations outside the system, and behaviour back in the temporal domain of
system—environment interaction.

Acknowledgements

This chapter was written while the author was working at the Al lab of
the University of Zurich. He is very much indebted to Dom Massaro, Dean
Allemang and Markus Stolze for their helpful comments and fruitful dis-
cussions. An early version of the analysis put forward in this chapter was
presented in 1990 at a conference as part of the ‘Mind and Brain’ project at
the Zentrum fiir interdisziplinare Forschung (ZiF) in Bielefeld, Germany.



Appendiz A: The description of the model in section 7.7 181
7.17 Appendix A: The description of the model in section 7.7

In this one-layered model (or autoassociator) every element ¢ can take on a
continuous activation value a; which ranges between -1 and 1. All elements
are connected to each other. Every connection between unit ¢ and unit j
has a weight, w;;, which modulates the transmitted signal. Every unit ¢
receives input from two sources. The first, external, source is determined
by the pattern the model has to learn. Every unit ¢ has clamped on it
an external input value, e;, which is determined by element ¢ of the input
pattern. The other source of input is internal and is determined by the
transmitted activations of the other units and the connecting weights in the
model. For every unit ¢ this internal input, int;, is determined by the sum
of the weighted signals of the other j units (in contrast to the McClelland
and Rumelhart implementation in which self-connections are allowed):

N

int; = Za]'wi]' (71)

ji=1
The change of activation of unit i is determined by the total input, net;,
to unit i.

net; = int; + ext; (7.2)

The activation a; of element ¢ at time step ¢t 4+ 1 is determined by the
activation at moment ¢ and net;:

ai(t + 1) = ai(t) + Aai(t) (73)
Aa;(t) = Enet;(1 —a;(¢)) — Da;(t) if net; >0 (7.4)
Aa;(t) = Eneti(—=1—a;(t)) — Da;(t) ifnet; <0 (7.5)

E and D, respectively, define excitation and decay. The strengths of the
associations between the units develop according to

wi]'(t + 1) = wi]'(t) + Awi]'(t) - Cwi]' (76)
where C' denotes the decay of the weights. The change of the weights Aw;j

is dependent on the error s; (between the actual activation of unit ¢ and
the expected activation e;) and the activation of unit j.

Awi]'(t) = 7]0'Z'a]'(t) (77)

where 7 denotes the learning rate parameter and o; is given by:

o; = ext; — int; (7.8)
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