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Abstract

We revisit the problem of estimating the parameters of a partially observed stochastic process
(Xt, Yt) with a continuous time parameter, where Xt is the hidden state process and Yt is the
observed process. The estimation is to be done online, i.e. the parameter estimate should be
updated recursively based on the observation filtration σ{Ys, s ≤ t}. Online parameter estimation
is a challenging problem that needs to be solved for designing adaptive filters and for stochastic
control in all cases where the system is unknown or changing over time, with applications in
robotics, neuroscience, or finance. Here, we use the representation of the log-likelihood function in
terms of the Radon-Nikodym derivative of the probability measure restricted to the observation
(the observation likelihood) with respect to a reference measure under which Yt is a Wiener process.
This log-likelihood can be computed by using the stochastic filter. Using stochastic gradient ascent
on the likelihood function, we obtain an algorithm for the time evolution of the parameter estimate.
Although this approach is based on theoretical results that have been known for several decades,
this explicit method of recursive parameter estimation has remained unpublished.

1. Introduction

We consider a partially observed diffusion process under the probability measure P

dXt = f(Xt, θ)dt+ g(Xt, θ)dWt, (1)

dYt = h(Xt, θ)dt+ dVt, (2)

where Xt is called the hidden state or signal of the system, and Yt is called the observation, and
Wt, Vt are independent Brownian motions (signal and observation noise respectively). The system
also depends on a static parameter θ. The classical filtering problem is to find the conditional
distribution of Xt conditioned on the history of observations FY

t = σ{Ys, s ≤ t}.
It is a fundamental theorem of filtering theory that the innovation process It, defined by

It = Yt −
∫ t

0

ĥsds, ĥs = E
[
h(Xs)

∣∣∣FY

s

]
, (3)

is a (P, FY
t
)-Brownian motion. By applying Girsanov’s theorem, we can change to a measure P̃ such

that Yt is a (P̃ , FY
t )-Brownian motion and thus (statistically) independent of both the hidden state
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Xt and the parameter θ. The change of measure has a Radon-Nikodym derivative

EP

[
dP

dP̃

∣∣∣FY

t

]
= exp

[∫
t

0

ĥsdYs −
1

2

∫
t

0

ĥ2
s
ds

]
, (4)

In this paper, we consider the problem of finding an estimator θ̃t that is FY
t
-measurable, such

as to estimate θ online from the stream of observations.1 For this task, we propose an approach
based on a modification of offline maximum likelihood estimation, and therefore need to compute
the likelihood of the observation as a function of the model parameters. Since the reference measure
P̃ does not depend on θ, we can express the marginal log-likelihood function of the observations in
terms of the optimal filter as

Lt(θ) = logEP

[
dP

dP̃

∣∣∣FY

t

]
=

∫ t

0

ĥsdYs −
1

2

∫ t

0

ĥ2
sds. (5)

For an in-depth discussion of the mathematical background (such as the Girsanov’s theorem, changes
of measure, or the filtering equation below), we suggest a look at the standard literature on filtering
theory, e.g. Bain and Crişan (2009).

2. Methods

We start by describing an offline method for parameter estimation using the log likelihood function
in Eq. (5), which serves as a basis for the online method.

If we were interested in offline learning, our goal would be to maximize the value of Lt(θ) for
fixed t. There is a number of methods to solve this optimization problem. Among these, a simple
iterative method is the gradient ascent, where an estimate θ̃k at iteration k is updated according to

θ̃k+1 = θ̃k + ηk
d

dθ
Lt(θ)

∣∣∣
θ=θ̃k

, (6)

where ηk > 0 is called the learning rate, and d/dθ denotes the derivative with respect to the parameter
θ. At each iteration, the derivative of the likelihood function has to be recomputed. From Eq. (5),
we obtain

d

dθ
Lt(θ) =

∫
t

0

(
d

dθ
ĥs

)(
dYs − ĥsds

)
, (7)

where the first factor of the integrand, denoted by

ĥθ

s

.
=

d

dθ
ĥs, (8)

is called the filter derivative of h with respect to θ. It captures both the explicit parameter depen-
dence of h and the implicit dependence due to the dependence of the conditional expectation EP on
θ. It may be computed by using the filtering equation applied to the function h,

dĥs = (Âh)sds+
(
(ĥ2)s − ĥ2

s

)
(dYs − ĥsds), (9)

where A = f(x, θ)∂x + 1

2
g2(x, θ)∂2

x
is the infinitesimal generator of the process X . After differenti-

ating by θ, we obtain the following stochastic differential equation (SDE) for the filter derivative:

dĥθ

s
= (Âh)θ

s
ds+

(
(ĥ2)θ

s
− 2ĥsĥ

θ

s

)
(dYs − ĥsds)−

(
(ĥ2)s − ĥ2

s

)
ĥθ

s
ds. (10)

1. We will denote all parameter estimates that are estimated using the maximum likelihood method by ‘˜’ (such as
θ̃), whereas filter estimates (conditional expectations with respect to the observation filtration) are denoted by ‘ˆ

’ (such as ĥs)
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In general, both Eq. (9) and (10) couple to an infinite set of moment equations that completely
describes the filter. In very rare cases, the filter has a finite-dimensional representation that allows
the filter to be described by a finite number of statistics. In all other cases, the filtering problem
can only be solved approximately, and the type of approximation scheme dictates the method for
computing the filter derivatives. We shall not go into the details of this question in this paper, but we
will present several examples of both exact and approximate filters below for which the calculation
of filter derivatives will be made explicit.

Let us now turn to the online algorithm. Instead of integrating the gradient of the log likelihood
function up to time t, a stochastic gradient ascent uses the integrand of the gradient of the likelihood
to update the parameter estimate online as new data is reaching the observer. The time-dependent
parameter estimate θ̃t evolves as

dθ̃t = ηt
d

dθ
dLt(θ)

∣∣∣
θ=θ̃t

= ηtĥ
θ

t

(
dYt − ĥtdt

) ∣∣∣
θ=θ̃t

, (11)

where ηt > 0 is a time-dependent learning rate. The processes ĥs and ĥθ
s
have to be integrated along

with all other SDEs, making use of the instantaneous parameter estimate θ̃t. We call Eq. (11) a
parameter learning rule for θ. The generalization to multiple parameters is straightforward, since
the gradient ascent does not mix parameters. Thus, the same equations hold for each parameter θ
in a parameter vector Θ independently.

In Eq. (11), we introduced a time-dependent learning rate ηt for three reasons. The first is that
gradient ascent is by definition dimensionally ill-defined, since it identifies a co-vector (the gradient
of the cost function) with a vector (the tangent vector of the learning trajectory) in a possibly
non-Euclidean parameter space. This identification is not preserved under a change of coordinates,
and therefore the learning trajectories depend on the chosen parametrization. A time-dependent
learning rate partially solves this problem by admitting a diagonal Riemannian metric, which makes
this identification in a consistent way. The second reason, which is a special case of the first, but the
only one we shall use in this paper, is the possibility to safe-guard against sign-changes in parameter
estimates that have to be either strictly non-negative or non-positive for stability reasons. Making
the learning rate proportional to the parameter estimate (i.e. ηt = ηθ̃t with η some positive constant)
will prevent that parameter from changing sign, effectively introducing a boundary. The third reason
is to make the learning rate explicitly dependent on time for non-stationary models. However, all
models considered in this paper will be stationary.

3. Examples and numerical validation

Here, we consider two different example filtering problems and show explicitly how the parameter
learning rules are derived. We also numerically validate the learning method. All numerical experi-
ments use the Euler-Maruyama method to integrate the SDEs. We evaluate the performance of the
learned filter by the mean squared error (MSE), normalized by the variance of the hidden process.

3.1 One-dimensional Kalman-Bucy filter (linear filtering problem)

We shall first consider the simple case of the linear filtering problem, for which the exact solution
is available. Here, we have three parameters, i.e. Θ = (a, σ, w), where a, σ > 0 and w ∈ R, and we
have f(x, a, σ, w) = −θx, g(x, a, σ, w) = σ and h(x, a, σ, w) = wx, such that the filtering problem
reads

dXt = −aXtdt+ σdWt, dYt = wXtdt+ dVt. (12)

We make the observation that this model is non-identifiable as a model for the observation process

Yt, since any rescaling of the parameters that preserves w
2
σ
2

2a
also preserves the statistics of Yt. The
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model becomes identifiable by treating either σ or w as known. Alternatively, one may choose a
parametrization for which Xt has unit variance (i.e. σ =

√
2a).

The online parameter update equations read

dãt = ηaãtw̃tµ
a

t (dYt − w̃tµtdt) , (13)

dσ̃t = ησσ̃tw̃tµ
σ

t
(dYt − w̃tµtdt) , (14)

dw̃t = ηww̃t (µt + w̃tµ
w

t ) (dYt − w̃tµtdt) . (15)

In order to prevent sign changes of the parameters we chose time-dependent learning rates that
are proportional to the parameters (ãt has to stay non-negative because the filter equations turn
unstable otherwise; for σ̃t and w̃t it is because of identifiability, i.e. the signs of σ and w are not
identifiable from FY

t ). We introduced the conditional mean µt = X̂t and its filter derivatives µa
t , µ

σ
t

and µw
t
. In fact, µt and the variance Pt of the Kalman-Bucy filter (Kalman and Bucy, 1961) evolve

as

dµt = −ãtµtdt+ w̃tPt(dYt − w̃tµtdt), µ0 = 0, (16)

dPt =
(
σ̃2
t − 2ãtPt − w̃2

tP
2
t

)
dt, P0 =

σ̃2
0

2ã0
, (17)

where the initialization of P0 reflects the prior belief of the variance of X0 based on the initial
parameter estimates, and the filter derivatives of the mean and variance satisfy

dµa

t
= −

[
µt +

(
ãt + w̃2

t
Pt

)
µa

t
+ w̃2

t
µtP

a

t

]
dt+ w̃tP

a

t
dYt, (18)

dP a

t
= −

[
2Pt + 2

(
ãt + w̃2

t
Pt

)
P a

t

]
dt, (19)

dµσ

t = −
[(
ãt + w̃2

tPt

)
µσ

t + w̃2
tµtP

σ

t

]
dt+ w̃tP

σ

t dYt, (20)

dP σ

t =
[
2σ̃t − 2

(
ãt + w̃2

tPt

)
P σ

t

]
dt, (21)

dµw

t = −
[
2w̃tµtPt +

(
ãt + w̃2

tPt

)
µw

t + w̃2
tµtP

w

t

]
dt+ [Pt + w̃tP

w

t ] dYt, (22)

dPw

t
= −

[
2w̃tP

2
t
+ 2

(
ãt + w̃2

t
Pt

)
Pw

t

]
dt, (23)

µa

0 = µσ

0 = µw

0 = 0, P a

0 = − σ̃2
0

2ã20
, P σ

0 =
σ̃0

ã0
, Pw

0 = 0, (24)

where the right-hand sides of the equations are evaluated with parameters set to the current esti-
mated values.

First, we investigated one of the cases where the model is identifiable, i.e. the parameter w was
assumed to be known and we set w̃0 = w = 3 and ηw = 0. The performance of the algorithm is

normalized MSE without learning with learning ground truth optimal

Linear model 0.99 0.29 0.28 0.28
Bimodal model 0.56 0.20 0.32 0.18

Table 1: Summary of the performance results of Fig. 2 and 5. The average MSE values with learning
are taken from the last third of the trial where performance has converged. Note that the
numbers in the left column (without learning) depend on the initial parameter estimates.
The initial parameters we used are found in the main text as well as in the captions to
Fig. 1 and 4. ‘Ground truth’ means that the filter is run with the ground truth parameters,
which achieves optimal performance in the linear case (because the Kalman-Bucy filter is
exact), but not in the nonlinear case. In the latter, optimal performance is estimated by
using a particle filter.
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visualized in Fig. 1 where the learning process is shown in a single trial, and in Fig. 2, where we
show trial-averaged learning curves for the MSE and the parameter estimates. For both figures, the
ground truth parameters were set to a = 1, σ = 2, and the initial parameter estimates were ã0 = 10
and σ̃0 =

√
0.2, making for a strongly mismatched model that produces an MSE close to 1 without

learning, i.e. with all learning rates set to zero. With positive learning rates ηa = ησ = 0.03, the
filter performance can be improved to almost optimal performance within a time-frame of T = 1000,
after which the parameter estimates approach the ground truth. The log-likelihood function is not
globally concave, but it has a single global maximum (see Fig. 3).

Next, we looked at the non-identifiable case where all three parameters have to be learned.
Depending on the initial conditions, the performance does not always reach optimal performance
within this time-frame, and parameter estimates do not necessarily converge to the ground truth.
However, Fig. 3 shows that the filter error can be dramatically reduced within a time-frame of
T = 3000 for all initial parameter estimates that we tested. This holds even for initial parameter
estimates that lead to an initial MSE > 1.

3.2 Bimodal state and linear observation model with (approximate) projection filter

Consider the following system with four positive parameters Θ = (a, b, σ, w):

dXt = Xt

(
a− bX2

t

)
dt+ σdWt, dYt = wXtdt+ dVt. (25)

In this problem the hidden state Xt has a bimodal stationary distribution with modes at ±
√
a/b.

Since the observation model is linear like in Section 3.1, the parameter learning rules are expressed
in terms of the posterior mean µt = X̂t as

dãt = ηaãtw̃tµ
a

t
(dYt − w̃tµtdt) , (26)

db̃t = ηbb̃tw̃tµ
b

t
(dYt − w̃tµtdt) , (27)

dσ̃t = ησσ̃tw̃tµ
σ

t (dYt − w̃tµtdt) , (28)

dw̃t = ηww̃t (µt + w̃tµ
w

t ) (dYt − w̃tµtdt) , (29)

We have made the learning rules proportional to the parameters in order to prevent sign changes,
i.e. to guarantee that all parameters remain positive. In contrast to the linear model in Section
3.1, the filtering problem is not exactly solvable. We use the projection filter on the manifold of
Gaussian densities introduced by Brigo et al. (1999), or equivalently, the Gaussian assumed density
filter (ADF) in Stratonovich calculus. The mean µt and variance Pt of the Gaussian approximation
to the filter evolve as

dµt =
[
ãtµt − b̃tµ

3
t −

(
3b̃t + w̃2

t

)
µtPt

]
dt+ w̃tPtdYt, µ0 = 0, (30)

dPt =
[
σ̃2
t +

(
2ãt − w̃2

tP
2
t − 6b̃t(µ

2
t + Pt)

)
Pt

]
dt, (31)

where the initial variance as a function of the initial parameter estimates is given by

P0 = Γ
(
ã0, b̃0, σ̃0

)
=

∫
∞

−∞
x2e

σ̃
−2

0

(

ã0x
2
−

1

2
b̃0x

4

)

dx

∫
∞

−∞
e
σ̃
−2

0

(

ã0x
2
−

1

2
b̃0x

4

)

dx

. (32)
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Figure 1: Online learning and filtering in the linear model. The hidden state Xt (black) and
Kalman-Bucy state estimate µt (red, shaded region shows µt ± one standard deviation√
Pt, c.f. Eqs. (16,17)) are shown for the linear model of Section 3.1 with parameters

a = 1, σ = 2, w = 3. The time-step is dt = 10−3, initial parameter estimates are
ã0 = 10, σ̃0 =

√
0.2, w̃0 = 3 (i.e. the parameter w is known), and the learning rates are

ηa = ησ = 0.03 and ηw = 0. Top: the entire learning period of T = 1000 shows a gradual
improvement of the performance of the filter. Bottom left: during the first 10 seconds, the
model is still strongly mismatched. Bottom right: during the last 10 seconds, the filter
optimally tracks the hidden state.

Figure 2: Online learning and filtering in the linear model. The time evolution of the MSE
and parameter estimates are shown for the linear model of Section 3.1 (see Fig. 1 caption
for details). Left: the moving average of the normalized MSE (time window of 20 seconds)
shows how the learning algorithm leads to a gradual improvement of the performance of
the filter, which eventually reaches the performance of an optimal Kalman-Bucy filter
with ground truth parameters. The black, dashed line shows the theoretical result for the
performance of the Kalman-Bucy filter. Right: the parameter estimates for the unknown
parameters converge to the ground truth parameters. All curves are trial-averaged (N =
100 trials).
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Figure 3: Online learning and filtering in the linear model. Left: the filter error before and
after learning is shown for different initial conditions of the parameter estimates. For
all initial conditions, the learning algorithm achieves a dramatical improvement of the
filter error. The horizontal line shows the error of the optimal filter and the diagonal line
corresponds to matching before-learning and after-learning error. The blue dot shows the
example from Figs. 1 and 2. Right: the log likelihood function from Eq. (5) for fixed
t = 1000 in the parameter subspace spanned by ã and σ̃ for w̃ = w = 3 has a single global
maximum near ã = a and σ̃ = σ. The shading shows the region where the function is
non-concave, and the blue line is the trial-averaged learning trajectory from Fig. 2.

By differentiating Eqs. (30,31) with respect to the parameters, we obtain the following equations for
the filter derivatives:

dµa

t = [µt + αtµ
a

t + βtP
a

t ] dt+ w̃tP
a

t dYt, (33)

dP a

t
= [2Pt +Atµ

a

t
+BtP

a

t
] dt, (34)

dµb

t =
[
−µt

(
µ2
t + 3Pt

)
+ αtµ

b

t + βtP
b

t

]
dt+ w̃tP

a

t dYt, (35)

dP b

t =
[
−6Pt

(
µ2
t + Pt

)
+Atµ

b

t +BtP
b

t

]
dt, (36)

dµσ

t
= [αtµ

σ

t
+ βtP

σ

t
] dt+ w̃tP

σ

t
dYt, (37)

dP σ

t = [2σ̃t +Atµ
σ

t +BtP
σ

t ] dt, (38)

dµw

t
= [−2w̃tµtPt + αtµ

w

t
+ βtP

w

t
] dt+ [Pt + w̃tP

w

t
] dYt, (39)

dPw

t
=

[
−2w̃tP

2
t
+Atµ

w

t
+BtP

w

t

]
dt, (40)

µa

0 = µb

0 = µσ

0 = µw

0 = 0, (41)

P a

0 =
∂

∂ã0
Γ
(
ã0, b̃0, σ̃0

)
, P b

0 =
∂

∂b̃0
Γ
(
ã0, b̃0, σ̃0

)
, (42)

P σ

0 =
∂

∂σ̃0

Γ
(
ã0, b̃0, σ̃0

)
, Pw

0 = 0, (43)

where we introduced the following auxiliary processes

αt = ãt − w̃2
t
Pt − 3b̃t

(
µ2
t
+ Pt

)
, βt = −

(
w̃2

t
+ 3b̃t

)
µt, (44)

At = −12b̃tµtPt, Bt = 2ãt − 2w̃2
t
Pt − 6b̃t

(
µ2
t
+ 2Pt

)
. (45)

We numerically tested the learning algorithm for this nonlinear model by simulating a system with
a = 4, b = 3, σ = 1 and w = 2, leading to a variance Var(Xt) = 1.17. Initial parameter estimates
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were set to a permutation of the ground truth, i.e. ã0 = 1, b̃0 = 2, σ̃0 = 3 and w̃0 = 4 and the
simulations lasted T = 2000 (due to the longer time-scale compared to the linear model) with a
time-step of dt = 10−3. In Fig. 4 we show a an example of the learning process.

In this case, the sub-optimality of the Gaussian approximation inherent in the projection filter
allows the filter error (MSE) to be lower with learning than with the ground truth parameters in the
absence of learning, getting close to the performance of the optimal filter. This is shown in Fig. 5
in terms of trial-averaged learning curves. The normalized MSE with learning decreases within the
time frame of T = 2000 and converges below the MSE for the projection filter with fixed parameters
set to the ground truth. The optimal performance was estimated by running a particle filter with
prior importance function, resampling at every time-step, 1000 particles and parameters set to the
ground truth (Doucet et al., 2000).

4. Discussion

We revisited the problem of online parameter estimation in a partially observed diffusion process.
Using a change of measure, we were able to express the log likelihood function of the observed data in
terms of the filter for the hidden state. Then, using a stochastic gradient ascent on the log likelihood
function, we derived learning rules for the parameters that we then tested numerically.

The problem of estimating parameters in partially observed systems is very old and relevant to
many applications. However, the majority of the literature on this subject is written for discrete-time
processes and for offline learning. In an offline setting, the method of choice for most problems is
the Expectation Maximization (EM) algorithm. The expectation step in EM is performed over the
conditional distribution of all latent states given the observations, and therefore requires smoothing
or path estimation. This dependence on smoothing seems to be common to many other approaches,
see also Sutter et al. (2015), Movellan et al. (2002), Part II of Cappé et al. (2006). Since smoothing,
in contrast to filtering, requires information from the future, offline algorithms that rely on smoothing
usually cannot be easily transferred to an online setting.

We note that the use of a change of measure in order to express the likelihood function in terms
of the filter is not new, but it seems to be less widely known than it deserves to be. To the best
of our knowledge, the only appearance is in the technical report by Moura and Mitter (1986). We
found it appropriate to revisit this approach and to bring it to the attention of the community as a
fruitful way of deriving workable online learning rules.

Our derivation of parameter learning rules is tractable in all cases where h is differentiable with
respect to the parameters and where the filter is either exactly solvable or a finite-dimensional
approximation is known. Moreover, as we showed in two simple examples, the algorithm is capable
of improving filter performance when the system parameters are unknown. This holds even if the
models are unidentifiable (i.e. have parameter redundancies that make different parameters produce
the same statistics of the observed process).

Even in the cases where the model is identifiable, the log likelihood function need not be globally
concave, as we saw in the linear model (Fig. 3). It is therefore not easy to provide general convergence
results using tools from convex optimization, and it is an outstanding problem to find conditions for
global concavity of the log likelihood function and more generally, for convergence of the parameter
estimates.

The second numerical example showed that the parameter estimates do not need to converge
to the ground truth, and that the performance of the filter can be improved even beyond what is
possible with fixed parameters. This result could lead to new ways of improving the performance of
approximate filters by using the additional degrees of freedom given by the online parameter esti-
mates for both adaptation (learning) and reduced filter error. It remains to be explored whether this
feature applies to a large enough class of approximate filters to be useful for practical applications.
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Figure 4: Online learning and filtering in the nonlinear model. The hidden state Xt (black)
and mean µt of the projection filter are shown for the bimodal model of Section 3.2
with parameters a = 4, b = 3, σ = 1 and w = 2, ã0 = 1, b̃0 = 2, σ̃0 = 3, w̃0 = 4,
ηa = ηb = ηw = 10−1 and ησ = 0.04. Top: the entire learning period of T = 2000 shows
an improvement in both step size between the two attractors and the variability within
both attractors. Bottom left: during the first 100 seconds, the filter is too sensitive to
observations and has an incorrect spacing between attractors. Bottom right: during the
last 100 seconds, the filter shows good tracking performance.

Figure 5: Online learning and filtering in the nonlinear model. The time evolution of the
MSE and parameter estimates are shown for the linear model of Section 3.1 (see Fig. 1
caption for details). Left: the moving average of the normalized MSE (time window of
20 seconds) shows how the learning algorithm allows the filter performance to improve to
a level that is better than that of a filter with fixed parameters set to the ground truth.
However, it is still slightly worse than an optimal filter; the dashed black line shows the
performance of a particle filter with 1000 particles with parameters set to the ground
truth. Right: despite the low filter error, the parameter estimates do not converge to the
ground truth. All curves are trial-averaged (N = 100 trials).
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