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Long-term monitoring of biomedical signals is essential for the modern clinical management of 
neurological conditions such as epilepsy. However, developing wearable systems that are able to 
monitor, analyze, and detect epileptic seizures with long-lasting operation times using current 
technologies is still an open challenge. Brain-inspired spiking neural networks (SNNs) represent a 
promising signal processing and computing framework as they can be deployed on ultra-low power 
neuromorphic computing systems, for this purpose. Here, we introduce a novel SNN architecture, 
co-designed and validated on a mixed-signal neuromorphic chip, that shows potential for always-
on monitoring of epileptic activity. We demonstrate how the hardware implementation of this SNN 
captures the phenomenon of partial synchronization within neural activity during seizure periods. 
We assess the network using a full-custom asynchronous mixed-signal neuromorphic platform, 
processing analog signals in real-time from an Electroencephalographic (EEG) seizure dataset. The 
neuromorphic chip comprises an analog front-end (AFE) signal conditioning stage and an asynchronous 
delta modulation (ADM) circuit directly integrated on the same die, which can produce the stream 
of spikes as input to the SNN, directly from the analog EEG signals. We show a linear classifier in a 
post processing stage that is sufficient to reliably classify and detect seizures, from the local features 
extracted by the SNN, indicating the feasibility of full on-chip seizure monitoring in the future. This 
research marks a significant advancement toward developing embedded intelligent “wear and forget” 
units for resource-constrained environments. These units could autonomously detect and log relevant 
EEG events of interest in out-of-hospital environments, offering new possibilities for patient care and 
management of neurological disorders.

Epilepsy is one of the most common neurological disorders in the world, affecting nearly 1% of the population 
worldwide in all age groups1,2. An epileptic seizure is commonly understood as a clinical manifestation of 
excessive excitation of neurons in the cortex, which can be characterized by locally synchronous high amplitude 
neural recordings. The research on the detection of epileptic seizures by monitoring the electrical activities 
of the brain, is a long-standing and massively wide-ranging field of scientific interest3. Time series of EEG 
recordings captured in clinical settings have been generally used as the key signals for this purpose with a high 
level of confidence4,5. However, the common approach to seizure monitoring currently utilizes a combination 
of limited in-person clinical observation and a patient-maintained log known as a “seizure diary” outside the 
clinical setting, which inadvertently suffers from over- and under-reporting6,7. Therefore, long-term always-on 
monitoring of biosignals outside the clinical environment is a crucial challenge for enabling the treatment of 
Epilepsy.

Amongst the ongoing revolution in the field of Artificial Intelligence (AI) applied to biomedical applications 
and biomedical electronics8,9, several devices for automated seizure detection have been reported10. These devices 
rely on current advances in biosignal sensing, intelligent Application Specific Integrated Circuits (ASICs), and 
machine learning algorithms8,11–13. While most record multiple biopotentials, such as EEG, electrocardiogram, 
electromyography, electrodermal activity, and accelerometry, the EEG signal remains the most reliable and 
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gold standard. Two pioneering devices in the domain of EEG-based monitoring are the “Seizure Advisory 
System” (SAS) developed by NeuroVista Corporation14 and the “Responsive Neurostimulation System” 
(RNS) of Neuropace Corporation15. More recently, dedicated digital accelerators such as BioGAP16 have also 
been proposed to tackle the problem of wearable biosignal monitoring17,18. Although promising, such digital 
systems, based on general-purpose programmable computer architectures, suffer from the same limitations of 
conventional digital computing approaches in terms of power consumption for long-term beyond-laboratory 
monitoring of temporally slow and sparse signals19.

Conversely, analog neuron and synapse circuits that use the physics of the transistors to emulate the 
biophysics of biological neural circuits20,21 represents a promising approach for implementing ultra low-power 
always-on electronic processing systems aimed at biomedical signal processing22,23. Mixed-signal analog/digital 
neuromorphic computing systems with analog neural and synaptic compute and asynchronous on-demand 
digital routing operate very efficiently in resource-constrained environments, enabling long-term monitoring of 
biosignals and potentially leading to the design of wearable seizure detection units (Fig. 1a,c).

Fig. 1.  Overview of seizure detection process, and of the setup constructed for this work; (a) SOA (state of 
art) approaches for seizure detection and diagnosis; personal monitoring with a seizure diary (right side), 
inpatient seizure detection using Analog-to-Digital Converters (ADC) and digital processing (left side); 
(b) Proposed system; seizure encoding on DYNAP-SE2 with iEEG signals using on-chip AFE and SNN; (c) 
Envisioned system; real-time seizure detection with industry-standard EEG electrodes using an SNN on a 
multi-core neuromorphic processor within a bio-compatible enclosure; (d) DYNAP-SE2 die with SNN cores 
and AFE; (e) Development board for DYNAP-SE2; (f) Block diagram of the boards and DYNAP-SE2: an FPGA 
controller, DYNAP-SE2 board, Digital-to-Analog (DAC) converter mimicking the EEG electrode, interfacing 
with the AFE; the FPGA sends input spikes to the spike cores and configures the AFE and SNN cores; a DAC 
board sends analog EEG signals to AFE; (g) proposed SNN architecture with the Analog Front-End (AFE) 
input, Recurrent Excitatory/Inhibitory (R-E/I) and Fast-Firing Inhibitory neuron (FF-I) neurons of translation 
layer and neurons of Non-Local Non-Global (NLNG) layer for seizure detection. Digital images are sourced 
using resources from Flaticon.com (Málaga, Spain) under Flaticon License with free to use for personal and 
commercial purpose with attribution terms; The PCB is rendered using integrated 3D Viewer of KiCad 8.x 
(kicad.org with GPL.v3 licence); Other graphics are created using Inkscape 1.4.x (inkscape.org with GPL.v2 
licence).
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However, unlike digital AI accelerators, these systems cannot be “programmed” to solve specific tasks using 
traditionally-utilized machine learning algorithms. The primary challenge is to establish methods for designing 
SNNs under the constraints of the hardware, i.e., a fixed number of neurons and synapses, limited precision, 
variability in the network parameters, and sensitivity to noise, that can solve the problem at hand robustly and 
accurately by leveraging the inherent dynamics of analog synapses and neurons. Indeed, the intrinsic variability 
and mismatch of mixed-signal systems, coupled with event pulse-based operations makes programming a noise-
resistant and robust SNN model onto such devices a non-trivial and complex undertaking24.

This paper addresses this challenge and proposes a novel two-layered SNN compatible with mixed-signal 
analog/digital neuromorphic hardware that amplifies and extracts the intrinsic partial synchronization (i.e., 
Chimera) present but not prominent in input signals during seizure periods25. We validate this SNN on a full-
custom neuromorphic hardware pipeline (Fig.  1b) that does not require any digital compute element in the 
loop. Moreover, we demonstrate the proper operation of this SNN hardware implementation on a DYnamic 
Neuromorphic Asynchronous Processor (DYNAP-SE2)26 (Fig. 1d,e) with an estimated power consumption of 
150 µW . The proposed SNN is both biologically inspired and (as a consequence) compatible with neuromorphic 
hardware.

By designing a hardware-aware shallow SNN that couples the sparsely encoded input spike-trains in a specific 
network topology with adjacent but non-global connections (Fig. 1g), the network amplifies correlations and forms 
localized synchronized clusters during seizure (ictal) periods, mirroring partial synchronous states observed in 
the EEG recordings during seizures27,28. As a major advance over previously reported related approaches29,30, 
signal conditioning, spike encoding, and SNN processing are all realized directly in the neuromorphic hardware 
and on the same chip (Fig. 1e). Although classification using the SNN output spikes is performed off-chip with 
a linear classifier, this work represents the first completely integrated proof-of-concept towards the encoding 
of seizures through partial synchronization in real-time using an ultra-low power neuromorphic computing 
substrate, providing a foundation for future always-on seizure monitoring devices.

Results
The proposed SNN encodes the partial synchronization of brain states during seizure (ictal) periods by means 
of firing rate-based filtering and a specific connectivity structure (Fig. 1g). As an alternative to the common 
approach in biosignal monitoring, involving short in-patient sessions and self-maintained records (Fig. 1a), the 
real-time on-chip seizure encoding pipeline of Fig. 1b, uses event-encoded EEG signals as input.

In the subsequent sections, we first describe the AFE circuit that contains low-noise amplifiers, filters, and 
the ADM circuit31 directly integrated into the DYNAP-SE2 chip. This AFE is employed to convert the EEG 
signals from a publicly available iEEG dataset32 into streams of spikes (events). This is followed by details of 
the implemented SNN architecture and an explanation of the operation of the pipeline in encoding seizures. 
Afterward, we utilize a linear classifier in the post-processing step to benchmark the extracted features of the 
SNN and show the classification of seizure periods with high accuracy and specificity.

Asynchronous delta modulation (ADM) of EEG signals
The first stage of the processing pipeline (outlined in Fig. 1f) is comprised of the AFE and ADM blocks embedded 
in the DYNAP-SE2 (Fig. 1b,d), for converting analog EEG signals into streams of digital events. Figure 2 shows 
recorded analog intracranial EEG (iEEG) waveforms from two input channels (Channel 12 and 13 of a single 
seizure of patient 1), selected from the SWEC dataset32. These traces were obtained by converting the digitized 
SWEC dataset waveforms back into analog signals using a DAC setup (Fig. 1f) and amplified by the initial stage 
of the AFE. The amplified signal stream of the AFE is then inputted to the ADM, which produces asynchronous 
streams of pulses marked Up and Down, depending on the polarity of the slope of the analog waveform (See 
“Methods” section for details). The Up and Down events are shown above and below the analog waveforms 
and the event rate is color-coded as per the colorbar (Fig. 2). A close-up of 16 s of the first channel (zoomed 
plot above Fig.  2a) shows the increase of event rates and their burstiness during the seizure (ictal) periods. 
Figure 6b presents the oscilloscope traces of the analog EEG signal. The conversions with the AFE are recorded 
in an “event-based hardware encoded dataset” (see data availability). In total, we encoded and made publicly 
available33 data for ten seizures, two per patient for a total of five patients. The events from the ADM circuit for 
all channels are fed synchronously with a single pulse train per channel (due to the limited fan-in of the neurons) 
into the SNN core of the DYNAP-SE2 (See Methods).

The SNN model for firing-rate filtering and encoding correlation
The second stage of the pipeline outlined in Fig.  1f, is the SNN model implemented on the DYNAP-SE2. 
Figure 3a shows the SNN architecture. It comprises two layers: a “translation” layer and a “non-local non-global” 
(NLNG) encoding layer. The translation layer, adapted from Sava et al.34, consists of Recurrent Excitatory (R-E) 
and Inhibitory (R-I) neurons, combined with a Fast-Firing Inhibitory neuron (FF-I) depicted in Fig. 3a (left). 
The FF-I and the R-E neurons receive events from the ADM-converted event streams for iEEG signal channels 
via a slow-excitatory synapse. Further, the R-E neurons are inhibited by the output spikes from FF-I neurons via 
a slow-inhibitory synapse. The R-E and R-I neurons represent a neuron pair that both excite and inhibit each 
other, constructing an excitatory-inhibitory (E-I) balance pair.

Figure 3b shows the firing rate input-output curve of the translation layer in the DYNAP-SE2 based on input 
Poisson trains of varying firing rates. The synaptic parameters for synapses attached to different neuron types 
(R-E, R-I, and FF-I) have been set heuristically to achieve the frequency transfer curve in Fig. 3b. All other 
parameters including the weights were left constant (see Methods for parametric values). The slow excitatory 
synapses attached to FF-I neurons have a high bias current associated with its synaptic time constant (resulting 
in a slower decay as compared to R-E/I), leading to a firing rate that saturates at around 180 Hz making inhibition 
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to R-E constant for input firing rates >200 Hz (responsible for the lower bound demonstrated in Fig. 3b). The 
slow inhibition of the R-E neurons by R-I neurons results in a near-linear output firing rate for input firing rates 
between 200 and 600 Hz. These neurons inhibit both very high and low-frequency input spikes. Thus, the above 
described three neuron blocks act as a spike-based filter, i.e., the excitation of the R-E neuron is highly sensitive 
to the 200–600 Hz firing rate band while insensitive to inputs from outside this band. Further, the block linearly 
maps the firing rates of the ADM/AFE event streams to increase the dynamics range34 of the input to the next 
layer (Fig. 3b).

The second layer, termed the NLNG encoding layer, is excited by the R-E neurons of the translation layer 
with a specific connectivity structure. The connections consist of slow excitatory synapses with constant synaptic 
weights. The constant weight per synapse is chosen to make sure that the membrane potential of the neurons 
reaches close to the set threshold. We used multiple connections per projection from the source to the destination, 
to change the effective synaptic weight. The connectivity structure is described by a 1 – 2 – 1 – 0 – 1 – 2 – 1 
connectivity between the R-E and NLNG neurons (Fig. 3a) where 2 represents two connections with constant 
weight per projection (see Methods section “Analog neurons with digital routing” for parametric values). Choice 
of such constant weight assignments for synapses stem from inherent hardware constraints including low bit 
resolution in weight assignments, limitation for setting parameters and inherent variability of analog synapse 
circuits (see Methods section “Analog neurons with digital routing”). To give an example, we consider M input 
neurons (encoding the M EEG channels, for the case of a particular patient), producing M outputs from R-E 
neurons as per the frequency response curve shown in Fig. 3b. Here, the R-E neuron from a translation block 
x is connected to the neighboring NLNG neurons (x-3,x-2,x-1 and x+1,x+2,x+3, mirrored) with 1  –  2  –  1 
connectivity depicting one connection, two connections with constant weight (connecting same pre- and post- 
neuron), and one connection per projection, respectively. This connectivity pattern is mirrored on both sides 
while ignoring NLNG neuron x itself. The weighted connectivity matrix is shown in Fig. 3a, bottom and, is 
similar to a regular graph35. Such connectivity patterns are established for each R-E neuron connected to the 
NLNG layer with closed boundary conditions.

This connectivity matrix between these layers is determined by a Evolutionary Neural Architecture Search 
(ENAS)36. Utilising a differential evolutionary algorithm with a cost function defined as the maximum separation 
between output firing rate from non-correlated input and correlated Poisson input, the ENAS approach leads to 
the unique non-local non global structure with the 1 – 2 – 1, mirrored connection. Figure 3c shows an inverse 
relationship in the output firing rate of the NLNG layer from DYNAP-SE2 with the correlation between input 

Fig. 2.  Snippets presenting 320-s long DAC converted analog iEEG signals from two channels and the 
encoded events from the ADM (UP and DOWN) on DYNAP-SE2. The event rate (above and below the DAC-
generated signal) is encoded in color with the seizure period denoted by the grey background; (a) Analog 
waveform of one iEEG channel and ADM events (with inset above showing a close-up of 16 s); (b) Analog 
waveform of another iEEG channel and ADM events.
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spike-trains that approaches linearity. These spike trains are generated from a Poisson process and iteratively 
jittered with jitter noise taken from a normal distribution and input simultaneously across M channels to the 
chip. The NLNG layer exhibits a firing rate near >30 Hz for fully correlated input spike trains, decreasing to 20 Hz 
and 10 Hz for less correlated spike trains, with mean Pearson correlation coefficient of r =0.255 and r = 0.114, 
arising from spike time jitter noise at standard deviations of σ = 0.005 s and σ = 0.015 s respectively (Fig. 3c). 
This experiment shows the functionality of this ENAS proposed layer and its ability to encode correlation 
between input channels by means of firing rate for ideal Poisson inputs.

Encoding seizures with partial synchronization using the hardware aware SNN
The SNN network presented in the previous section forms the core of our pipeline, which is used to encode and 
extract features based on correlated inputs, namely the event-encoded EEG signals. As the dynamics of these 
events are substantially distinct from Poisson-based spike trains (containing bursty spikes as shown in Fig. 2a, 
top), we reduced the bias current for synaptic time-constants (leading to a faster decay as compared to R-E/I) for 
synapses attached to the NLNG neurons compared to the previous section. We further analyzed the output of 
the NLNG neurons by means of synchronization matrices.

Figure 4a shows an example of 42 raw iEEG waveforms of the first seizure of patient 1 from the SWEC dataset 
with annotated seizure (ictal) period. The events of each EEG channel are simultaneously fed to the SNN cores 
of DYNAP-SE2 in real-time (Fig. 4b, row-1). The translation layer rejects the lowest firing rate input spikes and 
reduces high input firing rates (Fig. 4b, rows 2,3,4) while keeping a linear relationship between the input and 
output firing rates in intermediate areas similar to Fig. 3b.

The NLNG layer shows a high firing rate for the R-E neuron inputs that is correlated locally, (see 125  s 
<t< 190 s in Fig. 4b). In the pre-seizure period, the NLNG layer does not spike at firing rates >100 Hz. During 
the seizure (as indicated in Fig. 4b ), the firing rate of a group of neurons in the NLNG layer increases substantially 
to values above 100 Hz and continues to increase until the seizure ends. Such mode of operations across different 
SNN blocks holds across all the patient data analyzed here (See supplementary for similar raster plots of SNN 
blocks for all seizures of all patients). For these tasks, the power consumption of the neurons in the SNN to 
produce the output spike rates at the standard 1.8 V supply voltage was estimated to be 150 µW  (with 2.8  µW  

Fig. 3.  (a) Structure of the on-chip SNN; a translation layer containing 3 types of neurons, Fast-Firing 
Inhibitory (FF-I), Recurrent-Excitatory (R-E), and Recurrent Inhibitory (R-I) neurons. This layer performs 
firing-rate-based filtering, followed by a Non-Local Non-Global (NLNG) layer. Synapse types slow excitatory 
(NMDA like) and slow inhibitory (GABA-B like) are color-coded; Weighted connectivity matrix display 
projections from R-E to NLNG neurons with a spatial 1 – 2 – 1 (mirrored) connections (b) Firing rate input-
output curve for different types of neurons namely FF-I (orange),R-E (green) and R-I (red); color coded 
by type; as a result of Poisson-generated input spikes to the translation layer; (c) In blue, the mean Pearson 
correlation coefficient of M = 42 input channels over the standard deviation of jittering in spike times at input 
firing rates of 50 Hz. In red, the output firing rate of the non-local non-global encoder as a result of the jittered 
input spike trains.
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power per input channel) on average across all patients (See Methods for details about the calculation of the SNN 
power consumption).

In addition, we have employed kernelized spike trains with causal exponentially decaying functions37, 
denoted as fi(t) where i indicates the NLNG neuron index. Using these kernelized time-continuous spike-train 
traces, we determine a measure of synchronization by taking the Manhattan (L1) norm of the inner product 
between neuron pairs i and j, Ni,j = || < fi, fj > ||1 and average them over a fixed time period; see Methods 
for a step by step explanation. In essence, we define synchronization as the similarity of spike-trains between 
neurons and quantify it with the time averaged norm Ni,j .

For the same example, Fig. 4 (in bottom) shows the normalized synchronization matrices for all pairs of 
AFE event streams/channels (Fig. 4c) and all NLNG neuron Ni,j  pairs (Fig. 4d) for a single seizure. Choosing 
four time windows, namely, pre-seizure, first and second half of the seizure and post-seizure, we computed 
the norm Ni,j  for all pairs and averaged them over the above mentioned time-windows. Figure  4d clearly 
shows formation of locally synchronised clusters during the seizure time-window. Comparing Fig. 4c and d, the 
matrices demonstrate the enhancement of the inherent correlation structure present when seizures occur (See 
supplementary for similar matrix plots of AFE and NLNG for all seizures of all patients).

Figure  5 shows the normalized synchronization matrices for the NLNG layer (where the norm Ni,j  is 
averaged over the entire seizure period) for all seizures of all patients analysed here. A distinct cluster formations, 
characteristics of each patients can be observed in the columns of Fig. 5. Additionally, the seizures from the same 
patient displayed similar cluster formations across top and bottom rows of Fig. 5. These observations confirm 
that these emergent synchronization phenomena are replicated by the NLNG layer across all patients during 
the seizure period. The clusters emerging in Fig. 5 for different patients in the seizure period show emergent 
localized synchronization holding true for all patients.

Detecting seizures using SNN encoded features
The SNN on DYNAP-SE2, illustrated in Fig.  3, functions as a feature encoder, transforming ADM-encoded 
data from M independent input channels into a richer representation, where the NLNG layer captures complex 
temporal-spatial dependencies between channels, facilitating seizure detection. As a post-processing step, we 
explored how well the SNN-encoded features could perform with a conventional and widely used machine 

Fig. 4.  (a) 42 channels of input EEG signals from patient 1, seizure 1; (b) Output rasterplots of the DYNAP-
SE2 on-chip implemented network. Top row to bottom: ADM-encoded input of (a), FF-I neurons’ outputs, 
R-I and R-E (E-I balance pairs) neurons’ outputs, and outputs of the NLNG neurons. The firing rate is color-
encoded per 1-s time-segment; Normalized synchronization matrices between channel and neuron pairs of (c) 
AFE input and (d) NLNG output, respectively. From left to right: the pre-ictal, ictal (seizure), and post-ictal 
periods. The synchronization matrices during the ictal period (2nd and 3rd column) are created from the 
first half and second half of the seizure in time, respectively. Note the logarithmic scale in color-bar, used to 
highlight minute correlations in ADM/AFE synchronization matrices, which reduces the dynamic range of 
NLNG synchronization matrices.
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learning classifier. The output spike trains from the NLNG layer and the original input from the AFE/ADM were 
employed as features, demonstrating the SNN’s capacity on DYNAP-SE2 to differentiate seizure(ictal) from non- 
seizure(interictal) activity by using Linear Support Vector Machines (LSVM).

We investigated two distinct spike-driven feature extraction approaches: firing rates and synchronization 
matrices derived from the spikes in the AFE/ADM and NLNG layer. The NLNG and AFE spike trains are binned 
into non-overlapping 1-s windows, channel-by-channel, normalized, and collectively referred to as firing rates 
(FR). As a second feature extraction approach, we investigated synchronization matrices, by transforming 
spike trains into continuous functions through kernelization as described in detail in the “Methods” section. 
Synchronization between pairs of neurons is quantified using the inner product of their continuous spike trains, 
followed by calculating the Manhattan (L1) norm of the inner product to capture the temporal alignment of 
spikes across channels. These matrices are calculated over sliding windows (window size = 1 s, no overlap), 
where each M × M  synchronization matrix is symmetric (See Methods section  “Manhattan norm and 
synchronization matrices” ). To avoid redundancy, only the upper triangular part (excluding the diagonal) is 
extracted, flattened into a 1D feature vector of dimension 1 × M(M − 1)/2, and normalized to ensure that 
they are on a comparable scale before being used as feature vectors for SVM classification. The spike trains and 
features are publicly available (see data availability statement at section 6.4) for reproducibility and further study 
without requiring access to the DYNAP-SE2 hardware.

By adopting a patient-specific training and testing approach, we aimed to mitigate the challenges posed by 
variability in the number of channels and duration of seizure recordings between patients, which complicates 
cross-patient generalization. This decision also reduces the risk of overfitting, as it ensures that the models 
are tailored to the unique characteristics of each patient’s seizure data. Furthermore, for a more balanced and 
robust evaluation, we applied stratified 5-fold cross-validation for each patient, where each fold maintains an 
equal representation of seizure and non-seizure windows. Bayesian optimization was used to fine-tune the 
hyperparameters of SVM classifiers.

Table  1 describes the LSVM results for seizure detection per patient based on the ADM and NLNG 
synchronization measure and Table 2 based on the firing rates. The classification metrics of interest are accuracy, 
sensitivity, specificity, F1-score, and Area Under the Curve (AUC). The variability in patient-specific seizure 
characteristics is reflected in the classification results. Overall, NLNG FR slightly outperforms ADM FR in most 
metrics. NLNG FR is more effective at detecting seizure windows, evidenced by its superior average AUC 80.91% 
compared to 78.58% and also shows higher accuracy (78.35% vs. 77.22%), sensitivity (66.71% vs. 58.56%), and 
F1-score (69.96% vs. 65.13%) on average across patients. However, average specificity is slightly higher for ADM 
FR (89.55% vs. 85.54%), indicating that it performs better at correctly classifying non-seizure windows. The 
results in Table 1 indicate that both ADM and NLNG synchronization features yield comparable performance, 
when using the same sliding window technique (1 s with no overlap) and linear kernel. However, there is a 
noticeable decrease in the average performance across patients compared to the firing rates. Further comparative 
analysis investigating the influence of nonlinear SVM with RBF kernel and other hyperparameters considering 
temporal dependencies (window size, step size) is reported in the Supplementary Material.

Discussion
This work presents a neuromorphic approach towards a real-time seizure monitoring system by employing 
asynchronous delta modulation based encoding and analog neuronal dynamics on-chip. Instead of the 

Fig. 5.  The synchronization matrices for all pairs of neurons in the NLNG layer during the seizure period; 
Note two seizures are analysed for each patient and they correspond to top and bottom row, respectively. 
Synchronization matrices are presented for five patients (as shown in column headings). Note the linear scale 
in color-bar, used to increase the dynamic range of NLNG sync. matrices.
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conventional machine learning training methods for solving bio-signal processing tasks with digital computing 
systems, the approach proposed capitalizes on the rich dynamics arising from sub-threshold analog circuits to 
produce the desired results. We show how this mixed-signal hardware setup preserves all of the information 
present in the original data, by comparing the classification accuracy on the spiking data with a Linear Support 
Vector Machine (LSVM).

Moreover, compared to conventional seizure detection systems10, the prototype embedded system developed 
here, does not operate based on a global system clock but processes signals in a real-time data-driven mode 
with asynchronous encoding, spike routing, and analog neurons26. This setup thus by design, foregoes the need 
for memory buffers (which commonly consume the majority of the power budget on system level) required in 
clock-based traditional approaches. This is a distinct advantage in terms of power consumption and scalability 
for always-on applications as for most of its operational time, in the absence of high energy inputs, the system is 
silent, significantly prolonging the monitoring period19,38.

The observation that the NLNG layer imitates the seizure(ictal) state in real-time by forming partially 
synchronized clusters within itself can be studied to understand the temporal characteristics of seizure patterns. 
Future work could involve investigating the formation of the synchronized clusters through time and mapping 
their relation to the location of the recording channels, helping in tracking the progression of the seizure. We 
also recognise the role of recording electrode types (strip, grid, or depth type; see “SWEC-ETHZ iEEG dataset” 
section) for each case as a contributing factor for the emergent synchronization clusters. However, unavailability 
of such meta-information in the public dataset prohibits us from evaluating our assumptions. Regardless, we 
believe such work can help in the identification of the Seizure Onset Zones (SOZ) (with mapping of such clusters 
to physical recording locations) that are responsible for seizure generation and provide insights into the disorder 
itself. In the context of intracranial EEG and epilepsy surgery, this approach could serve as a valuable tool for 
inferring and localising SOZs in real time in clinical settings and potentially complement existing pre-surgical 
evaluation techniques to guide surgical interventions.

The correlation patterns between neuron pairs in the AFE event streams and the NLNG spike streams 
vary significantly (Fig.  4c,d). This suggests a future investigation avenue to design an event-based output 
layer that have the potential for developing personalised seizure detectors based on the correlation patterns 
of neuron pairs taking advantage of the emergent but varied, locally synchronized clusters. This approach can 
also be expanded for the identification of different temporal zones in a seizure event and might help with the 
personalised classification of seizure types based on partially-synchronized cluster patterns. Classification with 
a LSVM shows that the NLNG neurons are capable of separating ictal and non-ictal periods. However, we note 

Metric Feature ID1 ID2 ID3 ID4 ID5 Avg

Accuracy (%)
ADM FR 80.33 72.64 78.87 90.09 64.34 77.22 ± 11.32

NLNG FR 81.80 77.40 78.15 86.04 68.02 78.35 ± 10.95

Sensitivity (%)
ADM FR 68.90 34.07 65.21 66.00 63.00 58.56 ± 22.99

NLNG FR 76.67 53.18 78.35 60.67 67.49 66.71 ± 21.08

Specificity (%)
ADM FR 94.00 99.69 86.70 99.24 65.88 89.55 ± 8.95

NLNG FR 87.82 94.38 78.02 95.68 68.63 85.54 ± 12.65

F1-Score (%)
ADM FR 77.85 42.79 66.83 74.75 65.19 65.13 ± 21.36

NLNG FR 81.72 58.94 73.32 67.40 68.94 69.96 ± 17.31

AUC (%)
ADM FR 86.41 74.42 81.28 84.46 66.52 78.58 ± 15.39

NLNG FR 86.80 80.82 80.21 86.06 69.97 80.91 ± 14.80

Table 2.  Seizure classification performance using LSVM with ADM/AFE and SNN-Encoded NLNG features 
across patients.

 

Metric Feature ID1 ID2 ID3 ID4 ID5 Avg.

Accuracy (%)
ADM SYN 74.70 53.54 75.54 81.76 59.97 69.10 ± 10.57

NLNG SYN 78.78 69.76 70.05 76.45 60.35 71.07 ± 6.42

Sensitivity (%)
ADM SYN 76.77 30.22 66.69 62.09 58.60 58.87 ± 15.57

NLNG SYN 78.92 58.11 66.80 55.87 58.60 63.56 ± 8.48

Specificity (%)
ADM SYN 72.19 70.71 80.54 89.53 61.68 74.93 ± 9.43

NLNG SYN 78.60 84.17 71.94 88.33 62.49 77.10 ± 9.14

F1-Score (%)
ADM SYN 76.68 32.33 65.06 64.97 60.29 59.86 ± 14.79

NLNG SYN 80.87 63.52 60.07 61.16 60.91 65.3 ± 7.86

AUC (%)
ADM SYN 82.42 45.69 80.80 77.93 61.48 69.65 ± 14.12

NLNG SYN 84.58 65.72 78.47 73.53 62.71 73.80 ± 8.72

Table 1.  Seizure classification performance using LSVM with ADM/AFE and NLNG synchronization features 
across patients.
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that the accuracy of such an offline linear classifier is lower in comparison to standard ML approaches and do 
not significantly change between AFE-encoded event streams and NLNG-encoded spike streams, regardless of 
features used. This observation, coupled with the limited sample size analyzed in this study and the lack of fine-
tuning to patient-specific characteristics, suggests that more tailored approaches or additional features might be 
required to enhance detection performance. Further research is necessary to develop either on-chip event-based 
methods or off-chip algorithms for decoding of the NLNG layer into different classes dealing with either seizure 
types or the characterization of temporal domains.

This work serves as a gateway to a more universal approach to exploiting the dynamics of analog neurons 
and their use in classification tasks. The NLNG layer, coupled with event-encoded input channels through a 
tuned translation layer, showcases the potential of analog computation in encoding the non-linear dynamics of 
a complex system. As is exemplified by the structure of the NLNG weight matrix, we believe network structure, 
emphasizing topology and reciprocity, appears particularly well-suited to the intricacies of mismatched 
neuromorphic devices. Given the inherent variability of on-chip weights and parameters in mixed-signal or 
analog neuromorphic devices39, integrating the lottery ticket hypothesis40,41 with the hardware’s dynamical 
and topological properties could pave the way for additional advancements. We believe this interdisciplinary 
approach could open up new avenues for the widescale adoption of these devices in a diverse number of 
applications that are not limited only to bio-medical domains but expand into any complex systems.

Conclusion
This article presents a first step towards a real-time event-based seizure monitoring system. We introduce an 
event-based EEG seizure dataset created with an on-chip AFE followed by an SNN with special connectivity 
to encode seizures with a mixed-signal neuromorphic device. The SNN on-chip shows a proof-of-concept to 
encode seizures during ictal periods using its inherent dynamical properties.

To our knowledge, this is the first human EEG seizure dataset that has been encoded into events using a 
real-time delta-modulator. The dataset and synchronization encoded spike trains have been made publicly 
available33. The framework of this investigation provides detailed specifications for the design of new front-
ends and SNNs implemented on neuromorphic hardware, that show potential for optimized on-edge seizure 
monitoring. Although incomplete due to the use of an off-chip linear classifier, we believe this framework 
represents a foundation towards designing more general class of always-on embedded and low-power neural 
network computing systems for a wide range of biomedical signal processing tasks.

Methods
The DYNAP-SE2 neuromorphic processor contains analog exponential integrate and fire (Exp I&F) neuronal 
and synaptic circuits with spike-frequency adaptation. The DYNAP-SE2 also hosts the AFE including the level-
crossing Asynchronous Delta Modulator (ADM) circuit on the same die. Here, we describe the equations of 
the Exp I&F neurons and synapses derived from the circuit equations of DYNAP-SE2. This is followed by an 
explanation of the AFE and a description of the neuron cores of DYNAP-SE2. Afterward, we introduce the 
approach to compute the correlation and construct the synchronization matrices, followed by a detailed event-
based dataset description.

Neuron and synapse models
The neurons of the SNN in this work consist of current-mode Exp I&F neuron circuits26. The detailed description 
of the circuit equations in the sub-threshold regime and their deduction leading to this simple form is described 
by Chicca et al.21. Omitting the adaptation term, this equation is shown by

	
τ

(
1 + Ith

Imem

)
d

dt
Imem + Imem = Ith

Iτ
(Iin − Iτ ) + f(Imem)� (1)

where Imem is the subthreshold current depicting the membrane potential of the silicon neuron. Other terms 
including the time constant and the threshold can be defined as follows:

	
τ ≜ CmemUT

κIτ
� (2)

	
Iτ ≜ I0 exp κ

UT
vlk � (3)

	
Ith ≜ I0 exp κ

UT
vthr � (4)

UT  is the thermal voltage, κ is the subthreshold slope factor stemming from the capacitive coupling ratio from 
gate to channel and I0 is the transistor dark current which are constants of the n-type MOSFETs used in the 
circuit42. The non-linear term comes from f(Imem) which has been experimentally shown to be an exponential 
function of Imem

43. Iτ and Ith are bias currents generated from respective supply voltages using on-board bias 
generator circuits44,45.

The synapses of the DYNAP-SE2 are modeled after the DPI circuit46 and can be represented in a simplified 
form as

	
τsyn d

dt
Isyn

out + Isyn
out = Iin

Isyn
w

Isyn
τ

� (5)
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where Isyn
out  is the output current of the synapse, the time constant is τsyn ≜ CsynUT

κI
syn
τ

, where Isyn
τ  is a bias 

current, and Iin ≜ I0 exp κ
UT

vin is the input current to the synapse.

AFE and encoding setup
The dataset chosen in this work consisted of intracranially recorded EEG (iEEG) signals. In the SWEC dataset, 
the iEEG signals are made available after undergoing 16-bit analog-to-digital conversion, and being band-pass 
filtered between 0.5 and 150 Hz, were recorded digitally at a sampling rate of 512 Hz. To mimic a real-world 
scenario, we utilized a DAC stage (acting as an EEG electrode placeholder) to convert the digitally recorded 
waveforms of the dataset into analog signals. This DAC stage consists of an 18-bit DAC (AD5781, Analog 
Devices, Wilmington, MA) and a custom PCB (designed with support from the Microelectronics Design Center 
of ETH Zurich), allowing regeneration of the digital data into corresponding analog waveforms (Fig. 6a). The 
DAC is controlled by a microcontroller (Teensy 4.1 from PJRC, Sherwood, OR) which transmits a digital signal 
stored in an SD card to the DAC via an SPI bus. The input signal is generated with a ∼100 mV peak-to-peak 
voltage and with a ∼30 mV offset for all DAC conversions. The EEG signal amplitude is scaled to such values 
considering the DAC PCB and AFE characteristics. A sample from the oscilloscope is presented in Fig. 6b, where 
the analog signal (trace 4; purple) can be seen. Note, the SWEC data has been converted to analog signals as 
downloaded without any pre-processing, in this study, by the DAC system described above.

The AFE signal conditioning stage consisted of a high-fidelity low-noise signal amplifier and a filter bank as 
depicted in Fig. 6c. We employed a 20 dB default amplification with no filtering. Note that the input signal (from 
the database) is pre-filtered to be within the 0.5 to 150 Hz frequency band at the source. This amplified signal 
is then passed on to the ADM. Although both the AFE and SNN cores are located within the same die, we have 
extracted the output events from the ADM sequentially, i.e., channel by channel, (for limited I/O of the AFE on 
the die as compared to the number of input EEG channels) before sending these simultaneously from off-chip 
to the SNN cores (Figs. 1f and 4b).

Delta modulated EEG events
Asynchronous Delta Modulation47,48 is a delta modulation approach where the sampling interval is adapted based 
on the characteristics of the coded signal. In the current context, it represents a level shifter circuit that outputs 
an event based on the difference in the amplitude of a signal between two sampling points. If two sample points 
(which might not be consecutively placed, representing asynchronous sampling obeying causality) of a signal 
show a change in amplitude that is more than a preset delta-threshold, the encoder records an event. An ‘UP’ or 
‘DOWN’ tag is attached based on the polarity of the change, i.e. if the signal has increased or decreased at the 
level crossing. Further details on the circuit schematics of the AFE and the ADM can be found in Sharifshazileh 
et al.29. Due to the initial stabilization of analog components within the AFE circuit, we obtained 320 s snippets 
of each channel for a given seizure following a discarded 2-min pre-seizure segment.

Analog neurons with digital routing
Figure  7 shows the block diagram of DYNAP-SE2 comprising four neuron cores and the AFE. Each core 
contains 256 Adaptive Exponential Leaky-Integrate-and-Fire (AdEx I&F) neurons, totaling 1024 (Fig.  7a). 
All system parameters, such as time-constants, and gains of the synaptic compartments and threshold, and 
refractory periods of soma are set by an on-chip bias-generator44,45 and are shared within a single core. In other 
words, only four sets of parameters can be assigned within the entire chip. In this work, we have utilised three 
neural cores hosting R-E/I, FF-I and NLNG neurons. These parameters are configured as currents that map to a 
corresponding value of the parameter. This current are programmed through a coarse (Cp ∈ {0..5}) and a fine 
(Fp ∈ {0..255}) value, which follows the relation I = Ic{Cp}(Fp/256) where Ic is estimated to be related 
with the Cp as described by Table 349.

Within this work, all biases for parameters except for synaptic parameters mentioned in Table 4 unchanged 
and at default recommended (C, F) values. Each neuron has 64 synapses (fan-in) that can receive spikes from any 

Fig. 6.  The utilised setup and AFE; (a) Photograph of the boards, an FPGA board, DYNAP-SE2 board with 
DYNAP-SE2 chip on the underside, DAC converter board with a Teensy 4.1 microcontroller for interfacing 
with the AFE (b) Oscilloscope traces depicting the incoming DAC-generated signal (trace 4, in pink) and the 
AFE amplified signal (trace 3, in purple); (c) Internal components of the AFE, a Low-Noise Amplifier (LNA) 
with bandpass filter-bank, followed by the ADM. The PCB is custom (non-commercial) and made in-house 
(See Acknowledgement in section 6); Oscilloscope traces are obtained from DSO6054A Oscilloscope from 
Agilent Technologies (CA, USA).
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neuron throughout the whole chip and can be connected to up to 1024 post-synaptic (fan-out) neurons. In the 
event of an incoming spike, up to four synaptic currents are generated, their magnitudes based on 4-bit weights, 
that are added and fed into one of four synapse types: fast excitatory (AMPA-like), slow excitatory (NMDA-like), 
slow inhibitory (GABA-B like) and fast inhibitory (GABA-A like) (that acts as a shunt) to the soma (Fig. 7b). The 
fast excitatory and inhibitory synapse types are not used in this work.

Table 4 describes the estimated bias currents for synaptic parameters of different neural cores utilised in 
this work’s proposed SNN. Chicca et al.21 describe the circuit relation of the bias parameters with the generated 
synaptic current within a neural core. Such values are chosen heuristically to achieve certain input/output 
behaviour (as discussed in “The SNN model for firing-rate filtering and encoding correlation” section) from a 
given neural core. Throughout the chip, a 20–30% coefficient of variation (CV) is observed with mean being the 
intended bias current value for all set bias parameters as a result of the subthreshold MOSFET design and the 
180 nm manufacturing process. The values mentioned in the parametric table (Table 4) are an estimation and 
more insights into the hardware effects on parametric values can be found in Zendrikov et al.39.

For each measurement, the number of equivalently weighted synapses, referred to as the “weights” in the 
SNN, are set to ensure that the membrane potential reaches a value close to the threshold. In the case of the SNN 
in this work, the number of equivalent connections of the translation layer is set to ten throughout all translation 
layer synapses and one or two in the NLNG layer. Such heterogeneous neuromorphic processing systems with 
mixed-signal analog/digital electronic circuits are extremely noisy and imprecise owing to their sub-threshold 
operation with very small currents. In “Neuron and synapse models” section mentions the expressions relating 
the bias currents to their intended physical values for both synapses and neurons in a neural core of DYNAP-
SE2. Circuit diagrams of the DPI circuits and a description of additional features for DYNAP-SE2 can be found 
in Richter et al.26.

Synaptic parameters for neural core type R - E/I exc./inh. FF-I NLNG

Time-constant
(C, F) (1,20)/(1,30) (2,20) (1,12)

Iτ (nA) 0.628/0.667 4.528 0.597

Gain
(C, F) (2,100)/(2,100) (3,100) (2,100)

Igain (nA) 4.84/4.84 35.39 4.84

Weight
(C, F) (3,128)/((3,128)+(3,128)) (3,128) (3,128)

Igain (nA) 35.5/2×35.5 35.5 35.5

Table 4.  Estimated bias generator currents on DYNAP-SE2 for setting synaptic compartment time constants 
and gains for (excitatory; NMDA like) and inhibitory; GABA-B like) for different utilised neural cores.

 

Cp 0 1 2 3 4 5

Ip (nA) 0.07 0.55 4.45 35 280 2250

Table 3.  Estimated current values corresponding to coarse bias values from Biasgen circuit simulations.

 

Fig. 7.  Analog neuron circuits in the DYNAP-SE2 Neuromorphic Processor; (a) Die photograph of the 
DYNAP-SE2 with (top) close-up shot of one of the neural cores; (bottom) and total four neural cores in a 
die (see Richter et al.26 for details); (b) Neuronal block; Input events are translated to synaptic currents. The 
synaptic currents are routed to one of four synapse types, each combined with Differential Pair Integrators, and 
forwarded to an Adaptive Exponential Leaky Integrate & Fire soma.
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Power consumption for SNN
Power consumption for analog silicon neurons with digital routing in the DYNAP family of neuromorphic 
processors can be estimated to be as follows (See Risi et al.50, and Moradi et al.51 for details):

	 Pspike = fin{Espike + Epulse} + fout{Een + Ebr + (RT ∗ Ert)}� (6)

where,

	

fin,out = Incoming and outgoing firing rate, respectively
Espike = 883 pJ, energy to generate one spike
Epulse = 324 pJ, energy of the pulse extender circuit

Een = 883 pJ, energy to encode one spike and append destination
Ebr = 6840 pJ, energy to broadcast event to same core
Ert = 360 pJ, energy to route event to different core
RT = 1, if the spike is sent to a different core, zero otherwise

This power estimation can be rewritten for the spike trains of different neuronal types (ADM, EE, RI, FF-I, 
NLNG) per iEEG channels, utilized in our hardware-implemented SNN. Note that, owing to the shared 
parameter within a neural core, R-E/I neurons, FF-I neurons, and NLNG neurons are implemented in different 
cores of the DYNAP-SE2 neuromorphic processor, respectively.

For ADM/AFE spikes,

	 PADM = fADM
out {Een + Ebr + Ert} = fADM

out (8083 × 10−12) W

For neurons in the translation layer, for incoming spikes to both R-E and FF-I neurons

	 P 1
T rans = fADM

in {Espike + Epulse} = fADM
in (1207 × 10−12) W

from R-E neurons, outgoing to NLNG neurons (in different core) and R-I neurons (in the same core)

	 P 2
T rans = fRE

out {Een + Ebr + Ert} = fRE
out (8083 × 10−12) W

from FF-I neurons, outgoing to R-E neurons (in different core)

	 P 3
T rans = fF F I

out {Een + Ebr + Ert} = fF F I
out (8083 × 10−12) W

for R-I neurons, incoming spikes from RE neurons and outgoing to R-E neurons (in same core)

	 P 4
T rans = fRE

in {Espike + Epulse} + fRI
out{Een + Ebr} = fRE

in (1207 × 10−12) + fRI
out(7723 × 10−12) W

For neurons in the NLNG layer, for incoming from the R-E neurons and outgoing to the readout

	 PNLNG = fRE
in {Espike + Epulse} + fNLNG

out {Een + Ebr + Ert} = fRE
in (1207 × 10−12) + fNLNG

out (8083 × 10−12) W

For our seizure encoding task, we divide the spike trains of each iEEG channel into four different windows, 
namely pre-seizure, first half (FH), and second half (SH) of the seizure and post-seizure in time, and calculate the 
spiking rate. From the calculated spike rate, the total power consumption and the average power consumption 
per channel are computed at the standard 1.8 V supply voltage for each seizure for each patient as presented in 
Table 5. We observe an average power consumption of 150 µW  and 2.8 µW /per channel for encoding of the 
seizures by the SNN.

Spike train correlations
To quantitatively determine the correlated state of ADM event streams and NLNG neurons across a given time 
window, or in other words the synchronization (as interpreted in the section “Encoding seizures with partial 
synchronization using the hardware aware SNN”), we have calculated the Manhattan distance (L1 norm) of the 
inner product between kernelized spike trains from NLNG neuron pairs and ADM event-stream-pairs.

Kernelizing spike-trains to time-continuous functions
The time-binned binary representation of event timestamps can lead to loss of information depending on the 
choice of time bin widths37. Here, we used a kernelization approach to transform discrete time-stamps of events 
into a time-continuous signal 37,52.

For a neuron in an NLNG layer or a event stream from ADM, the spike train can be denoted as 
xi(t) = [ti

1, ti
2 . . . , ti

k, . . . , ti
N ], with ti

k  being time-stamps of the event-steam i with a total of N event time-
stamps. Such a discrete series can be alternatively be represented as a summation of Dirac Delta functions: 
xi(t) =

∑N

k=1 δ(t − ti
k), where i = [1, 2, . . . , M ] with M being the total number of channels under 

consideration (See Fig. 3). Thereafter, this spike trains can be transformed into a time-continuous signal fi(t) 
though a convolution h, described by:
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fi(t) =

N∑
k=1

h(t − ti
k)δ(t − ti

k).� (7)

Here, i represents the spike train of neuron i  or event-stream from ADM i with i = [1, 2, . . . , M ]. h is the 
kernel, represented by a causal exponential decay

	
h(z) =

{
e−z/τ , if z ≥ 0
0, otherwise � (8)

with τ  being the time constant assigned to the kernel h. Here, τ  is set to 1 ms to include the long and short-term 
effects of spikes. Further details can be found in Park et al.53.

Manhattan norm and synchronization matrices
Next, for a set of M spike train functions, with M representing the number of total spike trains (or channels):

	 f = [f1 f2 . . . fM ] ∈ R1×M ,� (9)

where each fi is associated with the kernelized spike-train of neuron i, defined by Eq. 7. From the set f , we can 
define a cross-correlation matrix C = ffT , ∈ RM×M  (here the inner product represents a zero lag correlation 
of the vectors), where each element is given by

	
Cij = ⟨fi, fj⟩ =

∫
fi(t)fj(t) dt � (10)

	
=

∫ ∑
k,l

h(t − ti
k)h(t − tj

l )δ(t − ti
k)δ(t − tj

l ) dt. � (11)

Thus, the resulting matrix C  (in which ⟨fi, fj⟩ ≥ 0 across all i and j and ⟨fi, fj⟩ = ⟨fj , fi⟩, making it a 
symmetric matrix) is given by

	

C =




⟨f1, f1⟩ ⟨f1, f2⟩ . . . ⟨f1, fM ⟩
⟨f2, f1⟩ ⟨f2, f2⟩ . . . ⟨f2, fM ⟩

...
...

. . .
...

⟨fM , f1⟩ ⟨fM , f2⟩ . . . ⟨fM , fM ⟩


 ∈ RM×M .� (12)

Now, for a given time window T, we can define C as N ∈ RM×M , such that its elements are given by

	
Nij = ||⟨fi, fj⟩||1 = 1

T

∑
t

∑
k,l

h(t − ti
k)h(t − tj

l )δ(t − ti
k)δ(t − tj

l )� (13)

We further set Ni,i = 0 throughout the analysis. This Manhattan distance (L1  norm) of the inner product, 
averaged over time T, serves as a measure of synchronization (see the “Encoding seizures with partial 
synchronization using the hardware aware SNN” section). The considered time window T is chosen to be half of 
the seizure window-length in Fig. 4, the full seizure window-length in Fig. 5, and a non-overlapping rolling time 
window of 1 s in the section “Detecting seizures using SNN encoded features”.

Patient Channels Power/seizures Pre- (µW) Seiz-FH(µW) Seiz-SH (µW) Post- (µW) Total (µW) Avg. (per ch.) (µW)

Pat 1 42
Seiz-1 14.55 35.95 66.39 11.60 128.50 3.06

Seiz-2 3.81 62.69 30.80 - 97.29 2.32

Pat 2 56
Seiz-1 1.77 25.50 32.28 7.02 66.56 1.19

Seiz-2 2.78 44.50 35.99 3.17 86.45 1.54

Pat 3 47
Seiz-1 65.67 68.34 53.96 58.58 246.55 5.24

Seiz-2 49.89 64.99 43.40 47.02 205.30 4.37

Pat 4 59
Seiz-1 5.68 52.73 31.37 1.25 91.03 1.54

Seiz-2 1.95 24.48 37.98 12.74 77.14 1.31

Pat 5 62
Seiz-1 108.25 64.65 65.83 58.33 297.06 4.8

Seiz-2 54.69 52.99 42.47 53.54 203.69 3.28

Average 149.96 2.8

Table 5.  Power consumption for the SNN across patients.
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Support vector machines (SVM)
For the seizure detection task as a post-processing step, we used standard Support Vector Machines (SVM), with 
linear and Radial Basis Function (RBF) kernels to classify seizure and non-seizure events on a per-patient basis. 
The linear SVM (LSVM) attempts to find the optimal hyperplane that best separates the two classes (seizure 
vs. non-seizure, labeled as 1 and 0 respectively) in the feature space. Specifically, given a set of data points 
(xi, yi), where xi ∈ Rk  represents the k features (ADM or NLNG firing rates) of the i-th window, and yi ∈ 0, 1 
represents whether the window is a non-seizure or seizure event, the SVM algorithm searches for a separating 
hyperplane of the form w · xi + b = 0. This hyperplane maximizes the margin between the two classes, where 
the margin is the distance between parallel hyperplanes w · xi + b ≥ 1 for seizure windows and w · xi + b ≤ 0 
for non-seizure windows. For linear SVM, the regularization parameter C is included and controls the trade-off 
between maximizing the margin and allowing classification errors. A large value of C penalizes misclassifications 
more strictly, resulting in a smaller margin but fewer errors. In contrast, a smaller C allows for a larger margin 
with more flexibility. For the RBF kernel, an additional hyperparameter γ is included that defines the influence 
of each data point on the decision boundary. For the hyperparameter optimization and binary classification 
procedure we utilized Python’s scikit-learn and scikit-optimize (skopt) libraries.

Performance metrics
To evaluate the performance of the seizure detection models, we utilized the following standard classification 
metrics:

	
Sensitivity = T P

T P + F N
� (14)

where true positives (TP) are seizure windows correctly classified as seizures, and false negatives (FN) are seizure 
windows incorrectly classified as non-seizures.

	
Specificity = T N

T N + F P
� (15)

where true negatives (TN) are non-seizure windows correctly classified as non-seizures, and false positives (FP) 
are non-seizure windows incorrectly classified as seizures.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (16)

representing the overall proportion of correctly classified windows, both seizure and non-seizure.

	
F1-Score = 2 × Precision × Recall

Precision + Recall
� (17)

where Precision and Recall are defined as:

	
Precision = T P

T P + F P
Recall = T P

T P + F N
� (18)

The F1-Score provides a balance between precision and recall, particularly useful for imbalanced datasets.

	
AUC =

∫ 1

0
TPR(FPR), dFPR� (19)

summarizing the trade-off between sensitivity (True Positive Rate) and 1-specificity (False Positive Rate) across 
different decision thresholds.

SWEC-ETHZ iEEG dataset
The intracranial EEG data used in this study (Table  6) were downloaded from a public epilepsy dataset32, 
assembled at the Sleep-Wake-Epilepsy-Center (SWEC) of the University Department of Neurology at the 
Inselspital Bern and the Integrated Systems Laboratory of the ETH Zurich, available from ​h​t​t​p​:​/​/​i​e​e​g​-​s​w​e​z​.​e​t​h​z​.​c​

Patient Age (y) SWEC label No. of electrodes Seizure durations Sez-1/Sez-2 (s) Epilepsy type

1 19 ID2 42 96/260 TLE

2 27 ID9 56 104/118 TLE

3 24 ID1 47 125/70 TLE

4 31 ID16 59 81/67 TLE

5 32 ID4 62 160/127 PLE

Table 6.  Patient characteristics. TLE Temporal Lobe Epilepsy, PLE Parietal Lobe Epilepsy.
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h​/​​​​​. Detailed information about the acquisition methods and patient metadata is contained in Refs.54,55. The iEEG 
dataset is recorded during pre-surgical evaluation for epilepsy brain surgery. The intracranial EEG was recorded 
with strip, grid, and depth electrodes. The data was pre-filtered to the 0.5 to 150 Hz frequency band, sampled at 
512 Hz, and further preprocessed to remove artifact-corrupted channels. Annotated seizure onsets and offsets 
were obtained from visual inspection of an EEG board-certified, experienced epileptologist. Readers are referred 
to the http://ieeg-swez.ethz.ch/ and associated publications for details about the pre-processing stages of the 
recorded EEG data. Each patient has recordings of multiple seizure events consisting of 3 min of pre-seizure 
segments (system state immediately before the seizure onset), the seizure segment (seizure event ranging from 
10 to 1002 s), and 3 min of post-seizure segment (i.e., system state after seizure event). All the information about 
the dataset was taken from the dataset website32 and the associated publications54,55.

Due to hardware-related constraints described previously in the AFE section, we have chosen a subset of the 
short-term dataset containing five patients, 2 seizures per patient. Furthermore, considering a constraint on the 
number of simultaneous input spike trains to the SNN on the event-based processors26, we have selected patient 
data with less than 64 electrodes.

Data availability
The dataset analyzed during the current study is a publicly available dataset at http://ieeg-swez.ethz.ch/32. The 
event-based dataset, containing output spike-trains from the AFE and the NLNG layer along with the DAC-gen-
erated values of the analog EEG signals are published in https://doi.org/10.5281/zenodo.1080079333.

Code availability
Data processing and analysis were conducted in Python 3.x and the code has been made available at Ref.33 and 
published in https://doi.org/10.5281/zenodo.10800793.
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