Fast event-driven incremental learning of hand
symbols

Iulia Alexandra Lungu, Shih-Chii Liu, and Tobi Delbruck
Institute of Neuroinformatics, University of Zurich and ETH Zurich
Zurich, Switzerland
iulialexandra,shih,tobi @ini.uzh.ch

Abstract—This paper describes a hand symbol recognition
system that can quickly be trained to incrementally learn to
recognize new symbols using about 100 times less data and
time than by using conventional training. It is driven by frames
from a Dynamic Vision Sensor (DVS) event camera. Conventional
cameras have very redundant output, especially at high frame
rates. Dynamic vision sensors output sparse and asynchronous
brightness change events that occur when an object or the
camera is moving. Images consisting of a fixed number of
events from a DVS drive recognition and incremental learning of
new hand symbols in the context of a RoShamBo (rock-paper-
scissors) demonstration. Conventional training on the original
RoShamBo dataset requires about 12.5h compute time on a
desktop GPU using the 2.5 million images in the base dataset.
Novel symbols that a user shows for a few tens of seconds to the
system can be learned on-the-fly using the iCaRL incremental
learning algorithm with 3 minutes of training time on a desktop
GPU, while preserving recognition accuracy of previously trained
symbols. Our system runs a residual network with 32 layers and
maintains 88.4% after 100 epochs or 77% after 5 epochs overall
accuracy after 4 incremental training stages. Each stage adds an
additional 2 novel symbols to the base 4 symbols. The paper also
reports an inexpensive robot hand used for live demonstrations
of the base RoShamBo game.

Index Terms—neuromorphic, event camera, machine learning,
data-driven, incremental learning, robotics, computer vision

I. INTRODUCTION

Many state-of-the-art results in computer vision are based
on convolutional neural networks (CNNs) processing images
captured by conventional frame-based cameras. CNNs are
trained using backpropagation on large labeled datasets. Learn-
ing new classes requires retraining on both old and new
data. However, for platforms with limited resources, such an
approach is not optimal, since computing and storage are
limited. Neuromorphic cameras such as the Dynamic Vision
Sensor (DVS) [1] [2] operate akin to the transient pathway
in biological eyes to only report brightness changes in the
scene, thereby obviating the need to process entire images. In
this paper we present a system based on [3]], [4] which uses an
accumulation of a fixed number of DVS events to create sparse
images of hand symbols for classification. Moreover, we
also demonstrate how a recent incremental learning algorithm
called iCaRL [5] is used to add new symbols that the system
can recognize, without forgetting the old symbols, while using
only 1% of the time needed to train the old symbols.

This work is partially funded by the Samsung Institute of Technology.

. )

Fig. 1. “Dextra” robot hand driven by a convolutional network that can learn
hand symbols on the fly.

In working towards our aim for continuous learning on low-
power embedded hardware, this work reduces the resources
required for training the system to recognize new symbols.
This paper introduces a novel event-based hand symbol dataset
and shows that event-based cameras can be successfully
integrated in a CNN-driven pipeline for incremental object
classification. Section [lI| presents the related literature, while
Section [l introduces the methods used for incremental learn-
ing, described in detail in Section [[V] The paper ends with a
section discussing implications and future directions.

II. RELATED WORK

The original rock-paper-scissors demonstration was briefly
described in [4]. This paper reports an improvement of it by
the inclusion of a robot hand described in Sec. [V-Al The
demonstration plays the game of RoShamBo against a human
opponent. Rather than trying to outguess the opponent, it turns
RoShamBo into a physical sport by quickly recognizing the
human’s symbol and showing the winning symbol in response.
The symbol recognition is performed by a small CNN that
is driven by frames of accumulated DVS events. The frames
have a constant number of brightness change events. Slow
hand movements generate the frames at a low rate of about
2Hz, while rapid hand movements generate them at a higher
rate of up to 500Hz. By using constant-event frames, the DVS
frame is not blurred even for the fastest hand movements, as it
would be for a constant-time frame. The small CNN capable
of learning the three hand symbols plus the background no-



MaxPool
MaxPool 2x2 2x2

32x14x14 64x6x6

MaxPool
2x2
16x30x30

[r=—==n i
Scissors
2\%&,\ = Background

Conv
Conv 3x3 3x3
32x28x28 64x12x1
2

MaxPool 2x2
128x2x2

Conv
3x3
128x4x4

Conv 5x5
16x60x60

Conv 1x1

+
MaxPool 2x2
128x1x1

Fig. 2. The convolutional network used for the original rock-paper-scissors
demonstration [4].

symbol class and achieving real-time (<20ms on laptop CPU)
inference is shown in Fig. [2] (see also Sec. [V-A).

In incremental learning, catastrophic forgetting occurs when
training an existing network only with new data overwrites the
old knowledge [6].

Forgetting can be offset to a certain extent by various
methods, such as exemplar storage (iCaRL) and knowledge
distillation [5], [7]], elastic weight consolidation (EWC) [8]],
and autoencoder or GAN sample generation [9], [10], although
the topic is still actively researched. EWC has been shown
to not scale well [10], [11], while [9], [10] generate training
samples from the model, which is much slower than reading
them from memory.

III. METHODS

For incremental symbol learning in this work, we chose
iCaRL [35] because it has bounded memory, and automates the
choice of exemplars. These features make it a good match to
the data-driven frames from DVS and our live demonstration.

Symbols are classified by a residual network with 32 layers
(ResNet-32) [12], because the capacity of the original 114k-
parameter 18 MOp/frame RoShamBo CNN of [4] proved to be
too small for incremental learning. The ResNet-32 has 460k
parameters and takes 190 MOp/frame to compute. For live
demonstration, the ResNet-32 requires about 130ms per frame
in TensorFlow 1.10.0 in CPU mode on a linux PC compared
with about 13ms for the original CNN.

The asynchronous brightness change events are accumulated
into 64x64 2D pixel histograms of a constant number of
events, referred to here as constant-event frames [3[]. Since
the frames are created using a fixed number of events rather
than a fixed time window, the frame rate is proportional to the
hand speed. The output decision consists of the class label of
the symbol being shown by the human participant.

The base training data for this study uses the
ROSHAMBOI17 datase{!] that consists of labeled continuous
DAVIS240C recordings of people showing a single symbol,
obtained using jAER [13]], a software developed to process
DAVIS data. The recordings are cut into frames using the
JAER utility dvs-slice-avi-writer and compiled into
Google TensorFlow tfrecords. Input normalization (Fig. [3))

TROSHAMBOI7: http://sensors.ini.uzh.ch/databases.html

Fig. 3.

A: DVS samples before normalization. B: DVS samples after
normalization, including background class samples

included the rectification of all DVS events to positive ON
events with a 200-event maximum grayscale bin value and
mapping the image pixel values to a 0-1 range by performing
a 3-sigma normalization [3|]. These methods are applied both
during training and at inference time.

Training is divided in two phases: first we perform a base
training over 100 epochs on the 2.56 million ROSHAMBO17
samples used for the original RoShamBo demonstration.
ROSHAMBO17 consists of the three symbols used in the
game, rock, paper and scissors, as well as a fourth background
class which accounts for all other object types. Users showed
each symbol with each hand for about a minute and were
instructed to explore all possible orientations, positions and
scales. The background class data was collected from camera
output during no motion (noise) and by showing the camera as
many other scenes as possible, e.g. body movement, waving
the camera around the office, etc. Fig. [3] shows examples
for the input classes before and after normalization. All the
recordings for the base training were sampled using four
different numbers of accumulated events: 500, 1000, 2000 and
4000. The resulting images were also mirrored to augment the
data. This training phase was performed offline, using all the
available samples, and it represents the core knowledge of the
system. Training the ResNet-32 over 100 epochs on the 2.56
million samples of the base classes requires 12.5 hours on a
250W Nvidia GTX 1080 Ti GPU.

However, the goal is to use this algorithm on mobile
devices to acquire new knowledge in the real world, which
imposes constraints on training time and memory. Therefore,
we wanted to avoid retraining on all previous data when new
objects must be learned. iCaRL selects some of the most
representative samples for each of the classes encountered
and only stores those in memory. Here, we stored only 4000
exemplars for each class compared with the original 640k
samples per base class (160 times fewer samples). These
exemplars are chosen automatically, to closely approach the
mean features of their respective classes. Each exemplar is
chosen by maximizing the normalized dot product between the
average feature vector over all the already chosen exemplars


http://sensors.ini.uzh.ch/databases.html

and the average feature vector of all the samples. The feature
vector consists of the output of the penultimate layer of the
ResNet. In iCaRL, the symbol classification is based on this
same metric, by comparing the feature vector relative angle
between the input image feature vector and the mean feature
vector of each set of class examplars, which stands in contrast
to the usual softmax output used for conventional classifier
CNNEs.

Fig. 4. Incremental symbols used in this paper

Whenever data for novel classes becomes available, a new
re-training stage of the network takes place using the stored
exemplars and the new data. After each incremental training
stage, exemplars for the newly learned classes are stored.
A distillation loss [7] is used to better preserve knowledge
about the known classes. By using a distillation procedure,
the network is encouraged to output the same non-softmaxed
scores (logits) for the old classes as it did in the previous
training phases. This loss also ensures that backpropagation
is applied to all output units for the old classes, since these
scores all have non-zero values, unlike the one-hot labels for
the new classes. Novel class data (Fig. @) is acquired in the
same manner as the base data, i.e., by accumulating events
and cutting videos into frames. However, for incremental
learning of new symbols, we used only 2000-event DVS
frames. Furthermore, the videos recorded for each new class
are much shorter than the base training data, ranging from 15
seconds to 1 minute. To compensate for a lack of data, we
augmented the new samples with additive uniform noise with
an amplitude of 2 gray level units (total grayscale was 0-255)
as many times as necessary to obtain 4000 images for each
novel class.

The incremental symbol learning demonstration is driven by
a custom JjAER class, RoShamBoIncrementaﬂ that communi-
cates over a UDP socket to a python process. RoShamBolncre-
mental provides a GUI used to inform the system that a new
symbol is being presented. Raw data is streamed to a file.
When the demonstrator gauges that a sufficient variety of data
has been collected, they push a button that provides a dialog to
enter the new class label. Next, RoShamBolncremental sends
a message to the python client to start incremental training on

Zhttps://github.com/SensorsINI/jaer/blob/master/src/ch/unizh/ini/jaer/
projects/npp/RoShamBolncremental.java

the new data. The python client produces the training samples
from the recorded data and starts training. When progress is
complete, RoShamBolncremental loads the new CNN from
disk.

IV. RESULTS

To quantify incremental training capability, we recorded a
new dataset of 8 novel symbols, examples of which are shown
in Fig. {] Table [I] shows recognition accuracy results for base
and incremental training after incremental learning of the first
two novel symbols. Accuracies are calculated on test set data
from samples not used in training, selected by recording a
separate video for each novel symbol. The iCaRL accuracy
is compared to a regular network, which does not retrain on
previous classes whenever new symbols are available. Both
the regular and iCaRL networks can be trained over 100
epochs for 97% accuracy on the 4 base symbols (“BA after
BT”). However, if the regular network is retrained (starting
from the base weights) on only the samples for two novel
symbol classes, it achieves 99.56% accuracy on these two
novel symbols (“IA after IT”), but the accuracy on the original
base classes drops to almost 0% (“BA after IT”). This extreme
illustration of catastrophic forgetting shows that the network
never selects the base classes, because it mistakes all samples
as belonging to the new classes. Even after only a few epochs
of training the base class accuracy drops to less than 10%.
However, using the iCaRL method, which uses exemplars of
all classes for the incremental training phase, the network
maintains a high accuracy of 92.9% on the base classes while
achieving 95.6% accuracy on the two new classes. All the
Table [[] experiments used 100 epochs of training.

TABLE I
REGULAR VERSUS INCREMENTAL TRAINING
Network type | BA after BT | BA after IT | IA after IT
Regular 97% 0.00002% 99.56%
iCaRL 97% 92.9% 95.6%

BA = accuracy on base classes

BT = training on base classes

TA = accuracy on incremental classes

IT = training incrementally on new classes

To reduce training time during the live demonstration, the
incremental training of each two new symbols only used 5
epochs, which takes about 3 minutes on the NVIDIA GTX
1080 Ti GPU, as opposed to 15 minutes for 100 epochs.
Fig. [5] shows the impact of reducing the number of epochs
on accuracy. The x axis shows how the overall accuracy (on
old and new classes combined) evolves as more classes are
added incrementally. The curves are an average of 30 runs
with each run using different choices of the novel classes.
The left-most accuracy value corresponds to the 4 base classes
alone. Its standard deviation is zero, because the same base
network was used for all the 30 runs. At each incremental
training stage we add 2 novel classes. In total we learn 8 new
symbols on top of the 4 base ones. Adding the first 2 new


https://github.com/SensorsINI/jaer/blob/master/src/ch/unizh/ini/jaer/projects/npp/RoShamBoIncremental.java
https://github.com/SensorsINI/jaer/blob/master/src/ch/unizh/ini/jaer/projects/npp/RoShamBoIncremental.java

Training over 5 epochs

Accuracy [%]

8
Number of classes

Fig. 5. Overall recognition accuracy of the incremental learning algorithm for
different numbers of iCaRL training epochs. The solid curve represents the
mean accuracy over 30 runs. The shading corresponds to the 1-sigma bounds.
The novel symbols added are shuffled at each run.

symbols requires only 5 epochs training to reach above 85%
accuracy. Although the drop in accuracy compared to training
the network over 100 epochs is significant (around 8 percent
points), when tested in a live demonstration, the level of
accuracy obtained after only 5 epochs of training is sufficient
to convince participants that the system can recognize their
hand gestures. Accuracy variability results from a combination
of random initial weights for the newly added output units,
as well as the random choices of novel symbols; some are
more difficult to distinguish than others. Only about half of
the variability in accuracy is due to incomplete training. A
videdP] shows the live demonstration.

A. Robot hand

Fig. [I] shows a robot hand that we added to the base
RoShambo game as part of this work. This “Dextra” hand
proved popular with the public, so we report it for easier
replication. The robot hand shown is a no-brand device avail-
able from ebay and aliexpress, sometimes labeled as “Bionic
Robot Hand”. It costs about $100 unassembled. We replaced
the low quality servos with better analog servos costing about
$20 each. To control the fingers, we built a controller using an
Arduino Nano. It receives single character commands over the
USB serial port to show each symbol. Because the fingers tend
to jam, to prevent burnout, the Arduino firmware ensures that
servos are only powered on for less than 500 ms. The analog
servos turn off motor current when pulses are not sent to them
and do not generate the annoying buzzing sounds from more
modern digital servos. The 3 RoShamBo symbols use only
two servo channels. The robot hand symbol changes in about
150 ms (a human can change symbols in about 75 ms). Videosﬂ
show Dextra playing RoShamBo.

V. CONCLUSION

This paper introduced an event-driven hand symbol recog-
nition system which can be incrementally trained to recognize
new symbols without forgetting old symbols in a few minutes,
a factor of more than 100X faster than retraining the network

3Incremental RoShamBo: hhttps://youtu.be/aWK572MMalE
4Dextra driven by NullHop : https://youtu.be/nTUjROa5f18
Dextra on laptop CPU with naive subject: https://youtu.be/95GsOQbwNLU

from scratch on all the data. The training set memory size
is also reduced by a factor of 160X. It means that a smart-
phone GPU with about 1% of the speed of a desktop GPU
could compute the incremental training using about 64MB of
training-set memory in about 5h training time. This is still a
significant amount of time but could take place during battery
charging. Despite iCaRL contributions to incremental learning,
this algorithm still requires thousands of samples to learn new
classes. To further reduce training time, we are looking into
Siamese networks for one shot learning , that are able to
recognize new symbols after having seen only a few examples
for each novel class.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15us
latency asynchronous temporal contrast vision sensor,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb 2008.

[2] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck, “A
240x 180 10mW 12us latency sparse-output vision sensor for mobile
applications,” in 2013 Symposium on VLSI Circuits (VLSIC), 2013, pp.
C186-C187.

[3] D.P. Moeys, F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and
T. Delbrck, “Steering a predator robot using a mixed frame/event-driven
convolutional neural network,” in 2016 Second International Confer-
ence on Event-based Control, Communication, and Signal Processing
(EBCCSP), June 2016, pp. 1-8.

[4] 1. Lungu, F. Corradi, and T. Delbruck, “Live demonstration: Con-
volutional neural network driven by Dynamic Vision Sensor playing
RoShamBo,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2017, pp. 1-1.

[5] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classifier and representation learning,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[6] M. McCloskey and N. J. Cohen, “Catastrophic interference in
connectionist networks The sequential learning problem,” in
Psychology of Learning and Motivation, G. H. Bower, Ed. Academic
Press, 1989, vol. 24, pp. 109-165. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S0079742108605368

[71 G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” Mar 2015. [Online]. Available: https://arxiv.org/abs/
1503.02531

[8] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521-3526, 2017. [Online].
Available: http://www.pnas.org/content/114/13/3521

[91 R. Kemker and C. Kanan, “FearNet: Brain-inspired model for
incremental learning.” [Online]. Available: http://arxiv.org/abs/1711.
10563

[10] A. Rios and L. Itti, “Closed-loop GAN for continual learning.”
[Online]. Available: http://arxiv.org/abs/1811.01146

[11] R. Kemker, A. Abitino, M. McClure, and C. Kanan, “Measuring
catastrophic forgetting in neural networks.”” [Online]. Available:
http://arxiv.org/abs/1708.02072

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

[13] “jAER.” [Online]. Available: http://jaerproject.org

[14] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-

Morales, I. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-
C. Liu, and T. Delbruck, “NullHop: A flexible convolutional neural
network accelerator based on sparse representations of feature maps,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1-13,
2018.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, vol. 2, 2015.

[15]


https://youtu.be/aWK572MMa1E
https://youtu.be/nTUjROa5f18
https://youtu.be/95GsOQbwNLU
http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
http://www.pnas.org/content/114/13/3521
http://arxiv.org/abs/1711.10563
http://arxiv.org/abs/1711.10563
http://arxiv.org/abs/1811.01146
http://arxiv.org/abs/1708.02072
http://jaerproject.org

	Introduction
	Related work
	Methods
	Results
	Robot hand

	Conclusion
	References

