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Abstract—This paper presents a sparse Change-Based Con-
volutional Long Short-Term Memory (CB-ConvLSTM) model
for event-based eye tracking, key for next-generation wearable
healthcare technology such as AR/VR headsets. We leverage
the benefits of retina-inspired event cameras, namely their low-
latency response and sparse output event stream, over tradi-
tional frame-based cameras. Our CB-ConvLSTM architecture
efficiently extracts spatio-temporal features for pupil track-
ing from the event stream, outperforming conventional CNN
structures. Utilizing a delta-encoded recurrent path enhancing
activation sparsity, CB-ConvLSTM reduces arithmetic opera-
tions by approximately 4.7× without losing accuracy when
tested on a v2e-generated event dataset of labeled pupils.
This increase in efficiency makes it ideal for real-time eye
tracking in resource-constrained devices. The project code and
dataset are openly available at https://github.com/qinche106/
cb-convlstm-eyetracking.

Index Terms—Pupil tracking, event cameras, sparsity, ConvL-
STM, healthcare, AR/VR.

I. INTRODUCTION

THE process of eye movements often reveals our mental
processes and comprehension of the visual realm. Imple-

menting eye tracking technology offers many possibilities in
augmented reality/virtual reality (AR/VR) domains, enabling
techniques like foveated rendering to offer a more compelling
and efficient visual experience [1], [2]. Eye tracking has
potential benefits in wearable healthcare applications. For
instance, it can aid in identifying eye movement disorders as-
sociated with diseases like Parkinson’s or Alzheimer’s, thereby
enabling early diagnosis and regular assessments [3], [4].

Considering the energy and computational constraints of
mobile headsets and the high sampling rate needed for ap-
plications like predictive foveated rendering for enhanced VR
experiences, the eye tracking system should be lightweight
to facilitate low-power and low-latency operation [5]. Eye
tracking systems relying on high-speed and high-resolution
cameras are costly and power-intensive. Notably, most of
the image is redundant in near-eye eye tracking as the only
significant movement typically originates from the eye region,
with the rest remaining static.

Dynamic Vision Sensors (DVS) or event-based cameras,
which capture brightness changes as sparse events, emerge as
a viable solution for near-eye tracking (Fig. 1). The sparsity in
the DVS events originating from eye movements or pupil size
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Fig. 1. Comparison between frames and events for the same 53 ms eye
movement motion. A) Example video from the LPW dataset [6]. Frames are
sampled at a fixed frame rate (95 kHz); B) Using the v2e simulator [7], the
video frames in A are converted to realistic synthetic DVS event streams. In
this example, 5 frames of size 240×180 produce only 310 events.

changes can significantly reduce computational demands com-
pared to conventional camera-based systems. Furthermore, as
event-based cameras only record changes in brightness levels,
they protect the user’s privacy by avoiding the collection of
detailed iris data.

Eye tracking is a significant field in computer vision [8]–
[10], yet it’s relatively unexplored with event cameras due to
the scarcity of relevant event-based datasets [11], [12]. Two
common approaches guide recent advances in event-based eye
tracking algorithms, mirroring those of traditional computer
vision: (1) The 3D model-based method locates key points
corresponding to the image’s geometrical features and fits
them to a 3D eye model using optimization techniques. Despite
their accuracy, these methods have limitations in resource-
limited platforms like headsets, which often require frequent
user-specific calibrations. (2) The appearance-based method
employs Convolutional Neural Networks (CNNs) to track the
eye within the raw image. However, CNNs tend to isolate
spatial features, treating input data as independent and often
ignoring the potential temporal context in the data sequence.
Our study is aligned with the second approach, emphasizing
pupil center detection, an integral component of eye tracking
techniques.

This paper introduces an Efficient Event-based Eye Tracking
(3ET) solution that integrates a ConvLSTM architecture merg-
ing convolution operators with recurrent units, thereby enhanc-
ing its efficiency in extracting sparse spatio-temporal features
from event streams. We also propose a Change-Based ConvL-
STM (CB-ConvLSTM) network to alleviate the computational
burden. This innovative network introduces high sparsity into
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Fig. 2. Diverse set of images from LPW dataset [6]. The first row shows
different eye appearances. The second row shows some difficult cases, e.g.
eyelid occlusion, glasses occlusion, and heavy makeup.

Fig. 3. A set of continuous event-based frames using voxel grid representation
from event-based LPW dataset using DVS simulator v2e tool.

the process without compromising performance. Experiments
demonstrate that our approach yields more than 30% higher
accuracy than the CNN-based model while achieving a 4.7×
reduction in arithmetic operations without any accuracy loss
compared to the standard ConvLSTM-based model when used
on an event-based pupil dataset.

II. METHODS

A DVS pixel triggers an event in response to a local-
ized change in brightness, yielding a sparse event stream in
certain scenes. This inherent sparsity of input data presents
opportunities for improved processing speed and heightened
computational efficiency within postprocessing algorithms.
The primary aim of our work is to devise a cost-efficient
algorithm for pupil detection and tracking that is friendly
for real-time inference by effectively exploiting the intrinsic
sparsity in event data streams. We first outline the ConvLSTM
architecture that is implemented to process this temporal
data stream. Subsequently, we describe our proposed CB-
ConvLSTM architecture, designed specifically to reduce the
computational overhead of the network.

A. Dataset: Event-based Dataset for Eye Movement Tracking

Owing to the non-availability of a DVS dataset tailored
specifically for eye tracking applications, we resort to v2e [7],
an open-source DVS simulator, to transform an existing RGB
dataset, namely Labeled Pupils in the Wild (LPW) [6], into
a synthetic dataset composed of DVS event streams. The
LPW dataset includes 66 high-quality videos capturing the
eye region, each spanning approximately 20 seconds. Several
representative examples are displayed in Fig. 2. To circumvent
instances where no events are produced over a prolonged

period, we selectively incorporated one-third of the video clips
that show above-average speed in eye movements.

The produced event streams, depicted as a sequence of
events, are stored as .h5 files within the v2e simulator. Each
event, marked by index i in an event stream, is expressed as
ei = (xi, yi, ti, pi), where (xi, yi) signifies the pixel location,
ti is the timestamp, and (pi = ±1) represents the polarity or
the direction of the brightness change. In this study, we employ
the constant time-bin count representation [13], indicated as
V (x, y), where (x, y) is the pixel location.

The events occurring within a time window ∆T are trans-
lated into a H × W frame, with H and W representing the
height and width of the event-based frame, respectively. This
transformation is illustrated in the equation below,

V (x, y) =
∑

pi ∗ I(x, y, ti, xi, yi, T1, T1 + ∆T ) (1)

where the summation includes all events ei in the event stream,
and I(x, y, ti, xi, yi, T1, T1 + ∆T ) is the indicator function
that equals to 1 when x = xi, y = yi and T1 < ti ≤ T1 +
∆T . The function V (x, y) yields the accumulated value of all
events that occur within the time window from T1 to T1+∆T
at each location (x, y).

For the purpose of this research, we establish ∆T at 4.4 ms
to ensure synchronicity with the frame rate of the source RGB
dataset. This synchronization guarantees the precise alignment
of the event frame with the corresponding labels. Within
the simulator, the initial 640×480 frames are converted to
the 240×180 size output of the DAVIS240 [14], and the
resultant DVS output is further resized to 80×60 to reduce
network training time. The final synthetic event-based dataset
comprises 11k event-based frames derived from the 22 videos.
Fig. 3 exhibits a selection of continuous event-based frames
from a video sequence.

B. Pupil tracking using ConvLSTM Network on event-based
LPW dataset

In previous work, deep CNN models [8], [9] were used to
detect the pupil center. The networks performed reasonably
well on the RGB dataset. As can be observed from Fig. 2, the
pupil in the image has a distinct outline in most cases, which
aids pupil detection. However, the model faces challenges
when processing the sparse event-based frames depicted in
Fig. 3. Many event-based frames lack sufficient events to
enable reliable prediction on a per-frame basis. We suggest
integrating recurrent structures like LSTM units into the neural
network to tackle this issue. Such structures are better suited
for interpreting temporal information across the sequence of
eye movements in a video, thus improving the prediction
accuracy on sparse, event-based frames.

However, the conventional LSTM is computationally expen-
sive because of the all-to-all connections in the architecture. It
does not inherently preserve or encode any spatial information.
To solve this problem, the ConvLSTM [15] was proposed to
additionally capture the spatial dependencies in the data. In
this work, the ConvLSTM is used to capture spatial-temporal
dependency in the sparse event-based frame stream.
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Fig. 4. The pupil tracking network using Change-Based ConvLSTM (CB-ConvLSTM) units on event-based LPW dataset

A ConvLSTM unit is composed of an input gate i, a forget
gate f , a cell gate g, an output gate o, and a memory cell
state c. Gates i, f , and g control the update of the cell c
state. Gate o determines the proportion of cell memory that is
transferred to the hidden state output h. The update equations
of a ConvLSTM layer are given as:

it = σ (Wxi ∗Xt +Whi ∗Ht−1 + bi)

ft = σ (Wxf ∗Xt +Whf ∗Ht−1 + bf )

gt = tanh (Wxg ∗Xt +Whg ∗Ht−1 + bg)

ot = σ (Wxo ∗Xt +Who ∗Ht−1 + bo)

Ct = ft ⊙Ct−1 + it ⊙ gt

Ht = ot ⊙ tanh (Ct)

(2)

where ∗ and ⊙ signify the convolution and Hadamard func-
tions, respectively. Xt is the input video frame tensor, Ht

is the hidden state tensor, Ct is the memory cell tensor, W
denotes weight matrices, and b denotes bias terms.

The model used for the pupil tracking dataset consists of
four ConvLSTM layers and two FC layers, with a total of
∼0.42 million parameters. The ConvLSTM layers comprise 8,
16, 32, and 64 hidden nodes, respectively, using a kernel size
of 3×3. The outputs of each ConvLSTM layer go through a
batch normalization function and a ReLU activation, followed
by a max pooling layer for downsampling. The first FC layer
has 128 hidden neurons, and the second FC layer generates
two outputs corresponding to the pupil center’s x and y
coordinates. Note that the operations in the FC layers will
be executed T times, where T signifies the length of the input
sequence in the time dimension.

C. Change-Based ConvLSTM (CB-ConvLSTM) Network for
Inducing Activation Sparsity

The inherent sparsity of the input event streams offers a
significant opportunity to curtail computational costs related
to network processing, as was studied in previous works [16],
[17]. An in-depth evaluation of each network stage underscores
the fact that within a ConvLSTM block, convolutions are the
most computation-demanding modules.

Within every ConvLSTM block, the input consists of two
elements: the input tensor Xt and the hidden state Ht−1. The
first component, Xt, is naturally sparse, attributed to its origin
from event-based frames in the context of the first ConvLSTM
layer and due to the application of the ReLU activation in

subsequent ConvLSTM layers. In contrast, the second input
part, Ht−1, is predominantly dense.

In light of this, we introduce Change-Based ConvLSTM
(CB-ConvLSTM), aimed at inducing sparsity into hidden
states. Instead of employing Ht−1, we utilize the change
between Ht−1 and Ht−2 as the recurrent input feature.
Additionally, we set a threshold θ for this change to foster
increased sparsity. The formulation of the thresholded change
∆Ht−1 is presented below:

∆Ht−1 =

{
(Ht−1 −Ht−2), (Ht−1 −Ht−2) ≥ θ,

0, (Ht−1 −Ht−2) < θ.
(3)

The equations of a CB-ConvLSTM unit are shown below:

it = σ (Wxi ∗Xt +Whi ∗∆Ht−1 + bi)

ft = σ (Wxf ∗Xt +Whf ∗∆Ht−1 + bf )

gt = tanh (Wxg ∗Xt +Whg ∗∆Ht−1 + bg)

ot = σ (Wxo ∗Xt +Who ∗∆Ht−1 + bo)

Ct = ft ⊙Ct−1 + it ⊙ gt

Ht = ot ⊙ tanh (Ct)

(4)

This modification induces a high level of temporal spar-
sity in convolutions considering that ∆Ht−1 comprises zero
values. This approach sets itself apart from preceding change-
based networks [18], [19] by exclusively employing a delta
encoder for the hidden path, thereby circumventing the ne-
cessity to accumulate previous matrix-vector multiplication
results. As a result, both computational and memory overhead
associated with inducing and leveraging temporal sparsity is
significantly reduced. Leveraging the CB-ConvLSTM unit as
a base, we construct a network for pupil tracking, maintaining
the same topology with the network described in Section II-B
as illustrated in Fig. 4.

III. EXPERIMENTAL SETUP & RESULTS

The accuracy of pupil detection is assessed by the Euclidean
distance between the predicted pupil center and the ground
truth. Distances shorter than p pixels are regarded as successful
in the estimation of the detection rate [9]. In this context, p3,
p5, and p10 represent p = 3, 5, and 10, respectively.

In the training phase, the Mean Squared Error (MSE) is
employed as the loss function, and model parameters are
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TABLE I
SPARSITY LEVEL IN CB-CONVLSTM AND VANILLA CONVLSTM

CB-ConvLSTM ConvLSTM
θ 0.5 0.2 0.1 0 -

ConvLSTM 1
Inp. sp1 0.955 0.955 0.955 0.955 0.955
Hid. sp 0.999 0.999 0.998 0.733 0.244

ConvLSTM 2
Inp. sp 0.606 0.630 0.636 0.767 0.672
Hid. sp 0.998 0.994 0.969 0.804 0.179

ConvLSTM 3
Inp. sp 0.596 0.589 0.541 0.735 0.572
Hid. sp 0.997 0.969 0.928 0.677 0.195

ConvLSTM 4
Inp. sp 0.543 0.424 0.465 0.604 0.500
Hid. sp 0.989 0.934 0.878 0.623 0.246
Inp. sp 0.763 0.760 0.754 0.850 0.778
Hid. sp 0.998 0.988 0.969 0.738 0.216
Tot. sp 0.924 0.916 0.903 0.750 0.330

Network Tot. sp 0.853 0.845 0.833 0.692 0.304

1 Inp. sp, Hid. sp, Tot. sp denote the input tensor sparsity, the hidden state
tensor sparsity, and the total sparsity.

TABLE II
DETECTION RATE, MODEL PARAMETERS, AND NUMBER OF OPERATIONS

OF CB-CONVLSTM, VANILLA CONVLSTM, AND CNN MODELS

CB-ConvLSTM ConvLSTM CNN
θ 0.5 0.2 0.1 0 - -

Detection
rate (%)

p3 88.50 88.50 88.70 88.88 88.70 57.80
p5 96.70 96.76 96.90 97.07 97.10 77.40
p10 99.20 99.20 99.13 99.50 99.40 91.40

#Parameters (M) 0.42 0.42 0.40
#Flops (M) 9.00 9.49 10.22 18.86 42.61 18.40

updated using the Stochastic Gradient Descent (SGD) opti-
mizer. A learning rate of 0.001 is maintained over 30 epochs
with a batch size of 16. The data allocation for training and
validation follows an 80/20 proportion. We also augment the
dataset by using a stride of 1 through event-based streams,
thus generating multiple overlapping clips from a single event
video stream, each displaced by one frame.

Owing to the spatial and temporal sparsity of event streams,
many frames often contain minimal information. To address
this issue, our eye tracking model integrates a recurrent
ConvLSTM structure. As illustrated in Fig. 5, the sequence
length in the temporal dimension significantly impacts the
detection rate in the ConvLSTM-based model. The detection
rates, indicated by p3, p5, and p10, raise to 88.8%, 97.0%, and
99.5%, respectively, representing an increase of 17.4%, 15.8%,
and 6.9% when the sequence length is increased from 2 to
40. The extension in sequence length aids in acquiring more
temporal information, thereby increasing the detection rate,
especially when detecting those frames with less information
(see Fig. 6).

The proposed CB-ConvLSTM structure was further eval-
uated for its contribution towards network sparsity and its
impact on the detection rate, and a comparison was made with
the vanilla ConvLSTM and CNN models. Table I presents
the sparsity levels of various layers and components within
the proposed CB-ConvLSTM and the standard ConvLSTM.
Table II highlights the detection rate, model parameters, and
the number of operations performed by the CB-ConvLSTM at
different θ values, as well as the standard ConvLSTM and a

Fig. 5. Detection rate under different sequence length

Fig. 6. Examples of 16 continuous event-based frames with predicted results.
The predicted result is shown as a red dot. Even if few events are generated,
our approach can still detect the location of the pupil.

CNN model.
By increasing θ from 0 to 0.5 to explore a broader design

space, the temporal sparsity increases from 69.2% to 85.3%
without adversely affecting the model’s precision. Compared
with the standard ConvLSTM, the CB-ConvLSTM demon-
strates about 3× greater sparsity. The comparison CNN model,
equipped with similar parameters as the ConvLSTM network
and composed primarily of six convolution layers with 32, 32,
32, 64, 64, and 128 filters respectively, yields a sub-optimal
detection rate (p3 = 57.80%).

Regarding computational operations, the CB-ConvLSTM
performs 8.8X fewer calculations during convolutions, which
leads to a 4.7× reduction in computations for the entire
network compared with the standard ConvLSTM and merely
half the computational effort demanded by the CNN model.

IV. CONCLUSION

This work proposes a computationally efficient event-based
eye tracking solution, specifically targeting pupil center detec-
tion. By leveraging the ConvLSTM network, we capture the
spatio-temporal sparse features inherent in event streams more
effectively. Moreover, to reduce computational demands, we
introduce the novel CB-ConvLSTM structure to induce high
temporal sparsity in activations to reduce arithmetic operations
in convolutions. Results indicate that our approach achieves a
network sparsity of 85.3%, facilitating a 4.7× reduction in
arithmetic operations, all while maintaining accuracy, relative
to the conventional ConvLSTM-based model. CB-ConvLSTM
has the potential to be implemented on specialized hardware
exploiting spatio-temporal sparsity [19], [20] to further reduce
the inference latency and energy cost.
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