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Abstract—Keyword spotting (KWS) is an important task on
edge low-power audio devices. A typical edge KWS system
consists of a front-end feature extractor which outputs mel-scale
frequency cepstral coefficients (MFCC) features followed by a
back-end neural network classifier. KWS edge designs aim for
the best power-performance-area metrics. This work proposes
an area-efficient ultra-low-power time-domain infinite impulse
response (IIR) filter-based feature extractor for a KWS system.
It uses a serial architecture, and the architecture is further
optimized for a low-cost computing structure and mixed-precision
bit selection of the IIR coefficients while maintaining good KWS
accuracy. Using a 65 nm process technology and a back-end
neural network classifier, this simulated feature extractor has
an area of 0.02 mm2 and achieves 3.3µW @ 1.2 V, and achieves
92.5% accuracy on a 10-keyword, 12-class KWS task using the
GSCD dataset.

Index Terms—Keyword spotting (KWS), infinite impulse re-
sponse (IIR), hardware acceleration, long short-term memory.

I. INTRODUCTION

KEYWORD spotting (KWS) is an important task to
reduce power consumption on consumer devices and

smart assistants such as Apple Siri. It acts as a trigger for
the system to perform the higher-computation and energy-
consumption speech recognition tasks. Ideally, an edge KWS
system should be always-on and for battery-powered devices,
an ultra-low power design is needed.

A typical KWS design consists of a front-end feature extrac-
tor and a back-end neural network classifier [1]. Deep neural
networks (DNNs) such as Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) are usually
used as the back-end classifier [2]–[4]. In recent years, a few
dedicated KWS FPGA and ASIC designs have been designed
with focus on reducing power consumption [5]–[12].

In addition to the back-end, the front-end feature extractor
is another crucial module in speech recognition systems. The
recent development of edge audio systems has heightened the
need for area-power efficient feature extractors. Audio features
can be categorized into two main types: 1) frequency-domain
features such as the mel-scale frequency cepstral coefficients
(MFCC) [8], [13], [14], and 2) time-domain features, such
as ring-oscillator-based filters [7] or gmC filters [15], [16].
MFCC features are typically used in state-of-the-art KWS
digital systems [6], [8], [13], [17]–[19]. However, processing
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Fig. 1. Typical processing pipeline in a KWS system.

chains of MFCC mandates a large power consumption includ-
ing pre-emphasis, windowing, fast Fourier transform (FFT),
Mel-filtering, logarithmic computation, and discrete cosine
transform (DCT). For example, in the 22nm 10.8µW/15.1µW
dual computing modes KWS system [17], the MFCC feature
extractor took up nearly one-third of the power consumption
of the whole prototype system.

Infinite impulse response (IIR) filters are a class of widely-
used recursive filters and have relatively simple comput-
ing chains thereby facilitating low memory and logic area
costs [20]. In this work, we propose an area-efficient ultra-
low-power digital serial IIR filter-based feature extractor as a
front-end to a KWS system. The low-cost computing structure
and mixed-precision implementation demonstrates a superior
area-power efficiency. Designed in a 65 nm CMOS process, the
feature extractor shows a 1.6x-to-54x lower power consump-
tion than other designs while recording a 92.5% state-of-the-
art KWS accuracy on the Google Speech Command Dataset
(GSCD) [21].

II. INFINITE IMPULSE RESPONSE FILTER

IIR filters are defined by a set of coefficients of a rational
transfer function, for which a stability criteria must be also
satisfied. By doing a z-transform, the transfer function of the
IIR filter is as follows:

H(z) =
Y (z)

X(z)
=

∑M−1
i=0 aiz

−i

1 +
∑N−1

i=1 biz−i
(1)

where ai and bi are coefficients in the numerator and denomi-
nator, respectively. M and N denote the number of poles and
zeros in the filter function.

The most common IIR filter model is based on the decom-
position of a higher-order filter into a cascade of second-order
sections to ensure stability [22]. In this way, we can describe
the transfer function of a higher order IIR filter as follows:

H(z) =

L∏
i=i

a0i + a1iz
−1 + a2iz

−2

1 + b1iz
−1 + b2iz

−2
(2)
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Fig. 2. Basic architecture of a 4th order IIR band-pass filter.

TABLE I
COEFFICIENTS OF 16 IIR BAND-PASS FILTERS IN SECOND-ORDER

SECTIONS REPRESENTATION

Ch a01 a11 a21 b11 b21 a02 a12 a22 b12 b22 CF (Hz)
0 5.4-e04 1.1e-03 5.5e-04 -1.93 0.96 1 -2 1 -1.96 0.97 182
1 1.2e-03 2.4e-03 1.2e-03 -1.89 0.94 1 -2 1 -1.92 0.95 272
2 0.0022 0.0044 0.0022 -1.82 0.93 1 -2 1 -1.88 0.94 372
3 0.0036 0.0072 0.0036 -1.74 0.91 1 -2 1 -1.82 0.92 482
4 0.0056 0.011 0.0056 -1.63 0.88 1 -2 1 -1.74 0.90 603
5 0.0081 0.016 0.0081 -1.49 0.86 1 -2 1 -1.64 0.89 736
6 0.011 0.023 0.011 -1.31 0.84 1 -2 1 -1.53 0.86 884
7 0.016 0.031 0.016 -1.10 0.81 1 -2 1 -1.38 0.84 1046
8 0.021 0.042 0.021 -0.85 0.78 1 -2 1 -1.21 0.81 1225
9 0.027 0.054 0.027 -0.56 0.76 1 -2 1 -0.99 0.78 1422
10 0.035 0.070 0.035 -0.23 0.73 1 -2 1 -0.75 0.75 1639
11 0.044 0.089 0.044 0.14 0.70 1 -2 1 -0.46 0.71 1879
12 0.056 -0.11 0.056 -0.15 0.67 1 2 1 0.53 0.68 2143
13 0.069 -0.14 0.069 0.18 0.61 1 2 1 0.92 0.66 2435
14 0.085 -0.17 0.085 0.51 0.54 1 2 1 1.29 0.67 2756
15 0.10 -0.21 0.10 0.78 0.44 1 2 1 1.64 0.74 3110

where L is the number of second-order sections. Fig. 2 shows
a basic architecture of a 4th order IIR band-pass filter imple-
mented as a cascade of two second-order sections (L=2). In
this work, we design a 16-channel IIR-based feature extractor
with 16 IIR filters. We use signal.butter function in the Scipy
library to design Butterworth IIR band-pass filters. We chose
Butterworth filter topology as it has a flat passband response,
i.e., without passband ripple as it exists in Chebyshev/Elliptic
filters, thereby leading to a easier and simpler design. The
coefficients and central frequencies of the filter channels are
given in Table I.

III. LOW-POWER AND COMPACT SERIAL IIR-BASED
FEATURE EXTRACTOR

A. Serial Architecture and Computational Flow

Fig. 3 shows the top view of the proposed IIR-based feature
extractor. It consists of a computing unit which includes a
cascade of second-order section modules, a post-processing
module, buffers and a control unit. The input audio signals
are processed sequentially by the two second-order section
modules and the post-processing module to generate the 16-
dimensional feature vectors. The serial architecture allows
the reuse of the computing units across the 16 channels
and thereby, significantly reducing both the area and leakage
power of the design. Fig. 4 shows the computation flow of
the serial IIR-based feature extractor. The audio samples are
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Fig. 3. Hardware architecture of a serial IIR-based feature extractor (within
the outlined box).

partitioned into 16 ms frames without overlap. Each input
frame contains 128 samples at the sampling rate of 8 kHz.
Each audio sample is processed by the 16 IIR band-pass filters
in a sequential manner by the same computation units. The
computation units are divided into three pipeline stages to
reduce the combinational logic area and power consumption.
After each of the 128 audio samples is filtered and the outputs
accumulated in the output registers, their values are divided by
128 (realized by a bit right shift) to obtain the mean of a frame,
then it is followed by a log compression. Finally, the values
in the output registers are streamed out as a 16-dimensional
feature vector.

B. Low-Cost Computing Structure of the IIR Band-pass Filter

According to Fig. 2, which demonstrates the basic archi-
tecture of a 4th order IIR band-pass filter, 10 multipliers and
8 adders are required. If we look closer at the coefficients a
and b across the 16 IIR filters as shown in Table I, we see
hardware-friendly properties such as symmetries and constant
value representations, e.g.:

a11 = 2a01 = 2a21, (3)

|a12| = 2a02 = 2a22 = 2, (4)

Shown in Fig. 5, a low-complexity architecture for the 4th-
order IIR filter is designed by exploiting these properties. The
number of multipliers are reduced to 5 by the replacement
with shift operations and combining like terms, thus reducing
both the power consumption and area.

C. Mixed-Precision Selection of Filter Coefficients

Due to potential numerical stability issues, a fixed-point
analysis is required during the IIR filter implementation.
The resource and power reduction strongly depends on the
coefficient values of the filters. In this case, the selection
of coefficient precision is essential. Previous works always
adopt the unified bit precision for coefficients and focus on
the goodness of fitting degree during the fixed-point analysis.
In fact, thanks to the error resilience of neural networks, we
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Fig. 4. Timing diagram of serial IIR-based feature extractor with 16 channels. Each audio frame has 128 samples (16ms frame length, 8KHz sampling rate,
no frame overlap). Operations in horizontal and vertical directions are executed sequentially and concurrently, respectively.
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Fig. 5. Improved architecture of a 4th order IIR band-pass filter. (Ch idx
denotes the channel index).

can select an aggressive bit-width selection, in other words,
the network accuracy is used as the measurement standard.
Through experiments, we find that the dynamic ranges for
coefficients a and b across the feature extractor are different,
and the impact of the bit precision on the KWS accuracy also
varies. The independent bit precision selection allows for fur-
ther reduction of power and hardware resources. Algorithm 1
shows the selection of the bit precision for coefficients a and
b. The integer bits are first determined by the maximum value
of a and b to prevent overflow, separately. The fraction bits
are then reduced from the baseline and the network accuracy
is again quantified. The selection program stops once the
accuracy is lower than the predefined threshold, Accth, which
is also the expected KWS accuracy.

IV. EXPERIMENTAL RESULTS

We use a single-layer LSTM model of 64 hidden nodes
to validate our design. The network is trained to predict
12 classes, including 10 keywords: down, go, left, no, off,
on, right, stop, up, yes, together with silence and unknown
classes using GSCD. The audio clips are downsampled from
16 kHz to 8 kHz, to reduce computation without any accuracy
loss. We first normalize the audio files, and then estimate
the impact of the different precision selections of coefficients
a and b on the network accuracy over multiple runs. For
the normalization, each audio file is 1) subtracted by the
mean, then 2) clipped and 3) divided by the five times of the

Algorithm 1 Bit Selection of IIR Filter Coefficients
Input:

LSTM , the network used to evaluate the features after
quantization. {Qa

f , Qb
f}, the predefined fraction bits of

coefficients a and b; Fq , quantized features; Acc, the vali-
dation accuracy; Accth, the predefined accuracy threshold.

Output:
{qai , qaf , qbi , qbf}, the integer and fraction bits of coefficient
a and b;

1: qai = len(bin(max(a))), and qbi =len(bin(max(b))
2: for l, r in { { Qa

f , Qb
f}, {qaf , qbf} } do

3: for i = 0; i ≤ l; i++ do
4: r = l - i. // Update the List R
5: Acc = Evaluate(LSTM , Fq).
6: if Acc ≤ Accth then
7: BreakLoop()
8: end if
9: end for

10: end for

standard deviation. The normalization by itself brings around
1% accuracy improvement. Fig. 6 (a) shows the relationship
between the accuracy and bit precision of coefficient b, while
bit precision of coefficient a is set to full precision (32-bit
floating point). The accuracy is maintained at around 92.5%
when the bit precision of b, i.e. bb ≥ 8. Lower precision for
b will result in numerical instability of the IIR filter output.
Thus, the generated features led to a poor accuracy of 8.3%
from the network. Fixing bb = 8, we then investigated how the
accuracy is impacted by the bit precision of a. As shown in
Fig. 6 (b), the accuracy begins to gradually drop when the bit
precision is a, i.e. ba < 12. For the final classification results,
we set bb = 8 and ba = 12, to guarantee no accuracy loss
compared to the baseline.

Our serial IIR-based feature extractor is implemented at
Register Transfer Level (RTL) using System Verilog, syn-
thesized by Synopsys Design Compiler, and designed with
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TABLE II
COMPARISON WITH PREVIOUS WORKS

Metric JSSC’20 [8] TCAS-II’22 [13] TCAS-I’20 [17] VLSI’19 [23] JSSC’22 [7] This work

Technology (nm) 65 40 22 65 65 65
Sample rate (kHz) 16 8 16 4-16 - 8
Frequency (kHz) 250 400 250 250 0.11-10.4 128

Voltage (V) 0.6 0.6 0.6 0.6 0.5 1.2

Precision (bits) - - 8@Input 10@Input - 12@Input, 12@Output
16@Output 4,8@Output ba=12, bb=8

Latency (ms) 48 16 40 16 - 16.11

Feature extractor type Digital Digital Digital Digital Analog Digital
MFCC MFCC MFCC MFCC ring-oscillator IIR-based

Power (µW) 7 0.67 2.8 7.14 9.3 3.3
Area (mm2) - - <0.1 - 1.6 0.02

#Keywords / #Classes 10/- 10/12 10/12 10/12 10/12 10/12
Model1 LSTM LSTM BCNN LSTM GRU LSTM

Accuracy2 90.87% m 92.40% s 87.90%s 90.87% m 86.03% m 92.50% s

1 All LSTMs have one 64-unit hidden layer structure; BCNN – binary convolutional neural network; GRU – gated recurrent unit network.
2 m denotes chip measurement results, s denotes simulation results.

0%

20%

40%

60%

80%

100%

K
W

S
ac

cu
ra

cy

Bit precision of coefficient b  (with full precison of coefficient a)

176 μm

1
1

6
 μ

m

(a)                                                                           (b)  

(a) 

18.2

10.2

6.1
4.5

3.3

0

5

10

15

20

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 

(μ
W

)

16-bit coeff. (baseline)

replace with low complexity IIR structure

reduce to 12-bit coeff. (quantization using netiwork
accuracy as the standard of measurement)

w/ pipeline design

mixed precision (12-bit for coeff. a and 8-bit for
coeff. b)

16-bit coeff. (baseline)

Replace with low-cost IIR structure 

Reduce to 12-bit coeff. (quantization using 
accuracy as the standard of measurement)

w/ pipeline design

Mixed precision (12-bit coeff. a and 
8-bit coeff. b) 

5.5x reduction

84%

86%

88%

90%

92%

94%

16 15 14 13 12 11 10 9 8 7 6

K
W

S
ac

cu
ra

cy

Bit precision of coefficient a (with 8-bit coefficient b)

(b)                                                         

0%

20%

40%

60%

80%

100%

K
W

S
ac

cu
ra

cy

84%

86%

88%

90%

92%

94%

16 15 14 13 12 11 10 9 8 7 6

K
W

S
ac

cu
ra

cy

84%

86%

88%

90%

92%

94%

16 15 14 13 12 11 10 9 8 7 6

K
W

S
ac

cu
ra

cy

(a) 

(b)                                                         

Fig. 6. Impact of bit precision on KWS accuracy: (a) KWS accuracy versus
bb (ba = 32 floating point, baseline), (b) KWS accuracy versus ba (bb = 8).

Cadence Innovus for place and route using CMOS 65nm
process. The pre-layout and post-layout functionalities are
verified using ModelSim, and stimuli-based power consump-
tion is analyzed from post-layout results. To offer real-time
processing capability, the proposed design runs at a system
clock of 128 kHz and a supply voltage of 1.2 V. Fig. 7 shows
a final 5.5x power reduction with the breakdown across all the
different optimization steps. The 16-channel IIR filter layout
has an area of 0.02 mm2 as shown in Fig. 8(a) and the power
breakdown of the different blocks is shown in Fig. 8(b). The
second-order section modules are the most power-consuming
blocks, followed by the buffers.

Table II compares our proposed digital IIR-based feature
extractor with the state-of-the-art extractors including both
digital implementations [8], [13], [17], [23] and analog im-
plementations [7]. Unlike MFCC-based designs, the hardware
resources and power consumption of the proposed IIR-based
feature extractor is independent of the frame length (referred as
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Fig. 8. (a) Layout and (b) power breakdown of the IIR-based feature extractor.

FFT size in MFCC). Our work achieves a competitive accuracy
of 92.5% comparable to other works reporting accuracies on
a 10-keyword, 12-class KWS task using the GSCD dataset.
Simulations show that this feature extractor design consumes
only 3.3µW @ 1.2 V.

V. CONCLUSION

This work proposes an area-efficient ultra-low-power time-
domain IIR-based feature extractor for edge keyword spot-
ting. The implementation uses a serial architecture and is
further optimized with a low-cost computing structure and
mixed-precision selection to significantly reduce the power
consumption while maintaining high KWS accuracy. It has
an area of 0.02 mm2 and consumes only 3.3µW @ 1.2 V.
The power of the entire KWS design including the IIR-
based feature extractor and a network with an energy-efficient
architecture [24] will be reported in future work.
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