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Abstract— Neuromorphic hardware offers computing plat-
forms for the efficient implementation of spiking neural net-
works (SNNs) that can be used for robot control. Here, we
present such an SNN on a neuromorphic chip that solves
a number of tasks related to simultaneous localization and
mapping (SLAM): forming a map of an unknown environment
and, at the same time, estimating the robot’s pose. In particular,
we present an SNN mechanism to detect and estimate errors
when the robot revisits a known landmark and updates both
the map and the path integration speed to reduce the error. The
whole system is fully realized in a neuromorphic device, showing
the feasibility of a purely SNN-based SLAM, which could be
efficiently implemented in a small form-factor neuromorphic
chip.

I. INTRODUCTION

Animals with even relatively small neural systems –e.g.,
insects– can orient themselves in an environment, find paths
to their goals, and form associations between places and
landmarks [1], [2], [3]. We might wonder how they solve
all the computing tasks involved in foraging with some-
times as few as some 100K neurons. Neurorobotics helps
to understand neuronal circuits that control the behavior
of animals by using such circuits to control robots, thus
testing the neuronal models in a closed behavioral loop [4].
Neuronal simulations typically require powerful computers
to run in real-time, making them not well-suited for real-
time control. Neuromorphic engineering has brought about
neuronally inspired computing hardware that allows us to
implement biologically realistic Spiking Neuronal Networks
(SNNs) on computing chips with high efficiency in real
time [5], [6], [7], [8], [9], [10], making them promising for
robotic applications.

Conventional software and controllers are not suitable for
“programming” neuromorphic hardware. Instead, the whole
processing pipeline must be developed using neuronal net-
works. While end-to-end learning of a neuronal controller
is one way to find an architecture that solves a particular
task, in this work, we use an alternative approach. We
design the neuronal architecture following inspiration from
known circuits in animal brains that evolved to solve similar
problems. Learning and adaptation are reserved for task-
related adjustments to the architecture. In particular, we use
on-chip plasticity (local learning rules) to learn locations of
landmarks in a given environment and to adjust parameters
of path integration to match the movement of the robot.
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Other authors have started working towards neuromorphic
SLAM and have recently shown how an SNN can form a 1D-
map on a neuromorphic chip that can be used to navigate to
the learned locations [11]. These efforts follow the first suc-
cessful realization of a bio-inspired RatSLAM architecture
that was used to map a real office environment [12].

The contribution presented here builds on our previous
work implementing a number of components of neuro-
morphic Simultaneous Localization and Mapping (SLAM)
using SNNs on chip [13], [14], [15]. We have previously
realized 1D (heading direction) and 2D (position) estimation
networks for a wheeled robotic vehicle, based on path
integration of motor commands and visual cues [13], [14].
In a second step, we presented a simple map formation with
the map being updated at loop closure events, but without
corrections to the path integration process [14]. Finally, we
have introduced a mechanism to autonomously adapt the
rate of path integration upon error detection [15], [16]. In
this paper, we integrate the developed components of the
neuromorphic SLAM –path integration, map formation, and
correction of both the path integration speed and the map–
for a one-dimensional case.

In our experiments, the robot rotates on a spot and detects
visual cues placed around it. When the same visual cue
is revisited, loop closure is detected, and the location of
the cue, stored in memory in the SNN, is compared to its
location, estimated based on path integration. If a mismatch
is detected, the error magnitude is estimated by the network
and is used to correct the potential error sources (either the
map or path integration network). In previous work, this
task of map correction at loop closure was solved outside
the neuronal SLAM architecture [12], [17]. The proposed
here neuronal mechanisms for mismatch detection and error
estimation are fully realized on the neuromorphic chip.

We have implemented each architectural component with
spiking integrate-and-fire neurons on Intel’s neuromorphic
research test chip Loihi [5]. The network is tested both with
simulated and real robotic data, showing online learning, for-
getting, and adaptation. This work shows the feasibility of a
fully neuronal SLAM architecture that runs in neuromorphic
hardware, leading to an efficient and adaptive system with
power consumption below 1W.

II. MATERIALS AND METHODS

A. Neuromorphic Hardware: Loihi

An overview of spiking neuromorphic processors can be
found in [18]. In this work, we realized the SNN architecture
on Intel’s neuromorphic research test chip Loihi [5], in
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Fig. 1. Overview of the SNN SLAM architecture: (1) Two ring attractor networks encode the robot’s heading direction (HD) based on the neuronal path
integration and memory of previously detected visual cues (blinking LEDs); (2) Shift neurons drive the active neuron in the path integration HD network to
move with a speed determined by their firing rate; (3) At a loop closure event, the error estimation network (2D array of neurons) estimates the magnitude
and sign of the difference between the location of the active neuron in the memory-driven HD network and the path integration HD network; (4) Small
errors drive Shift neurons and trigger plasticity in the synapses connecting them to the motor neurons. Large errors induce map updates. See main text for
details.

particular, its small form-factor version Kapoho Bay. Loihi
uses an asynchronous digital design to implement event-
driven parallel computations. The processor also implements
on-line learning with local plasticity rules. The chip consists
of 128 cores realizing up to 128K artificial neurons and
features a unique programmable microcode learning engine
for on-chip SNN learning.

B. SNN architecture

Fig. 1 illustrates the schematics of the network architecture
that solves the following tasks: (1) 1D orientation estimation,
(2) map formation, (3) error estimation, and (4) error cor-
rection. We describe these parts of the architecture next:

1) HD network: The orientation estimation network con-
sists of a population of neurons that form a ring attractor
network and perform 1D path integration. We call this
population the “path integration Heading Direction (HD)”
population. Each neuron in the path integration HD popu-
lation represents an angular range, the whole ring spanning
360° around the robot. At any given time, at most, one neuron
is active (emits a spike) in the HD population and represents
the robot’s current orientation in a global coordinate frame.

The neural activity in the HD population is shifted when
the robot turns by the following mechanism. Two neuronal
populations –the Scw and Sccw neurons– activate shift layers
that move the neural activity in a clockwise (CW) or counter-
clockwise (CCW) direction, respectively (see inset of Fig. 1,

upper left corner). The speed of the movement of neuronal
activation depends on the firing rate of the Scw or Sccw
neurons. The path integration HD is connected to another
ring-population (shift layer) that is activated by either Scw
and Sccw neurons that shift activity to the left or to the right,
respectively. The shift layers feed their activation back to the
HD population. Due to input integration in neurons (Eq. 1),
when the spike frequency of input neurons (Scw and Sccw)
is higher, neurons in the HD population require a shorter
amount of time to cross the activation threshold. This leads
to faster transfer of the activation in the network and, thus,
a faster movement of activity in the HD population, i.e.
a higher neural path integration speed. The dependence of
the represented movement speed on the firing rate of shift
neurons is shown in Fig. 2. See [13], [15] for more details
of the HD network architecture.

u̇i(t)=−
1
τu

ui+∑
j

wi j ·δ j(t), v̇i(t)=−
1
τv

vi(t)+ui(t). (1)

Eq. 1 describes how spike trains (∑ j δ j(t)) are scaled with
the synaptic weight wi j and integrated in a low-pass filter
process to obtain the input current ui(t). This synaptic input,
in its turn, is integrated in the neuron’s membrane potential
vi(t). A fixed threshold parameter determines the amount of
synaptic input needed to elicit a spike in the neuron, after
which vi(t) is reset to zero, and the integration continues.
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Fig. 2. The firing rate of shift neurons (“Stimulus frequency”) determines
how fast the activity in the HD network moves and thus the speed of
neuronal path integration (“Angular velocity”).

The Scw and Sccw neurons receive excitatory input from
motor neurons Mcw and Mccw, respectively, that are activated
when the robot receives a command to move in a CW or
CCW direction. The motor neurons are connected to shift
neurons with plastic synapses. The learning rule in these
synapses changes the firing rate of the Scw and Sccw neurons
in response to spikes of the respective motor neuron. This
firing rate controls the speed of activity movement in the HD
population, allowing us to match it to the actual movement
of the robot when errors are detected in a loop closure event.

2) Map formation: The path integration HD network
estimates the robot’s orientation based on motor commands.
At the same time, visual cues are detected in the environment
and are used to form a 1D map of the environment as the
robot rotates on the spot. The robotic setup used in our
experiments is shown in Fig. 3. We place LEDs around
the robot with different blinking frequencies to side-step
complex visual processing. The LEDs are sensed with a
dynamic vision sensor (DVS) camera [19], and an event-
based vision routine detects different blinking frequencies
in the center of the DVS’s field of view. When an LED is

Fig. 3. The experimental setup: a Pushbot robot rotates on a spot,
surrounded by blinking LEDs. Positions of the LEDs are learned in an
SNN and updated, along with the path integration speed, at loop closure
events.

detected, one of the LED neurons is activated using spike
generators on Loihi.

The path integration HD population is connected to LED
neurons with plastic synapses that are initialized with zero
weights. These plastic synapses are strengthened or weak-
ened according to a spike-time dependent local learning rule,
Eq. 2. After learning, the activity in the path integration HD
population causes recall of the LED that has been previously
detected at the respective position.

To enable recall of the robot’s orientation based on the
detected visual cues (LEDs), we introduce another ring
attractor network – the memory HD network shown in
Fig. 1 above the LED neurons. The memory HD population
receives excitatory one-to-one input from the path integration
heading direction (HD) neurons. Plastic synapses leading
from LED neurons to memory HD form associations between
visual landmarks and the robot’s orientation when a blinking
LED is detected by the robot. These plastic synapses are also
initialized with zero weights and updated according to the
learning rule Eq. 3:

∆wHD→LED = y0 · x1 · (y1− c1)− x0 · (x1 + c2), (2)

∆wLED→Mem = x0 · y1 · x1− y0 · (y1 + c2), (3)

where wHD→LED and wLED→Mem are weights of the synapses
connecting path integration HD neurons to LED neurons and
LED neurons to memory HD neurons, respectively; x0 and y0
are binary variables that turn from 0 to 1 when the pre- or the
postsynaptic neuron spikes and turn back to 0 in the next time
step; x1 and y1 are pre- and postsynaptic traces computed as
spikes convolved with an exponentially decaying temporal
kernel; c1 and c2 are constants balancing synaptic potentia-
tion (weight increase) and depression (weight decrease).

During learning, the plastic synapses from path integration
HD neurons to LED neurons follow Eq. 2. During their
co-activation at a postsynaptic spike (y0 = 1), the weight
increases (the first term in Eq. 2) if postsynaptic activity
trace is above a threshold c1. The synaptic weight decreases
when the presynaptic neuron, i.e., the path integration HD
neuron, is active while the postsynaptic neuron, i.e., the LED
neuron, is inactive (the second term in Eq. 2).

The weights of the synapses from LED neurons to the
memory HD increase if both the pre- and postsynaptic
neurons are active at a presynaptic spike (both presynaptic
trace x1 and postsynaptic trace y1 in Eq. 3 are high). If
a memory neuron (postsynaptic) is active while the LED
neuron (presynaptic) is silent (no LED is detected), the
weight decreases, and the previously learned association is
unlearned.

Thus, the path integration HD neurons learn to expect
an LED/landmark. The memory HD neurons represent the
heading direction inferred both based on a previously learned
position of the currently perceived LED/landmark and the
path integration. The two inputs may overlap when no error
has accumulated since the last encounter of the landmark, or
not, in which case an error is detected and its magnitude is
estimated.
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3) Error estimation: When an already learned LED is
detected in a loop-closure event, a mismatch (error) in
the HD populations can be detected. We distinguish two
error classes: small errors that probably arise from a path
integration offset and large errors that are probably caused
by changes in the environment. Small errors should reset
the orientation estimate to the one inferred based on the
learned map and update the path integration speed depending
on the sign of the error. Large errors indicate a change in
the environment and facilitate forgetting of the previously
learned LED-associations and learning of the currently ob-
served ones.

The central part of the error-correcting circuit is the error
estimation network (a 2D neuronal array in Fig. 1). This
network consists of a 2D layer of neurons that receive
input from the path integration HD population and from
the memory HD neurons. These two 1D inputs enter the
2D network along different dimensions, and their spikes are
integrated by the neurons in the error estimation network.
The neuron, for which the two active neuron arrays overlap,
is activated.

Neurons in the error estimation network are connected to
an output layer that consists of two read-out populations,
representing the positive or the negative error. The position
of the active neuron in one of the read-out populations
corresponds to the difference between the positions of the
active neuron in the path integration HD and the memory
HD populations and thus represents the magnitude of the
error.

4) Error correction: Apart from the error magnitude, the
error estimation network detects the sign of the error, which
signals if the orientation estimated through path integration
is ahead or behind the orientation that is inferred from the
detected LED and the activated memory HD neuron.

Neurons marked green and blue in Fig. 1 correspond to
a small error that triggers calibration of the path integration
network. Two groups of neurons representing a small nega-
tive error (blue) and a small positive error (green) read out
the sign and magnitude of the estimated error. To convert
the error into firing rates of the Shift neurons, these groups
are connected to two pools of speed correcting neurons.
These neurons translate the space-code of the error read-
out neurons (the identity of the active neuron represents the
error magnitude) to rate code, where the firing rate of the
neural population represents the encoded value. To achieve
this, each neuron in the positive or negative error population
is connected to a certain number of the speed correcting neu-
rons, proportional to the detected error magnitude (Fig. 1):
e.g., the error neuron that represents the lowest error is
connected to a single speed-correcting neuron, while an error
neuron that represents a high error is connected to a dozen
of speed correcting neurons.

The shift neurons (Scw and Sccw) are driven by plastic
synapses from the motor neurons (Mcw and Mccw), which
send an efference copy of the motor command to the path
integration system. The two speed correcting populations de-
crease or increase the firing rate of the shift neurons: positive

error neurons are excitatory and increase the firing rate, while
negative error neurons are inhibitory and decrease the firing
rate. This temporary correction is then made permanent by
inducing a weight change in the plastic synapses from Mcw
and Mccw to Scw and Sccw according to the following error-
modulated Hebbian learning rule:

∆wM→S = (x0 · y1 + y0 · x1) · r · (wmax−wM→S)− x0 · r. (4)

Here, r denotes the reinforcement (error) trace that is set to
1 by the detected error and decays exponentially over time.
The maximal weight is limited by a value of wmax = 120.

Whenever the postsynaptic firing rate is higher than the
presynaptic one, the synaptic weight is more likely to in-
crease: the weight is increased if the pre- and postsynaptic
neurons are active at the same time and the weight is
decreased upon every presynaptic spike, not followed or
preceded by a postsynaptic spike. The negative weight update
brings about the property that higher pre- than postsynaptic
firing rate leads to synaptic weight depression. Thus, the
weight increase or decrease is controlled by the firing rate
of the postsynaptic (shift) neurons during error detection.

When the orientation estimation in the path integration
HD matches the LED-induced orientation in memory HD,
the error is zero, and the learned synaptic weights determine
the firing rate of the Scw and Sccw neurons and with that the
path integration speed, i.e., the movement speed of the active
neuron in the path integration HD.

C. Neuromorphic robotic setup

Path  integration
HD

Memory
HD

Correct 
firing rate

Input to
1st dimension

Input to
2nd dimension

Fig. 4. Activation flow in the neuromorphic architecture: Motor signals
are sent to the path integration HD network, while visual information from
DVS is sent to the LED layer, connected to the memory HD network. The
memory HD also receives input from the path integration HD. The memory
HD builds the map and drives the error detection network, which corrects
the map and path integration speed.

We evaluate the system’s performance with simulated and
real robotic data in a changing environment. The robot used
in this work is a mobile platform called Pushbot, which
consists of a 10×10cm chassis with two motors driving two
independent tracks for propulsion. It comprises an embedded
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DVS – a neuromorphic event-based camera [20], [21]. Each
pixel of the DVS is sensitive to the temporal change in
luminance and sends out an event using the Address Event
Representation (AER) protocol. The differential values of
the robot’s wheel encoders are used to generate input spike
trains with frequencies proportional to the robot’s angular
velocity. The initial frequency is chosen arbitrarily and is
adjusted by the network through learning when loop closures
are detected.

Based on the DVS output, we detect LEDs with three
different frequencies that are used as landmarks. The angular
positions of the LEDs are learned in synapses from LED to
the memory HD neurons. Mismatches between the learned
orientation and the currently estimated one trigger error de-
tection. Fig. 4 shows an overview of the interaction between
the robot and the neural network architecture. Fig. 3 shows
the robot in the arena with three blinking LEDs placed on
the walls.

III. RESULTS

A. Learning and forgetting of visual landmarks

To show how the network in Fig. 1 learns associations
between the estimated heading directions and LEDs, we
simulate a scenario with two LEDs placed in an environment
while the robot is rotating (see Fig. 5).

The HD networks in this experiment have 10 neurons.
The top plot in Fig. 5 shows the neural activity of the
path integration HD neurons. The middle and bottom plots
show the synaptic weights connecting the path integration
HD neurons to LED neurons and the LED neurons to the
memory HD neurons, respectively. Both spikes and weights
are colored according to the associated LED.

In this run, after 20 seconds, LED0 is removed, and
the network unlearns the formed association. The position
of LED1 (blue trace) happens to fall between two neigh-
boring HD neurons and weights to two HD neurons are
strengthened, to a lower value than weights to and from
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with 14 different initial path integration speeds, determined by the input
rates to the HD network. Simulation corresponds to 10 full rotations with
a single landmark.

LED0. When LED0 (yellow trace) is removed, the respective
weights decrease in every turn when the LED is expected,
but not observed.

Next, we validate learning and forgetting using recorded
robot data from seven consecutive turns of the robot in
an environment with 3 different LEDs. We measure how
many consecutive turns are necessary to achieve an effective
synaptic weight, i.e., a weight that is strong enough to initiate
postsynaptic activity. We found that most synapses are suf-
ficiently strong after the first rotation, with a probability of
0.67. A small number of weights achieve a sufficient weight
only after 4 full rotations. Most synapses require only one
turn with a missing LED to decrease their synaptic weight.

B. Adaptation of the path integration speed

In the next experiment, we show how speed of the neu-
ronal path integration can be adapted in the network. We
simulate a scenario in which a set of landmarks are detected
for a full turn. Fig. 6 shows neuronal activity recordings from
the Loihi chip when landmarks are recognized from 47 to
110 seconds, and the memory HD population is continuously
stimulated to represent this information. A set of negative
error detecting neurons becomes active and changes the
shifting speed of the neuronal activity in the HD population
to match the true angular velocity of the robot, noticeable in
the changing slope of the neuronal activity.
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To evaluate the system’s learning performance over several
encounters with the same landmark, we recorded activity
during 10 simulated turns of the robot observing a single
landmark. Landmark detection activates the corresponding
neuron in the memory HD population, leading to error
estimation. The path integration network slowly adjusts
its integration speed by decreasing the weights of plastic
synapses (Fig. 7).

Fig. 7 shows how the angular velocities, determined from
the network’s activity, converge over time to the true value
of the robot’s turning speed. Different colors correspond to
trials with different initial path integration speeds in HD
network. The black dashed line corresponds to the true
angular velocity. In all trials, starting with different speeds,
the neural network converges to match the speed of the
moving activity to the true angular velocity of the robot.

C. Closed-loop robotic experiment

Finally, we examined the interplay of map formation and
path integration calibration in a robotic experiment, creating
a closed-loop setup with the Loihi chip and the Pushbot
robot. The Pushbot is rotating in a small square arena
with 3 LEDs placed on the walls that blink with different
frequencies, see Fig. 3 and Fig. 4.

Fig. 8 shows the outcome of the experiment. The top panel
shows the activity of the three LED neurons, the second panel
shows the synaptic weights that are formed during detection.
Small blue squares correspond to spikes emitted from neu-
rons in the “large error” population, which induce forgetting
of the previously learned LEDs. The third panel shows the
neural activity in the path integration HD population, and the
bottom panel shows angular velocity obtained from wheel

encoders and from neural path integration.
It becomes apparent that up to second 50 the estimated

and visually inferred heading directions do not match, as
many error neurons are active (second plot in Fig. 8), leading
to learning and forgetting of different associations between
LED neurons and memory HD neurons. In the bottom panel,
one can see that the neural angular velocity is slower than
the one obtained from wheel encoders. From second 60 to
82, the neural path integration speed comes closer to the
robot’s angular velocity, and errors are detected only once in
a while. Finally, the path integration speed equals the robot’s
angular velocity, and no errors are detected. The positions
of the strong synaptic weights between LED neurons and
memory HD neurons are close to true positions of the LEDs,
indicated with stars in the second plot in Fig. 8. Thus, despite
the very coarse resolution in the HD networks and unreliable
detection of the blinking LEDs (upper plot), the system is
capable to both calibrate its path integration speed and update
positions of landmarks to correct values.

IV. CONCLUSION

We developed an SNN architecture for loop closure detec-
tion in a 1D SLAM scenario on the neuromorphic research
chip Loihi. The neuronal architecture autonomously learns
to match the internal representation of the robot’s angular
velocity to its actual turning speed and simultaneously cre-
ates a map of landmarks. The neuronal path integration is
realized as the speed of movement of neural activity in a ring
attractor network. Learning is gated by the detected mismatch
between landmark locations recalled bottom-up from the path
integration and top-down from memory of locations of visual
cues.

The network structure is inspired by biological findings
on navigational cell types in rodents and the head direction
network of the fruit fly [3], [22]. This work presents a
first architecture for loop closure detection and autonomous,
online learning for calibration of a path integration system
and map formation in an SNN, realized on neuromorphic
hardware. Despite its proof of concept character, this step is
essential to motivate scaling up of neuromorphic hardware
systems.
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