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The development of memristive device technologies has reached a level of maturity to enable the design of complex
and large-scale hybrid memristive-CMOS neural processing systems. These systems offer promising solutions for im-
plementing novel in-memory computing architectures for machine learning and data analysis problems. We argue that
they are also ideal building blocks for the integration in neuromorphic electronic circuits suitable for ultra-low power
brain-inspired sensory processing systems, therefore leading to the innovative solutions for always-on edge-computing
and Internet-of-Things (IoT) applications. Here we present a recipe for creating such systems based on design strategies
and computing principles inspired by those used in mammalian brains. We enumerate the specifications and properties
of memristive devices required to support always-on learning in neuromorphic computing system and to minimize their
power consumption. Finally, we discuss in what cases such neuromorphic systems can complement conventional pro-
cessing ones and highlight the importance of exploiting the physics of both the memristive devices and of the CMOS
circuits interfaced to them.

Neuromorphic computing has recently received consider-
able attention as a discipline that can offer promising techno-
logical solutions for implementing power- and size-efficient
sensory-processing, learning, and Artificial Intelligence (AI)
applications1–5, especially in cases in which the computing
system has to operate autonomously “at the edge”, i.e., with-
out having to connect to powerful (but power hungry) server
farms in the “cloud”. The term “neuromorphic” was originally
coined in the early 90’s by Carver Mead to refer to mixed sig-
nal analog/digital Very Large Scale Integration (VLSI) com-
puting systems based on the organizing principles used by the
biological nervous systems6. In that context, “neuromorphic
engineering” emerged as an interdisciplinary research field
deeply rooted in biology that focused on building electronic
neural processing systems by exploiting the physics of sili-
con to directly “emulate” the bio-physics of real neurons and
synapses. More recently the definition of the term “neuromor-
phic” has been extended in two additional directions: on one
hand to describe more generic spike-based processing sys-
tems engineered to “simulate” spiking neural networks for the
exploration of large-scale computational neuroscience mod-
els7–9; and on the other hand to describe dedicated electronic
neural architectures that make use of both electronic Com-
plementary Metal-Oxide Semiconductor (CMOS) circuits and
memristive devices to implement neuron and synapse cir-
cuits10,11.

Another recent and very promising trend in developing ded-
icated hardware architectures for building accelerated simula-
tors of artificial neural networks is related to the field of ma-
chine learning and AI12,13. The types of neural networks be-
ing proposed within this context are only loosely inspired by
biology, are aimed at high accuracy pattern recognition based
on large data-sets, and require large amounts of memory for
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FIG. 1. The ideal memristive neuromorphic computing system re-
quires the right mix of CMOS circuits and memristive devices, as
well as the proper use of spatial resources and temporal dynamics,
that need to be well matched to the system’s signal-processing appli-
cations and use-cases.

storing network states and parameters. While this approach is
producing amazing results in a wide range of application ar-
eas, the computing systems used to simulate these networks
use significant amount of compute resources and power, espe-
cially for the training phase: the learning algorithms rely on
high precision digital representations for calculating high ac-
curacy gradients, and they typically require the storage (and
transfer from peripheral memory to central processing areas)
of very large data-sets. Furthermore, they often separate the
training from the inference phase, dismissing the ability to
adapt to novel stimuli and changing environmental conditions,
typical of biological systems.

While there are examples of hybrid memristive-CMOS
hardware architectures being developed to provide support for
AI deep network accelerators5,11,14,15, it is important to clar-
ify that many of the hybrid memristive-CMOS neuromorphic
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circuits proposed in the literature16–20 as well as the original
neuromorphic approach of emulating biological neural sys-
tems proposed by Mead, are distinct and complementary to
the machine learning one. While the machine learning ap-
proach is based on software algorithms developed to minimize
the recognition error in very specific pattern recognition tasks,
the original neuromorphic approach is based on brain-inspired
electronic circuits and hardware architectures designed for re-
producing the function of cortical and biological neural cir-
cuits21. As a consequence, this approach aims at understand-
ing how to build robust and low-power neural processing sys-
tems using inhomogeneous and highly variable components,
fault-tolerant massively parallel arrays of computational ele-
ments, and in-memory computing (non von Neumann) infor-
mation processing architectures22. In the following, when dis-
cussing about “hybrid CMOS-memristive neuromorphic com-
puting systems”, we will refer to this specific approach.

Our recipe (Fig. 1) for optimally building neuromorphic
systems by co-integrating memristive devices with CMOS cir-
cuits is based on the following considerations.

a. Lay out the ingredients in parallel on the worktop.
To minimize power consumption and maximize robustness to
variability, it is important to use physically distinct instanti-
ations of neuron and synapse circuits, distributed across the
silicon substrate23. This strategy is very different from the
one used to build classical computing systems based on the
von Neumann architecture. In classical processors there is a
single or a small number of computing blocks that are time-
multiplexed at very high clock rates to execute calculations,
or to simulate many “parallel” neural processes7,9,24. The
continuous transfer of data between memory and the time-
multiplexed processing unit(s) required to carry out compu-
tation is limited by the infamous von Neumann bottleneck25,
and is the major cause of high energy consumption. In con-
trast, the amazing energy efficiency of biological systems, and
of the neuromorphic ones that emulate them, arises from the
in-memory computing nature of their architectures: there are
multiple instances of neuron and synapse elements that carry
out computation and at the same time store the network state.
The disadvantage of having distributed state-full neuron and
synapse circuits is that it can require significant amount of
silicon real-estate for integrating all their memory structures
(e.g., see the 4.3cm2 IBM TrueNorth chip24). However, the
progress in CMOS fabrication technologies, the emergence of
monolithic 3D integration technologies, and the possibility to
co-integrate nano-scale memristive devices with mixed-signal
analog/digital CMOS circuits in advanced node processes can
substantially mitigate this problem26.

b. Take your time. By eliminating the need to use time-
multiplexed processing elements, these neuromorphic pro-
cessing architectures can be designed to run in real physical
time (time represents itself) as it happens in real biological
neural networks. This is a radical departure from the classical
way of implementing computation, that has decoupled com-
puter simulation time from physical time since the very early
designs of both computing systems and artificial neural net-
works27,28. For sensory-motor processing systems and edge-
computing applications that need to measure and process nat-

ural signals, this is a tremendous advantage. Allowing time
to represent itself removes the need of complicated clock or
synchronizing structures that would otherwise be required to
track the passage of simulated time. All computing elements
in such neuromorphic systems are then coupled through the
common variable of real-time (e.g., for implementing bind-
ing by synchronization29). To build sensory-processing sys-
tems that are best tuned to the signals they are required to
process (or that can learn to extract information from them),
it is necessary to use neural processing and learning circuits
that have the same time-constants and dynamics of their in-
put signals (e.g., to create “matched-filter” that can naturally
resonate with their inputs). In the case of natural signals typ-
ically processed by humans, such as voice or gestures, these
time constants should range from milliseconds to minutes or
longer. These time constants are extremely long, compared to
the typical processing rates of digital circuits. This allows
neuromorphic systems to reduce power consumption even
more and to have very large bandwidths for seamlessly trans-
mitting signals across the network and via I/O pathways in
shared buses30,31. However, such long time constants can be
very difficult to achieve using pure CMOS circuits32. Mem-
ristive devices offer an ideal solution to this limitation. Al-
though such devices are usually treated as non-volatile mem-
ories, certain material systems exhibit a rather volatile resis-
tance change after electrical biasing, with temporal scales that
can be tuned and matched to biological neural and synaptic
dynamics33–35. Recent demonstrations of volatile memristive
devices used to model neural dynamics include the emulation
of nociceptors (i.e., sensory neuron receptors able to detect
noxious stimuli)36 and the implementation of spike-timing de-
pendent learning rules with tunable forgetting rates37,38. In
addition to exploiting the physics of the memristive devices
to tune their volatility properties, it is possible to co-design
more complex hybrid memristive-CMOS neuromorphic cir-
cuits to implement the wide range of time constants needed to
model the multiple plasticity phenomena observed in biology
(ranging from milliseconds in synaptic short term depression
to hours and more in structural plasticity) and crucial for arti-
ficial neural processing systems32,39.

c. Don’t worry about density. Memristive devices are
often praised for the small (nano-scale) size, which can be
exploited to develop very high density cross-bars40 in which
the memristive devices are used as a learning synapses41.
Nevertheless, current high-density approaches are not able to
produce learning dynamics sufficiently complex for solving
real-world tasks (e.g., with matched temporal scales, or suit-
able for life-long learning requirements). The achievement
of such dynamics in a single device requires sophisticated
material engineering efforts which are still beyond the cur-
rent state-of-the-art. Conversely, by dismissing the chimera
of high density synaptic arrays and co-integrating nano-scale
memory elements with mixed signal analog/digital neuromor-
phic circuits, it is possible to implement sophisticated learning
mechanisms that can exploit many features of memristive de-
vices, besides their compact footprint, such as non-volatility,
stochasticity, or state-dependent conductance changes. Fur-
thermore, combining multiple transistors with one or more
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memristive devices enables the design of complex synapse
circuits that can reduce the effect of variability42, enable the
control of stochastic switching behaviors11,43,44, and produce
linear or non-linear state-dependent weight-updates45,46.

d. Play it by ear: variability and randomness. Memris-
tive devices are affected by both device-to-device and cycle-
to-cycle variability47,48. Significant material science and de-
vice technology research efforts are being made to minimize
such variability41,47,49–52. However, rather than fighting these
variability effects with different materials or device technolo-
gies, neuromorphic systems can be designed to embrace and
exploit them39. Examples of theoretical neural processing
frameworks that require variability can be found in the domain
of ensemble learning53, reservoir computing54 and liquid state
machines55. Current efforts in neuromorphic engineering for
implementing such frameworks to solve spatio-temporal pat-
tern recognition problems rely on the variability provided by
transistor device-mismatch effects56–60. Integration of mem-
ristive devices with inhomogeneous properties in such archi-
tectures can provide a richer set of distributions useful for en-
hancing the computational abilities of these networks. Indeed,
multiple circuit solutions have already been proposed to better
control the shape and parameters of such distributions11,42.

One important source of variability in the operational pa-
rameters of memristive devices is in their switching mech-
anism. In filamentary memristive devices, this mechanism
exhibits stochastic behavior which stem from the underly-
ing filament formation process18,61–63. This intrinsic proba-
bilistic property of memristive devices can be exploited for
implementing stochastic learning in neuromorphic architec-
tures43,44,48,64–66, which in turn can be used to implement
faithful models of biological cortical microcircuits67,68, solve
memory capacity and classification problems in artificial neu-
ral network applications69,70, and reduce the network sensitiv-
ity to their variability43. Recent results on stochastic learning
modulated by regularization mechanisms, such as homeosta-
sis or intrinsic plasticity44,71–73, present an excellent potential
for exploiting the features memristive devices, even when re-
stricted to binary values.

e. Don’t (hard) limit your devices. In the context of de-
ploying always-on learning systems (both artificial and bio-
logical) in real-world applications, a critical feature is their
memory storage capacity74,75. When designing hardware neu-
romorphic learning system that have practical physical restric-
tions or limitations on the available resources (such as the
number of memory devices integrated in the system, their
resolution, precision, or dynamic range) it is important to be
aware of the theoretical limits that set the bounds of achiev-
able memory capacity and learning performance, independent
of the device properties.

The thorough theoretical analysis on the limits of memory
capacity in neural processing systems presented by Fusi and
Abbott in 200774 provides essential guiding principles for the
construction of artificial learning memristive systems. In this
analysis, learning models are subdivided into four main cat-
egories, according to two key features: the synaptic weight
bounds (hard or soft) and the (im)balance of potentiation and
depression. Hard bounds are limits on the synaptic weight

values that cannot be exceeded. Soft bounds are limits that
can only be reached in the asymptotic limit. Typically, in
neural network models with hard bounds, the weight update
step size is constant and therefore independent of the weight
value itself. Conversely soft bounds are introduced by allow-
ing weight updates to depend on synaptic strength and to de-
crease as they approach the bound itself.

Even though it is clear that in real physical systems hard
bounds are unavoidable (e.g., the supply rails in an electronic
system), there is evidence that memristive devices exhibit
soft bounds76. Therefore, by combining CMOS circuits with
memristive devices, it is possible to design hybrid circuits that
can implement and control the devices soft bounds for im-
proving learning at the network level and for improving the
overall system performance, e.g., in terms of reduced power
consumption and increased memory capacity45. In contrast, it
is impossible to precisely balance positive changes of synap-
tic weights with negative ones in hybrid memristive-CMOS
neuromorphic computing systems. Given this unbalanced po-
tentiation and depression property, the longest memory life-
time is achieved thanks to soft bounds, independently of the
specific model chosen among those investigated by Fusi and
Abbott74.

To best implement the recipe we proposed it is necessary
to use the right list of ingredients: a combination of mem-
ristive devices with multiple complementary features. The
recipe shopping-list should comprise devices with different
properties on retention, endurance, variability, switching cur-
rents, on-off ratios, that can be interfaced to analog and digital
electronic CMOS circuits. However, even before attempting
to bake the final hardware neural processing system, it is im-
portant to have access to realistic and faithful device models,
so that during the design phase it will be possible to specify
the characteristics of both the CMOS and memristive compo-
nents and understand how to best exploit their processing fea-
tures for properly modeling the different aspects of plasticity
and neural information processing systems.

Once fabricated, these neuromorphic processing systems
should implement always-on life-long learning features so
that they can adapt to changes in their input signals and
keep a proper operating regime. This implies that the hybrid
CMOS-memristive neuromorphic system would be updating
its synaptic weights continuously, with every learning event.
This requires the use of memristive devices that support small
gradual conductance changes, and very small currents (e.g.,
< 1 µA), to minimize power consumption. In this case, the
retention rate of such devices does not need to be extremely
long, but should be compatible with the rate of weight up-
date (which can be seen as a “refresh” operation) in the sys-
tem. For example, in typical “edge” sensory-processing ap-
plications (wearable devices, home automation, surveillance,
environmental monitoring, etc.) this could range from mil-
liseconds to seconds or minutes.

On the other hand, once the learning process has terminated
or if there is a long pause in the rate of input signals (e.g.,
during the night in ambient monitoring tasks), then it will be
useful to be able to consolidate the memories formed in non-
volatile memristive devices with high on-off ratio and long-
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retention rates. In this case, since this operation would not be
as frequent as the weight-update one for the on-line learning
case, it would be acceptable to use devices that require larger
switching currents, and that have a small number (even two)
stable states77.

To match the time constants of the neural processing system
to the dynamics of its input signals, to maintain a stable oper-
ating region over long time scales, and to optimize the learn-
ing of complex spatio-temporal patterns, it is necessary to im-
plement both fast (short term depression, long term potentia-
tion, long term depression, etc.) and slow (intrinsic, homeo-
static, structural) plasticity mechanisms, “orchestrating” mul-
tiple time-scales in the learning circuits78. For this it is crucial
to be able to use volatile memristive devices that span a wide
range of retention rates (e.g., from milliseconds to hours).

In addition, to increase the memory-capacity of such a sys-
tem by introducing soft bounds for the synaptic weights, it is
necessary to provide a mechanism that can realize the desired
state dependence in the synaptic weight-update transfer func-
tion45. This can be achieved by engineering the conductance
change properties of the single memristive device, or by de-
signing hybrid memristive-CMOS neuromorphic circuits in-
terfaced with one or more memristive devices11,79. Alterna-
tively, one can use multiple binary memristive devices with
probabilistic switching in combination with an analog circuit
designed to properly control their switching probability.

As evident from the list of ingredients and recipe provided,
it is now possible to build ultra low power massively par-
allel arrays of processing elements that implement “beyond-
von Neumann”, “in-memory computing” mixed signal hybrid
memristive-CMOS neural processing systems.

It is important to realize that for data-intense processing
applications these neuromorphic systems should be used to
complement, rather than replace, traditional von Neumann ar-
chitectures. They could be considered as the cherry on the
cake of a complex AI inference engine, that enables always-
on neural processing, with life-long learning abilities. In this
scenario, the hybrid memristive-CMOS neuromorphic com-
puting system would carry out low-power computation acting
as alow accuracy predictive “watch-dog” to quickly activate
more powerful von Neumann architectures for high accuracy
recognition, as soon as events of interest are detected.

On the other hand, there are many applications where these
hybrid neuromorphic systems would represent both the cherry
and the cake together: these are IoT, edge-computing, and
perception-action tasks that are solved efficiently by biologi-
cal systems but have been proven to be “difficult” for artificial
intelligence algorithms80. This difficulty could be measured
with different performance metrics that could range from the
physical size and energy consumption requirements to latency,
adaptation, and ability to learn in continuous time closed-loop
setups. By appropriately mixing all the ingredients and inte-
grating them with mixed-signal analog/digital neuromorphic
systems, it will be possible to produce computing systems
that can directly emulate their biological counterparts. This
emulation feature, which derives from the exploitation of the
physics of the new materials and memory technologies being
developed, is the key element for building efficient computing

devices that can interact with the environment to solve arti-
ficial intelligence tasks in the real physical world, rather than
simulating these solutions with general purpose computers. In
other words, it is not very useful to simulate the bee brain on
a supercomputer because it will never fly.
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