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Chaotic family with smooth Lyapunov dependence

R. Stoop
Institut fir Neuroinformatik, Gloriastrasse 32, CH-8006 rizh, Switzerland
and Institut fu Theoretische Physik, UniversttZurich, CH-8057, Zuich-Irchel, Switzerland

W.-H. Steeb
Department for Applied Mathematics, Rand Afrikaans University, RSA-2000 Johannesburg, South Africa
(Received 13 December 1996

A smooth dependence of the Lyapunov exponent is proved for a nontrivial family of chaotic maps. The
approach that is taken demonstrates the importance of Markov partitions in connection with the thermody-
namic analysis for dynamical systenjS1063-651X97)01306-§

PACS numbdps): 05.45+b, 05.70—-a

Simple one-dimensional maps are often the key for underfrom the coordinates that fix the location of the right corner
standing the behavior of complicated physical syst¢ijs point P of the map. The general map then obtains the de-
This, for example, is the case for the different routes byscription
which systems are driven from simple to chaotic behavior
[2]. In many cases simple maps already provide a good Lx for 0<x<1-a
model for the physical proce$3]. It is widely believed that l-a R
in the parameter region where chaotic behavior is possible, fx)=! b—1 b—1 1
the Lyapunov exponerjl] shows a nonsmooth dependence (0):= X+ for 1—a<x<0.5, @
on the control parameter. As a typical example of such a a-1/2" 2a-1
behavior we mention the logistic map beyond the accumula- symmetric for 0.5(x<1,
tion point of period doubling5]. More recently, similar ex-
amples have been discovered in connection with the diffuwhere 1>a=0.5 andb/a—0.5>1 to ensure ergodicitysee
sional behavio6]. There it has been shown that similar Fig. 1). In an earlier pap€i7] on the behavior of the bunga-
effects for tentlike maps on grids of unit cells lead ratherlow tent map, a one-parameter family was considered by
directly to a fractal Weierstrass-likedependence of the dif- pinning the corner point P on the vertical line
fusion coefficientD on the family parametefwhich, in this  |=(a=0.75y). The dependence of the Lyapunov exponent
case, is the slope of the mapn our contribution we show from the parametey was shown to be characterized by sev-
that the parameter dependence can be of smooth nature if teeal phase transition effects in the form of discontinuities of
family is appropriately chosen. The work explains implicitly the Lyapunov dependence(y). Because the size of the
why the parameter dependence is nonsmooth for differentlyyapunov exponent is one measure of the unpredictability of
chosen families. As a consequence of our approach it alsthe motion, this means that the unpredictability itself varies
emerges that it may not be necessary to simulate chaotic
systems by a large number of numerical orbits, once the
internal (topologica) structure of the map is known. Power-
ful analytical tools allow a thorough investigation of the sys-
tem without simulations.

The example for which we apply our analytical approach
is the bungalow-tent map. This map is of special importance
on its own because of the fact that it is the simplest nontrivial f(x)
linearization of the quadratic parabofaee Fig. 1 Using
appropriate parameters, the nonhyperbolic character of the
parabola can be carried over to this linearized model, in spite
of the linearization. In our contribution, for a specifically
chosen one-parameter family of bungalow-tent maps, the
Lyapunov exponents are analytically calculated. A smooth 0
dependence of the Lyapunov exponent on the control param- A B c
eter is found. The analytical results are compared with nu- 0
merical orbit simulations that yield identical results, from X
which, however, no statement of smoothness can be derived.

The bungalow-tent maps constitute a two-parameter fam- F|G. 1. Graph of the bungalow-tent map. The corner pé&int
ily of fully developed maps that have a four-piece linearly determines the structure of the two-parameter family. Two families
increasing graph, with a symmetry along a vertical lineof bungalow-tent maps are indicated by the direction in which the
throughx=0.5. A two-parameter representation is obtainedcorner point is moved when the control parameter is changed.
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FIG. 2. Markov partition that remains topologically invariant in (b)
our family of bungalow-tent maps. A symbolic description is indi- }\‘(a)
cated.
in a rather erratic way with the control parameter. For appli- 0
cations(e.g., for chaos contrdl8]), a smooth dependence 0.5 a 1

instead may be desirable. In this work we chose a different

family by varying point P along the diagonal. For this

choice, smoothness can be achieved, as we will show below. F'C- 3. Dependence of the Lyapunov exponent on the parameter
Both families are displayed in Fig. 1 for convenience. For® In our family, the dependence of the Lyapunov exponent on the

. . ; L arametera is smooth.(a) Analytic results andb) results from
our choice of the family, the equation of the map is given byp @ n ab)

simulations.

l-a 1-a 1-a

a 0
——x for 0sx<1l-a a a a
1-a
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For all values of the control parametar the corner point a a a
P is a fixed point. This fixed point is unstable since for all

parameters of the family the point is embedded in an un-

stable two-cycle orbi{despite the fact that the map is not Our analytic solution of the Lyapunov exponent dependence
differentiable atP). We can see this by inspection of the uses this transfer matrix by combining it with thermody-
symbolic partition of the phase space of the nisge Fig. 2 namic formalism methods. In the thermodynamic approach,
The partition is Markoviaf9] for all values of the parameter the elements of the transfer matrix are raised to the power of
in our family. This means that under the iteration of the mapthe (inverse “temperature” 8, which yields a generalized
the borders of the partition are mapped onto old bordersransfer matrixT (8). From this matrix, théHelmholt2 free
again, which guarantees that the properties of higher-ordegnergy of the systerk(8) is obtained as the logarithm of
iterations can be extracted from the partition of the first it-the largest eigenvaluel2]. From the characteristic equation
eration in a simple way. In the partition, the different regions

can be described by symbols, that allow a description in

terms of symbolic dynamicgl0]. The transfer matrix then x*-2
describes the transitions among the symbd]sB, C, and

D upon the iteration of the map. In this way, the information,[h |  ei lue is obtained
on the structure of the existing periodic orbits is reflected in € largest eigenvalue Is obtained as
the transfer matrix11]. Of special importance is the fact that _ 25 By B112 28
in our family the topological structure of the transfer matrix ~ #(8)=0.30.25r)*"+2(r)"(2)"]**+ 0.5{[0.25r)

is the same for all values of the control parameteihis is +2(1)P(2)PTY3(r)P+0.5(r)2F+2(r ) (t/s) P12
reflected in the simple form of the transfer matrix that is

valid for the whole family +0.25r)#, )

B B

1—-a

1—-a

_ B
a—0.5 )
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wherer=—1+1/a, s=1—a, t=—0.5+a, andz=t/s. The

free energy then emerges as a2)

F(a,p)=In[u(B)], (6) )

al
from which the Lyapunov exponent is obtained via the for-
mula[13] p(x) p'(x)
JF(a,p)
)\(a)= - T . (7)
p=1 0 X 1
This formula can be derived either directly from a monova-
riate thermodynamic formalisriiL3] or via the generalized
approacH 14]. As general references for the thermodynamic 5
approach to dynamical systems we would like to mention X 1
Refs.[12—-14. For our family we obtain the result
N(a)=—0.25In(r)—{0.250.5r)?In(r) +uln(r) ()

+uln(t/s)]}/[0.25r)?+ u]"?—[0.25][ 0.25r)?
+u]¥rIn(r) +(r)2In(r)+uln(r)+uln(z)
+{0.5[0.5r)2In(r) +uln(r)+uln(z)]}/[0.25r)?
+ul*)){[0.25r)2+u]Yr +0.5r)2+ U (8)

whereu=2rz. The result describes a smooth functionagf
which is also reflected in the plot shown in Fig. 3. A direct
simulation yields the identical dependence. We emphasize
that the Lyapunov exponent could also have been calculated FIG. 4. Natural measure of the ma@ From simulationgin

by using the invariant measure of the map. From our ap¢al)] we show the invariant measure for a specific value of the
proach, the invariant measure can be calculated analyticallgontrol parameter; in (a2 we plot the shifted density
from the eigenvector associated with the leading eigenvaluga(X)' = pa(X) —ac, ¢>0, for the whole family.(b) Results from
p=1 at the temperatur@=1. We illustrate this fact in the the eigenvector associated with the largest eigenvaleel at
plot shown in Fig. 4, where we compare the invariant density3=1-

calculated from direct simulation and from the eigenvector
method. Even more information can be extracted via th
thermodynamic approach. Also the different spectra of scal-
ing indices can directly be evaluated from the free energy. In
the spectrum of length scal&e) for our family we observe

a cutoff of the entropy function at nonzero entropy, on onewherey=—1, so thaty can be interpreted as a critical ex-
side of the entropy functiofa “stopping point”). Whether  ponent[16].

there is a phase transition interpretatjas] of this point still In conclusion, in the present work we were able to present
is unclear. Summarizing, we reemphasize the fact that in ousin explanation for an observed smooth behavior of the
example the partition and therefore the topological propertietyapunov dependence for a nontrivial family of chaotic
of the map are preserved throughout the family. This is thenaps. Implicitly, the argument also gives insight into how
deeper reason for the smooth dependence of the Lyapunmonsmooth families emerge. The usage of the thermody-
exponent on the control parameter. While the topologicahamical formalism for the analytical investigation of chaotic
structure remains, the metric and the probabilistic charactemaps has been outlined, where the obtained nontrivial results
istics of the map undergo changes that, themselves, can lotearly demonstrate the power of this tool.

elated to phase transition phenomena.derl, we detect a
ehavior of the right piecewise constant natural measure as

p(a)~la—1], €)
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