
Conversion of analog to spiking neural networks
using sparse temporal coding

Bodo Rueckauer
Institute of Neuroinformatics

University of Zurich and ETH Zurich

Zurich, Switzerland

Email: rbodo@ini.uzh.ch

Shih-Chii Liu
Institute of Neuroinformatics

University of Zurich and ETH Zurich

Zurich, Switzerland

Email: shih@ini.uzh.ch

Abstract—The activations of an analog neural network (ANN)
are usually treated as representing an analog firing rate. When
mapping the ANN onto an equivalent spiking neural network
(SNN), this rate-based conversion can lead to undesired increases
in computation cost and memory access, if firing rates are high.
This work presents an efficient temporal encoding scheme, where
the analog activation of a neuron in the ANN is treated as the
instantaneous firing rate given by the time-to-first-spike (TTFS)
in the converted SNN. By making use of temporal information
carried by a single spike, we show a new spiking network
model that uses 7-10X fewer operations than the original rate-
based analog model on the MNIST handwritten dataset, with an
accuracy loss of < 1%.

I. INTRODUCTION

Deep Learning networks achieve state-of-the-art in numer-
ous machine learning applications, for instance object detection
and classification, scene parsing, and video captioning [1], [2].
Highly accurate classification during inference comes at a cost:
Typical Analog Neural Networks (ANNs) require floating-
point multiply-accumulate operations (MACs) to compute the
activation values of all the neurons in the network. Graphical
Processing Units (GPUs) process these operations efficiently
in parallel, but their power consumption can prohibit their
use in embedded applications. Considerable effort is being
devoted to the development of hardware accelerators as well as
algorithmic improvements which enable the efficient execution
of deep neural networks on these hardware platforms. Notable
directions include reducing the precision of weights and / or
activations [3], skipping computations when activation values
are zero [4], and minimizing data movement [5].

Unmatched in power efficiency, the biological brain em-
ploys all-or-none pulses (spikes) to transmit information. Mo-
tivated by this paradigm, artificial Spiking Neural Networks
(SNNs) are being developed to solve similar tasks as ANNs,
but making use of cheaper “addition” operations instead
of MACs, and leveraging sparsity in neuron activations, as
neurons will only be active if driven by a strictly positive
input. In tasks with a continuous stream of input data, SNNs
combined with event-based sensors [6] allow for data-driven
computation, making SNNs ideal for always-on, low-power ap-
plications. Neuromorphic hardware [7], [8] optimizes routing
of spikes across the network and implements power-efficient
computation.

Training deep SNNs directly can be difficult. Recent spike-
based learning algorithms demonstrated promising results on

the MNIST dataset ([9], [10]), and even natural image datasets
[11], but the scalability of the learning algorithm to larger
architectures and more challenging data sets has yet to be
shown. Mapping a pre-trained ANN to an SNN of similar
architecture has been applied successfully to natural image
datasets like CIFAR-10 [12], and ImageNet [13], [14]. The
encoding scheme underlying this SNN conversion approach is
rate-based: The SNN neurons generate a sequence of discrete
spikes, which, when averaged over the simulation duration,
approximates the analog firing rate of the corresponding ANN
neuron. This rate-based encoding becomes more accurate as
the simulation duration of the SNNs is increased and more
spikes are generated. The computational cost of the SNN also
scales with the average firing rate of its neurons: Each spike
entails fetching the weight values of the synaptic connections
to neurons in the following layer, and updating the state
variables (e.g., membrane potential) of those post-synaptic
neurons. In the ANN, all neurons are updated once, using
MAC operations; in the SNN, an active subset of neurons
is updated repeatedly, using ADD operations. Because the
energy cost of memory transfer can exceed the energy cost
of computations by two orders of magnitude [15], the SNN
may lose a potential performance advantage over the ANN as
the rates increase.

The energy cost disparity of memory and computation
motivates the search for a spike code that is more efficient
than the rate-based code. Coupled with evidence of temporal
codes in the brain [16], we propose in this paper an ANN-
to-SNN conversion mechanism, where the analog activation
values of the ANN neurons are represented by the inverse time-
to-first-spike (TTFS) in the SNN neurons [17]. Thus, neurons
in the SNN spike at most once during inference of one sample,
combining the spatial (feature map) sparsity of SNNs with the
temporal sparsity of ANNs.

Earlier work in this direction includes the HFirst [18]
network which uses spike timing in object recognition: The
max-pool operation is implemented by performing a temporal
winner-take-all among neurons in a pooling region. The au-
thors in [19] developed a method to convert ANNs to SNNs
based on rate-coding, but with adapting thresholds that reduce
the firing rates significantly compared to other rate-based
methods. Several groups have trained SNNs directly, either
in an unsupervised [11], [20] or supervised manner [21], [9].
Closely related to our coding scheme, Mostafa and colleagues
[22] proposed an algorithm to train an SNN using an analytic

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Figure 1. Spike generation mechanism with time-to-first-spike coding.

expression for the time-to-first-spike, which can be optimized
via back-propagation. Where applicable, we compare their
results with ours in Sec. III.

The three variants of our proposed TTFS encoding are
described in Sec. II. The evaluation of these methods on
the MNIST dataset is presented in Sec. III, and the results
discussed in Sec. IV.

II. METHODS

A. Time-to-first-spike base-line model (“TTFS base”)

In general, the dynamics of the membrane potential ui(t)
of a neuron i can be modeled with the following equation:

ui(t) =
∑

t
(f)
i

∈Fi

ηi(t−t(f)i)+
∑
j∈Γi

∑
t
(f)
j

∈Fj

wijεij(t−t(f)j)+Iext(t),

(1)

where ηi models the shape of an action potential (including
a possible refractory period), the scalar values wij are the
synaptic weights, the kernel εij describes the post-synaptic
potential (PSP) caused by an input spike from neuron j, and
the external input current Iext(t) represents the bias. The set

Fi = {t(f)i | 1 ≤ f ≤ n} = {t | ui(t) = θ} contains the output
spike times, and Γi denotes the set of pre-synaptic neurons.

In this work, we require only the first spike of each neuron
and can prevent additional spikes e.g., by making the refractory
period very long. Equation (1) for the membrane potential up
to the first spike of neuron i then simplifies to

ui(t) =
∑
j∈Γi

wijεij(t− t
(0)
j) + bit. (2)

We choose a simple piecewise-linear form for the PSP

kernel εij(t − t
(0)
j) =

[
t− t

(0)
j

]
H(t − t

(0)
j), where H(x) is

the Heaviside step function. The Heaviside function can be

removed by introducing Γ<
i := {j | t(0)j < t

(0)
i } as the set

of “causal neurons”, i.e., pre-synaptic neurons whose spikes
arrive at neuron i before its output spike is generated. Then

ui(t) =
∑
j∈Γ<

i

wij

[
t− t

(0)
j

]
+ bit. (3)

In a simulation with time step dt, this explicit equation
translates to a rate of increase

ui(t+ dt)− ui(t)

dt
=

∑
j∈Γ<

i

wij + bi =: μi. (4)

This mechanism is illustrated in Figure 1. In order to
determine the first instance in time when neuron i spikes, we

set the membrane potential equal to the threshold, ui(t
(0)
i) = θ,

and solve for t
(0)
i :

t
(0)
i =

1

μi

⎛
⎝θ +

∑
j∈Γ<

i

wijt
(0)
j

⎞
⎠ (5)

The corresponding instantaneous firing rate ri equals

1/t
(0)
i . Successful ANN-to-SNN conversion implies that the

SNN spike rate ri is approximately equal to the corresponding
activation ai of the original ANN.1 Then the output spike time
in the SNN is inversely proportional to the ANN activation:

t
(0)
i = 1/ai. The update mechanism (3) constitutes the base

model of the present work, labeled “TTFS base” in the
remainder of the paper. A potential problem with the TTFS
expression (5) derived from the base model can be seen by
considering two neurons A, B which drive neuron C with
connection strengths wA = 1 and wB = −2. If the two input
neurons are activated with aA = 2 and aB = 1 respectively,
the net effect on neuron C in the ANN would cancel out. In the
SNN however, neuron A will fire twice as fast as B, potentially
driving C above threshold before the inhibitory input arrives.
Raising the threshold to delay generation of output spikes in
the post-synaptic neuron is not a viable solution because it will
equally delay the arrival of input spikes.

B. TTFS with dynamic threshold (“TTFS dyn thresh”)

In order to remedy the situation where neurons fire their
first spike prematurely, i.e., before having received all input
spikes, we replaced the constant threshold by a threshold that
dynamically adapts to the observed input. In particular, the
threshold of each neuron is increased by an amount equal to
the input that is still missing. When an input spike arrives, the
threshold is reduced by the amount equal to the corresponding
synaptic strength. Thus, the likelihood of producing an output
spike is inversely proportional to the information that would
be lost if the spike were generated prematurely.

To determine the missing input, the pre-synaptic neuron j
signals to its target neuron i whether the sign of its present

1We assume the ANN uses the common rectifying linear unit activation
function relu(x) = max(0, x).

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Figure 2. Classification error versus operation count of the original LeNet-5
ANN and the converted SNNs tested on MNIST. Error bars are removed from
inset for clarity.

PSP xj(t) is positive. If the net PSP of a neuron is excitatory
(it expects to fire a spike in the future), then the post-synaptic
neuron i updates its threshold according to the following rule:

θi(t) = θi(∞) +
∑
j∈Γi

|wij |H(xj(t)). (6)

In essence, each neuron fires two types of spikes: The first
type signals whether to expect a spike in the future, and the
second type is the actual output spike. We label this method
“TTFS dyn thresh” in the remainder of the paper.

C. TTFS with clamped ReLU (“TTFS clamped”)

Because the spike count in “TTFS dyn thresh” is at least
twice as high as in “TTFS base”, we propose a second
approach to mitigate the effect of long-latency spikes. The
original ANN is refined with a modified ReLU activation
function, where the activation values below some threshold
β > 0 are clamped to zero:

reluclamp(x) =

{
0 if x ≤ β

x else.
(7)

This way, the network learns to perform well without
relying on low activations, and neurons in the converted SNN
do not have to wait for long-latency spikes. A neat side effect is
that sparsity in feature maps is increased, further reducing the
spike count in the SNN. An obvious limitation of this method
is the need to retrain with a constraint in the form of the
clamped ReLU (7). This refinement is trivial in case of small
problems like MNIST, and may even show additional benefits
accompanying regularizations, but can become cumbersome
for larger networks and datasets. This method is labeled “TTFS
clamped” in the remainder of the paper.

Table I. COMPARISON WITH OTHER SNNS ON MNIST.

err [%]

Method ANN SNN # spikes # neurons

Rate-based conversion [23] 1.40 1.52 104 3194

0.90 0.88 105 5194

Rate-based conversion [19] 1.16 1.16 200 3194

0.86 0.86 100 5194

STDP, TTFS [11] NA 1.60 600 9144

STDP [20] NA 5.0 17 6400

Supervised TTFS learning [22] NA 3.02 135 1384

TTFS fully-conn. [this work] 1.50 1.65 100 1394

TTFS convol. [this work] 1.04 1.43 1000 7614

III. RESULTS

We tested the three versions of the time-to-first-spike
approach (“TTFS base”, “TTFS dyn thresh”, “TTFS clamped”)
on the MNIST handwritten digit recognition data set and
using the classic Lenet-5 [24] model. The dataset consists of
70000 28x28 gray-scale images, of which 10000 were used for
testing, the rest for training. The Lenet-5 model contains three
convolution layers, two max-pooling layers and two fully-
connected layers, amounting to a total of 7614 neurons and
1.2 million synapses. The network conversion and simulations
were performed using the “SNN toolbox”2. The top-1 error
of our LeNet-5 ANN is 1.04%; the classification of a single
sample in one forward pass requires 2.35 million operations3.
Inference in the SNN is not done in a single forward pass
where all kernel operations and neuron updates are performed
once, but instead consists of simulating the SNN until one
of the 10 output neurons has spiked. Then the simulation is
stopped. At each time step, we measure both the classification
error and the cumulative number of spikes in the network.
From the spike count we infer the total number of operations
in the SNN: Each spike causes a number of synaptic operations
equal to the number of post-synaptic neurons connected to it.

The curves of the mean classification error versus the
number of operations for all 3 methods are shown in Fig. 2. We
also display the curve obtained when converting the LeNet-5
ANN using a rate-code as in [13]. In all four SNNs, classi-
fication error is high initially while spikes propagate through
the network and the membrane potential of output neurons is
still below threshold. Once an output spike is produced, the
classification error drops. This drop is remarkably steep in the
TTFS encoded networks, indicating that such a network needs
approximately the same number of operations to classify each
sample. The error-curve of the rate-coded SNN drops more
slowly over time because neurons get to fire multiple times,
gradually improving the network output.

All three versions of the TTFS encoding scheme produce
very similar results: Their error rates are all within 1% of that
from the original ANN, while the number of operations is
reduced by 7-10X. The “TTFS base” baseline version reduces
operational cost by a factor of 7, but the classification error
rate is almost double due to missing long-latency spikes as
described in Sec. II. The advantage of this method is that
we do not have to retrain the network just as for the “TTFS
clamped” version, and we do not have to compute the threshold

2http://snntoolbox.readthedocs.io
3MACs are counted twice, for multiplication and addition.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Table II. LENET-5 PERFORMANCE ON MNIST.

Model MOps Err [%]

ANN 2.35 1.04

SNN rate code (44 sim. steps) 3.03 1.07

SNN rate code (18 sim. steps) 1.07 2.07

SNN TTFS base 0.31 2.00

SNN TTFS dyn thresh 0.34 1.80

SNN TTFS clamped 0.23 1.47

updates as in “TTFS dyn thresh”. As explained in Sec. II-B,
threshold updates require transmission of a flag, indicating
whether the post-synaptic neuron should expect a spike from
the pre-synaptic neuron. The spike count of “TTFS dyn thresh”
shown in Fig. 2 (not counting threshold updates) is higher
than “TTFS base” because output spike generation is delayed
to take into account long-latency spikes. When including
threshold updates, the operation count of “TTFS dyn thresh” is
3X larger than the base-line, but still 2X lower than the ANN.
The “TTFS clamped” approach achieves the lowest error rate
at the lowest operational cost during inference, because the
clamped ReLU increases sparsity in activations. This favorable
number of operations does not take into account the one-time
computational overhead when refining the ANN.

In order to compare our temporal coding method with the
one presented in [22], we trained an ANN using the same
architecture as in [22], namely a fully connected network with
784 input neurons, 600 hidden neurons, and 10 output neurons.
The error rate of this ANN on MNIST is 1.50% and the
operational cost is 953 kOps. Using the “TTFS base” method,
the converted SNN achieves 1.65% error rate at 0.59 kOps.
This computational cost is roughly equivalent to a network
average of 100 spikes per sample. The method proposed in [22]
does not convert an existing ANN, but trains the SNN directly
with back-propagation, using an expression for the time-to-
first-spike similar to Eq. (5). The gray-scale images were
binarized and the bit-precisions of the network parameters and
activations were reduced so as to facilitate the implementation
on an FPGA. The cost function contains a penalty term that
encourages neurons to fire early. Their resulting SNN achieves
a 3.02% error rate, at a reported average activity of 135 spikes
per sample.

IV. DISCUSSION

This work presents methods to convert analog neural
networks into spiking neural networks using a temporal coding
scheme that significantly reduces the spike redundancy present
in previous rate-based conversion methods. In our proposed
implementation, the activation value of neurons in the ANN
is encoded as time-to-first-spike in the converted SNN. Thus,
every neuron fires at most once, if receiving a positive net
input, but does not spike if receiving zero or negative input.
This encoding is sparse in both time and feature space, making
the model suitable for low-power embedded applications.

The baseline TTFS method does not require modification
of the network architecture or model parameters, and achieves
a reduction in operation cost of 7X using LeNet-5 on MNIST.
The classification error rate however increases by 1 percent-
age point. This increase can be mitigated by two proposed

variants of the baseline method. The first variant consists
of the refinement of the original ANN before conversion,
by using a modified ReLU activation function. The second
variant employs dynamic thresholds in the SNN to take into
account the outputs of low-activated neurons. Both variants
produce error rates close to the ANN error rate. The cost
associated with this improvement is the need for retraining
before inference, or for threshold updates during inference.

The SNNs obtained with the proposed TTFS code compare
favorably against previous SNN results on MNIST (Tab. I),
obtained either by conversion or direct training of the SNN.
The rate-based conversion of [23] is superior in terms of error
rate but requires significantly more spikes. The rate-based
conversion by [19] is likewise more accurate, and features low
spike rates due to its threshold adaptation. However, the spike
rate alone does not account for the hidden computations due
to threshold updates and processing of the real-valued spikes.
Methods for training SNNs directly score in terms of low spike
rates, but either require a higher number of neurons or converge
to a higher error rate. We wish to emphasize the limited value
of comparing conversion and training methods: Converting a
pretrained ANN gives the SNN a “head-start” in classification
performance; training the SNN directly has the advantage that
the model can be taught to cope with artifacts that would
occur during conversion, for instance the long-latency spikes
discussed in Sec. II.

SNNs potentially run more efficiently than standard ANNs
for two reasons: (1) SNNs use additions instead of MACs,
which consume about 14X less energy and occupy 21X less
area4. (2) Zeros in feature maps are automatically skipped
in the forward-pass of the SNN. On the other hand, SNN
operation incurs additional memory traffic due to repeated
updating of neuron states. The cost of a memory transfer can
exceed the cost of a floating-point multiplication operation by
two orders of magnitude [15]. TTFS-encoded SNNs fire at
most one spike per neuron, thereby minimizing the energy
cost in memory access.

Future research will be directed towards hardware im-
plementation of this time-to-first-spike code, as well as the
application on larger models and more challenging datasets.
The massive reduction of spike counts in TTFS-encoded
SNNs makes this model attractive for neuromorphic hardware
platforms where energy costs are dominated by spike-induced
memory fetches and spike routing.

ACKNOWLEDGMENT

This work has been supported by the Samsung Advanced
Institute of Technology and the University of Zurich.

REFERENCES

[1] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,”
Neural Networks, vol. 61, pp. 85–117, 2014. [Online]. Available: http:
//arxiv.org/abs/1404.7828http://dx.doi.org/10.1016/j.neunet.2014.09.003

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84930630277&
partnerID=40&md5=befeefa64ddca265c713cf81f4e2fc54

4Simulated for 32-bit floating-point in a Global Foundry 28 nm process.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” arXiv:1602.02830, 2016. [Online].
Available: http://arxiv.org/abs/1602.02830

[4] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
G. Indiveri, S.-C. Liu, and T. Delbruck, “NullHop: A Flexible Convo-
lutional Neural Network Accelerator Based on Sparse Representations
of Feature Maps,” arXiv: 1706.01406, 2017.

[5] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,”
in Proceedings - 2016 43rd International Symposium on Computer
Architecture, ISCA 2016, 2016, pp. 367–379.

[6] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120dB 15us
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-
neuron integrated circuit with a scalable communication network and
interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014. [Online].
Available: http://www.sciencemag.org/cgi/doi/10.1126/science.1254642

[8] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[9] H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” arXiv:1606.08165, 2016. [Online]. Available:
http://arxiv.org/abs/1606.08165

[10] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking Neural
Networks using Backpropagation,” Frontiers in Neuroscience, vol. 10,
no. NOV, pp. 1–10, 2016.

[11] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep neural networks for object recognition,”
arXiv, 2016. [Online]. Available: http://arxiv.org/abs/1611.01421

[12] B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and
Tools for the Conversion of Analog to Spiking Convolutional
Neural Networks,” arXiv:1612.04052, 2016. [Online]. Available:
http://arxiv.org/abs/1612.04052

[13] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of Continuous-Valued Deep Networks to Efficient Event-
Driven Networks for Image Classification,” Frontiers in Neuroscience,
vol. 11, no. December, pp. 1–12, 2017. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnins.2017.00682/full

[14] E. Hunsberger and C. Eliasmith, “Training Spiking Deep
Networks for Neuromorphic Hardware,” arXiv:1611.05141, 2016.
[Online]. Available: http://arxiv.org/abs/1611.05141%0Ahttp://dx.doi.
org/10.13140/RG.2.2.10967.06566

[15] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in Digest of Technical Papers - IEEE International Solid-State
Circuits Conference, vol. 57, San Francisco, CA, 2014, pp. 10–14.

[16] R. VanRullen and S. J. Thorpe, “Rate coding versus temporal order
coding: what the retinal ganglion cells tell the visual cortex.” Neural
computation, vol. 13, no. 6, pp. 1255–83, 2001. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/11387046

[17] S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies
for rapid processing,” Neural Networks, vol. 14, no. 6-7, pp. 715–725,
2001.

[18] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and
R. Benosman, “HFirst: A Temporal Approach to Object Recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 10, pp. 2028–2040, 10 2015.

[19] D. Zambrano and S. M. Bohte, “Fast and Efficient Asynchronous
Neural Computation with Adapting Spiking Neural Networks,”
ArXiv:1609.02053, 2016. [Online]. Available: http://arxiv.org/abs/1609.
02053

[20] P. U. Diehl and M. Cook, “Unsupervised learning of digit
recognition using spike-timing-dependent plasticity,” Frontiers in
Computational Neuroscience, vol. 9, no. August, pp. 1–9,
2015. [Online]. Available: http://journal.frontiersin.org/Article/10.3389/
fncom.2015.00099/abstract

[21] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang, “Feed-
forward Categorization on AER Motion Events Using Cortex-Like
Features in a Spiking Neural Network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 9, pp. 1963–1978, 2015.

[22] H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast
Classification Using Sparsely Active Spiking Networks,” in ISCAS,
2017.

[23] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 2015-Septe, Killarney, Ireland,
2015.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proceedings of the IEEE,
vol. 86, no. 11. IEEE, 1998, pp. 2278–2323.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

