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Significance statement

The extraordinary increase in smartphone usage raises some fundamental questions on human be-
havior. For instance, what drives people to use the phone or how important is the phone to each
individual? In this study we developed a theory to quantify the importance of smartphone interac-
tions based only on smartphone screentouches. Our analysis unravels behavioral processes that are
typically shared across the population and perhaps unsurprisingly, 3 of the 4 individuals preferred
the phone over doing something else. Theoretically and systematically understanding smartphone
behavior could shed light on the behavioral processes underlying spontaneous activities in general.

Abstract

Modern humans are frequently faced with the problem of choosing between using the phone or
doing something else. In the laboratory, how people choose between two simple activities is well
studied but they cannot address how people solve the ubiquitous problem of using the phone in the
real world. Here we extended an existing priority-based decision framework to theoretically link
the timing of the touchscreen taps to the priority attributed to the corresponding behaviour. The
inter-event times of the output from this decision process could be fully described by a 3 parameter
model. Next, we recorded the touchscreen interactions from 84 volunteers for a month-long period
and the inter-event times were well described by using the 3 parameter model. Based on the fitted
parameters we find that in 76 % of the users the overall (mean) priority of smartphone use is higher
than any other activity. The underlying priority distributions estimated from the recordings were
typically (82 % of the population) u-shaped with the priority values concentrated at the extreme
values. We conclude that the priority attributed to the smartphone is not fixed and the perceived
importance of the smartphone transitions from one extreme to another.

Introduction

How decisions are made in the favour of one activity vs. another is a classic problem that cuts across
several disciplines Tolman (1938); Thompson and Wankel (1980); Smith and Ratcli↵ (2004). In em-
pirical and computational neurosciences, addressing this is typically reduced to a choice between
two actions to quickly accomplish a task within a time period of a few seconds Smith and Ratcli↵
(2004). The consequences of operating such decision processes on the overall behavioural organiza-
tion spanning multiple time scales is not clear. Moreover, the decision processes are conceptualised
in the presence of the intermittently available sensory cues or resources and it is not clear how the
processes operate when an activity option is continuously present. In particular, smartphones are
carried by the users at all the times so how do they decide between using the phone vs. doing
something else?
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A new class of decision processes is proposed in computational social sciences to explain the
response times in emails and surface mails Barabasi (2005); Vázquez et al. (2006); Oliveira and
Barabási (2005). In this class, behaviour is organized according to a task list and at each decision
point the task for execution is chosen to reflect the perceived priority instead of using either a random
or a first-in-first-out selection. This apparently simple process can organize behaviour across time
scales resulting in a heavy-tailed distribution of response times and the resulting distributions match
what is observed in the timing of emails and surface mails Barabasi (2005); Oliveira and Barabási
(2005). That is, the theory explains as to why some messages are immediately responded to by
the user while other messages may take several months or even years to respond to. Follow-up
studies have extended this framework to predict heavy-tailed inter-event times in person-to-person
interactions Oliveira and Vazquez (2009). Nevertheless, smartphones are used for a range of activities
that go well beyond person-to-person interactions Smith (2015). There is also a subtle limitation in
the existing framework in the sense that it does not allow an assessment of the underlying priority
distribution from which the priority is actually drawn at each decision point. In sum, the priority-
based decision framework links perceived priority to the timing of the corresponding actions, but
the framework in its current form is not designed to extract the priority of smartphone actions vs.
other actions.

The continuous availability of the smartphone for activity, the range of activities and the relatively
low barrier from intention to execution warrant a focused exploration of the decisions underlying
phone use. Although the decision process underlying its use is unclear, there are indirect indicators
suggesting that smartphones have a high importance in human behaviour. Firstly, according to
market statistics, there were 1.9 billion phone users world-wide in 2015 1. Secondly, questionnaires
on digital behaviour show that 64% of the American population own smartphones and 46 % of
the owners cannot live without it Smith (2015). Finally, separation from the phone can result in
measurable distress Clayton et al. (2015).

The goal of this study is to directly extract from the timings of the screen touches the priority
placed over smartphone actions vs. other actions. Towards this, we formulated a model that
generated smartphone touchscreen touches which heavily depends on the distribution of priorities
set to smartphone tasks. We fitted the real inter-touch intervals obtained from 84 volunteers to
the modelled parameters to directly and objectively measure the priority placed over touchscreen
actions vs. other actions.

Results

Model description

In this model, an individual can perform only two categories of tasks: either a task related to a
smartphone screen touch or other task such as driving a car (see Fig. 1a-b). Every task is associated
with a priority level which is a number between 0 and 1. Let x 2 [0, 1] denote the priority associated
with the touch task. In this model we assume that the touchscreen priority distribution p(x) is given
by a Beta distribution:

p(x) = Beta(x; a, b) =
x

a�1(1� x)b�1

Beta(a, b)
(1)

where Beta(a, b) =
R 1
0 x

a�1(1�x)b�1
dx is the Beta function and acts as a normalisation constant.

So if a > b, then the touch priority distribution is pushed towards higher priorities whereas if a < b,
lower priorities are favored (see Fig. 1a). Similarly, let y 2 [0, 1] denote the priority associated
with the other task. Since we are interested in the relative priority of the touch tasks compared
to the other tasks we will simply assume that the distribution of priorities for other tasks is a

1. https://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
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uniform distribution: q(y) = 1, see Fig. 1b. The touch priority index x̄ is defined as the mean of
the distribution of priorities for touch tasks, i.e. x̄ = a

a+b

. Since the mean of other priorities ȳ =
hyi

q(y) = 0.5, we can state that the touch events have in general a higher priority than other events
if x̄ > 0.5 and therefore if a > b.

Let E

t

denote the presence (E
t

= 1) or the absence (E
t

= 0) of a touch event at time step t (time
steps are assumed to be of fixed duration �t). The probability of generating such a touch event at
time t is a function of both the priority x

t

of the touch task and the priority y

t

of the other task
(see Fig. 1c):

p(E
t

= 1|x
t

, y

t

) = f(x
t

, y

t

) (2)

For the sake of simplicity, we will assume that f(x, y) = p if x > y where p is called the permission
probability and f(x, y) = 0 otherwise. Permission occurs with probability p and captures several
aspects: the inability to use the smart phone because its battery is down or because the individual
is in a meeting and cannot use his mobile phone. After the touch event, a new priority x

t+1 is
drawn from p(x). If any of the two above conditions are not satisfied, then the other task is chosen
and therefore no touch event is generated. In this case a new priority y

t+1 is drawn from q(y) and
the procedure starts again. This detailed model is expressed in Table 1a. A sample trace of the
evolution of x and y giving a sequence of touches is represented on Fig. 1c.

In order to prevent from drawing a prohibitively large number of times the random variable
y, we propose a coarse grain implementation of the touching model which dramatically speeds
up simulation time. This coarse grain implementation follows the same approach than the one
proposed in Oliveira and Vazquez (2009) and is described in Table 1b and in the Methods. This
implementation takes advantage of the fact that we can analytically compute the probability of those
long intervals given the priority x of the touch task right after the last touch (see Methods). As
expected, the coarse-grain implementation of the touching model gives identical inter-touch interval
(ITI) distribution to the detailed implementation (see Fig. 1d).

Properties of the model

The ITI distribution can be estimated analytically

All together, the touching model described above contains 3 parameters (a, b and p). Because of its
latent variable structure (x

t

and y

t

are the latent variables at time step t and take any real value in
the interval [0, 1]) and because of the length of the data stream (one month of data corresponds to
5 ·107 time steps of 50ms), fitting such a model is computationally prohibitive with classical methods
such as the particle smoother methods Godsill et al. (2004); Kantas et al. (2015). In order to avoid
the computational expensive calculations of expectations over the hidden states required in those
methods, we directly calculated analytically the marginal distribution over the visible variable E1:T .
More precisely, we can show that when the permission probability is small, then the inter-touch
interval distribution2 p(⌧) given that ⌧ > 1 can be calculated analytically as

p(⌧) '
Z 1

0
px(1� px)⌧�2Beta(x; a, b)dx (3)

It is remarkable that the numerical simulations of the touching model is well captured by the
analytical expression of Eq. (3), even up to permission probability of p = 0.5 (see Fig. 1d-f). This
analytical expression is very convenient for two reasons. First, it massively speeds up the parameter
learning and second it allows to directly study the e↵ect of each parameter, which is further explained
in the next sub-sections.

2. For notational convenience, we write p(⌧) instead of p(⌧ |⌧ > 1)
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The parameter a directly tunes the power-law exponent of the ITI distribution

For large ⌧ , it can be shown (see Methods) that the ITI distribution follows a power-law distribution
given by

p(⌧) / ⌧

�(a+1)
⌧ � ⌧min (4)

where the power-law exponent is given by a + 1, see Fig. 1e and ⌧min defines the onset of the
power-law distribution (see also next sub-section). The intuitive reason why this model produces
heavy tails in the ITI distribution is that when a priority x is small, the random variable y needs
to be drawn on average a very large number of times until it falls below x. This produces very long
ITI.

The fact that the power-law exponent directly depends on the parameter a implies that the
proportion of very long intervals will decrease if a increases (see Fig. 1e). This makes intuitive sense
since a large a corresponds to a touch priority distribution pushed towards higher priorities (see
Fig. 1a) which implies that touch tasks are more often executed and therefore this gives less long
intervals.

The permission probability p scales the onset of the power-law distribution

The permission probability p fulfills several roles in this touching model. First, as mentioned in
the model definition above, it reflects the fact that subject don’t necessarily chose the action with
the highest probability. If the priority of the touch task is higher than the other task, then the
touch task is chosen with probability p.

Secondly, setting this parameter p such that p < 1 removes a singularity in the model. Indeed,
in the limit of p ! 1, most of the inter-touch intervals are concentrated at the value of ⌧ = 1. The
reason is the following. Let us assume that there is an event at time t = 0 where we have x0 > y0.
If the next priority for the touchscreen task x1 is larger than y0, then there is a next event at t = 1
and the priority for the other task remains the same, i.e. y1 = y0. If, on the contrary x1 < y0, then
at the time of the next event at time t = ⌧ , the priority for the other task y

⌧

will be smaller than
the touchscreen task x

⌧

= x1 which is smaller than y0. Therefore the value of y (at the time of an
event) either stays the same or decreases. When it approaches zero, it becomes impossible for the
priority x to fall below y and therefore there are events every time steps. By assuming that p < 1,
the permission to touch the screen can be denied and therefore allow a potential increase in y at the
time of the next event. The consequence of this p < 1 assumption is that the inter-event distribution
is not anymore concentrated at ⌧ = 1.

Finally, the parameter p tunes the onset of the power-law distribution (see Fig. 1d). More
precisely, the permission probability scales inversely with ⌧min, see Eq. (15). This can be understood
intuitively since for low permission probability, and for small ITI, the touch generation process is
similar to a Poisson process where the touching rate scales with 1/p thereby defining a typical scale.

The parameter b tunes the kink of the ITI distribution

Finally, the parameter b also scales the onset of the power-law distribution (see Eq. (15) and Fig. 1f).
If b increases, it increases ⌧min whereas if b falls below one, it can produce ITI with a non-monotonic
derivative of log p(⌧) (see Fig. 1f, for b = 0.2). This feature will help better fit experimental ITI
distribution which display such a slight kink (see Fig. 2a,b).
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The priority distribution can be inferred from list of ITIs

In order to fit the model to the data, we computed the log-likelihood of the set of inter-touch intervals
D = {⌧

i

}N
i=1 given the parameters ✓ = (a, b, p):

L = p(D|✓) =
NX

i=1

log p(⌧
i

) (5)

where the ITI distribution p(⌧
i

) is taken from Eq. (3) and ⌧

i

denotes the number of bins of �t = 50
ms (i.e. the i

th interval is given by ⌧

i

�t). By maximising the log-likelihood, we found that the
ITI distribution for each subject can be well captured by the model (see the fit for one subject in
Fig. 2a). So, from the fitted parameters a and b, we obtain the touch priority distribution p(x)
(see Eq. (1) and Fig. 2a inset). In particular, found that for this subject, the smartphone tasks are
mostly attributed high priority, sometimes very low priorities and very few times medium priority.

So, the relevance of the model is twofold. First, since the model can fit well ITI, it can be used
to describe the data in a compressed way. It reduces weeks of data into 3 parameters. Secondly, it
allows to determine the priority distribution p(x) from the empirical inter-touch interval distribution.

In order to determine whether this 3 parameter model would overfit, we conducted a model
comparison. In particular, for each subject, we computed the Bayesian Information Criterion (BIC)
for the 3 parameter model (BIC(3)) as well as for a 2 parameter version of the model (BIC(2)) where
b = 1 (see Fig. S1). We found that for 78 (out of the 84) subjects, the 3 parameter model could not
be rejected �BIC = BIC(3) � BIC(2) < 0. 5 out of the 6 remaining subjects have a fitted value
of b (in the 3 parameter model) anyway close to 1 (i.e. in the interval [0.91, 1.03]).

Population results

By repeating the fitting procedure described above for each subject, we extracted the model pa-
rameters for each subject (see Fig. 2b). The distribution of the permission probability p over the
di↵erent subjects (see Fig. 2c) concentrated around small values of p (median(p) = 0.14) which is
convenient for the proposed fitting procedure which is only valid for small p

3.
By learning the touch priority parameters a and b for each subject (see Fig. 2d), we can calculate

the priority index x̄ = a/(a+b) which corresponds to the the mean of the touch priority distribution
(see Fig. 2d). We found that for 76% of the subjects (see Fig. 2c), the mean of their touch priority
distribution is larger than the mean of the other distribution - a condition which is fulfilled when
a > b (see the red shaded area in Fig. 2d). In other words, for those subjects touching the smartphone
is more important than doing something else.

From the priority distribution, we can also calculate the spread � of the distribution. For a
Beta distribution, the s.t.d is given by � =

p
ab/((a + b)

p
a + b + 1). We found that 84 % of the

subjects have a touch priority spread which is bigger than �

⇤ = 1/(2
p
3) ' 0.29 which corresponds

to the s.t.d of a uniform distribution. So the inferred priority distribution is typically U-shaped (see
Fig. 2b, inset).

Discussion

In this study, we proposed a method to infer the priority distribution of using the smartphone from
the corresponding inter-touch interval distribution. We showed that 3 out of 4 subjects prefer to
interact with their smartphone rather than perform other tasks. This was consistent with previous
reports that pointed to the high perceived importance of smartphones. For instance, according to
self reports 64% of teenagers prefer texting on the phone vs. person to person communications 4.

3. For p ! 1, the analytical approximation for the ITI distribution - which is used for the fitting procedure - does
not hold.

4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260009/
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Moreover, the touch priority distribution is typically U-shaped in the sample population suggesting
that underlying mechanisms driving smartphone use may be shared.

The core idea used to link the inter-touch intervals and the priority was the priority-based decision
process. In neuroscience and psychology, decision processes have been proposed that enable a system
to choose between one or the other action Smith and Ratcli↵ (2004); Carpenter (2004). However,
these processes are only explored in terms of very limited time-scales (below a minute). In contrast,
the originally proposed priority-based decision process proposed by Barabasi (2005) is able to explain
the response times in surface mail and email correspondences across time scales (above a second).
Our work further extended this idea to an emission process such that the priority distribution
attributed to one type of activity could be inferred based on the corresponding inter-event times.

The decision processes considered in the past to explain the behavioural structure spanning
multiple time scales typically focus the attention on ITI larger than a minimal interval ⌧min above
which the distribution becomes power-law Malmgren et al. (2008); Oliveira and Barabási (2005);
Proekt et al. (2012); Reynolds et al. (2007). It is remarkable here that our touching model captures
reasonably well ITI for ⌧ < ⌧min. For ⌧ > ⌧min, it should be noted that unlike other existing
priority-based models Oliveira and Vazquez (2009) our model is not restricted to rational power-law
exponents. Indeed in our framework the power-law exponent is given by a + 1 where a can take
any real positive value. In contrast, in the work of Oliveira and Vazquez (2009), the exponent ↵ is
determined by the length L

5 of the list of tasks, i.e. ↵ = 1+1/(L� 1). In our study, the power-law
exponent is 1.71± 0.14 which is di↵erent from frequently found exponent of 1, 1.5 or 2.

A common aspect shared across the population was the U-shaped priority distribution suggesting
that smartphone actions either receive a very high or a very low priority at each decision point. These
distinct priorities may reflect the di↵erent activities on the phone and/or how the same activities
may occupy intense importance at any point of time. Still, the shared U-shaped distribution did not
mean that all individuals similarly used their phones. The proportion of the high to low activities
varied substantially from person to person.

This study is an important step towards generating a more realistic model of smartphone touching
dynamics. Extensions of this model could include physiological limitations on how quickly the phone
may be operated as well as fatigue that could accumulate over time in order to better describe the
distribution of sub-second ITIs. It is however remarkable to how well can this simple 3 parameter
model describe ITI distribution over several magnitudes.

Methods

Subjects

A total of 84 individuals were recruited by using campus wide announcements at the University
of Zurich and ETH Zurich. Ownership of a non-shared touchscreen smartphone with an android
operating system was a pre-requisite for participation. All experimental procedures were approved
according to the Swiss Human Research Act by the cantons of Zurich and Vaud. The procedures
also conformed to the Helsinki Declaration. The volunteers provided written and informed consent
to participate in the study.

Smartphone data collection

A custom-designed software application (app, Touchometer) that could record the touchscreen events
with a maximum error of 5 ms Ghosh and Balerna (2016) was installed on each participant’s phone.
To determine this accuracy, controlled test touches were done at precisely 150, 300 and 600 ms while

5. Technically, Oliveira and Vazquez (2009) assume that an event occurs only if the interacting task for both agents
A and B have the highest priority compared to all other tasks of length LA (for agent A) and LB for agent B.
For simplicity we denoted L = LA = LB .
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the Touchometer recorded at 147, 301 and 600 ms respectively, with standard deviations less than
15 ms (interquartile range less than 5 ms). The app posed as a service to gather the timestamps of
touchscreen events that were generated when the screen was in an unlocked state. The operation was
verified in a subset of phones by using visually monitored tactile events. The data was stored locally
and transmitted by the user at the end of the study via secure email. One subject was eliminated
as the app intermittently crashed after a software update. The smartphone data were processed by
using MATLAB (MathWorks, USA).

Coarse-Grain implementation

In order to speed-up simulation time, we used the following implementation of the touching model
which we call coarse-grain implementation. Let us assume that at time t = 0 an event has occurred,
i.e. x0 > y0. At time step t = 1 a new priority x1 ⌘ x is drawn from p(x). If x1 > y1 (where
y1 = y0) and the permission is granted, there is another event at t = 1. So the probability of having
an interval of ⌧ = 1 depends only on y0 whereas the probability of having an interval ⌧ > 1 will
depend only on x = x1. The idea of this coarse grain model is to calculate explicitly this probability
distribution Q(⌧ |x) for ⌧ > 1 thereby avoiding to sample a large number of times the random variable
y.

Let ⇡(x) denote the probability of an event at time t > 1 given that the priority for the touch
task is x1 at time t = 1 (i.e. x = x1). An event can occur if two conditions are met, i.e. if y < x

and if the permission is given (with probability p). Since those two conditions are independent, we
can write them as a product:

⇡(x) = p

Z
x

0
q(y)dy = px (6)

where the last equality stems from the fact that we assumed that q(y) = 1. The distribution
Q(⌧ |x) of ITI intervals for a given x is given by

Q(⌧ |x) = ⇡(x)(1� ⇡(x))⌧�2
⌧ > 1 (7)

Note that this quantity is well normalized since
P1

⌧=2 Q(⌧ |x) = 1. This coarse-grain model is
summarized in Table 1b. As we can see on Fig. 1d, the inter-touch interval distribution from the
coarse grain model is in perfect agreement with the distribution obtained from the detailed model.

Calculation of the ITI distribution

In the previous section, we saw that the probability of having an interval of ⌧ = 1 depends only on
y0 whereas the probability of having ⌧ > 1 depends on x1. So, in order to calculate the overall inter-
touch interval distribution p(⌧), we need to average over the distribution p(y0|E0 = 1) of priority
values y0 at the times of the events (E0 = 1 denotes the fact that there is an event at time t = 0)
for ⌧ = 1 and average over the distribution p(x1|E0 = 1, E1 = 0) of priority values x1 given that
there is an event at time t = 0 (E0 = 1) and no event at time t = 1 (E1 = 0) for ⌧ > 1:

p(⌧) =

8
<

:

p

R 1
0 p(x1 > y0)p(y0|E0 = 1)dy0 if ⌧ = 1

(1� p(1))
R 1
0 Q(⌧ |x1)p(x1|E0 = 1, E1 = 0)dx1 if ⌧ > 1

(8)

where the distribution p(x1|E0 = 1, E1 = 0) is given by

p(x1|E0 = 1, E1 = 0) =
p(E1 = 0|x1, E0 = 1)

R 1
0 p(E1 = 0|x, E0 = 1)p(x)dx

p(x1) (9)

7



In the limit of small p, we have p(E1 = 0|x1, E0 = 1) ! 1 and therefore

p(x1|E0 = 1, E1 = 0) ' p(x1) (10)

For small p and for ⌧ > 1, we have

p(⌧) '
Z 1

0
Q(⌧ |x)p(x)dx

=

Z 1

0
px(1� px)⌧�2Beta(x; a, b)dx

=
p

Beta(a, b)

Z 1

0
x

a(1� px)⌧�2(1� x)b�1
dx

(11)

Calculation of the power-law exponent

For large ⌧ , the factor (1� px)⌧�2 approaches6 0 for x > 1/(p(⌧ � 2)). This allows to Taylor expand
the third factor around 0, i.e. (1� x)b�1 ' 1� (b� 1)x which can be used to split the integral into
a sum of 2 simpler integrals:

p(⌧) ' p

Beta(a, b)

✓Z 1

0
x

a(1� px)⌧�2
dx � (b � 1)

Z 1

0
x

a+1(1� px)⌧�2
dx

◆

=
p

�a

Beta(a, b)

✓Z
p

0
z

a(1� z)⌧�2
dz � b � 1

p

Z
p

0
z

a+1(1� z)⌧�2
dz

◆
(12)

where the last equation was obtained by the following change of variable z = px. Here again, let
y

⇤ = 1/(⌧ � 2) denote the value of y above which the factor (1 � y)⌧�2 vanishes. Then if y

⇤ ⌧ p

(which corresponds to ⌧ � 1/p + 2), then the integration interval can be extended from [0, p] to
[0, 1] allowing to express the result as a function of Beta functions:

p(⌧) ' p

�a

Beta(a, b)

✓
Beta(a + 1, ⌧ � 1)� b � 1

p

Beta(a + 2, ⌧ � 1)

◆

' p

�a

a�(a + b)

�(b)

✓
⌧

�(a+1) � (b � 1)(a + 1)

p

⌧

�(a+2)

◆
(13)

where we used the fact that the Beta function can be expressed as Beta(a, b) = �(a)�(b)/�(a+b)
and �(a) =

R1
0 t

a�1
e

�t

dt is the gamma function. We also used the fact for large z, �(z+a)/�(z) !
z

a. Since for large ⌧ , the first term in the parenthesis of Eq. (13) will dominate, we have

p(⌧) ' p

�a

a�(a + b)

�(b)
⌧

�(a+1)
, ⌧ � ⌧min (14)

where the onset of the power-law distribution ⌧min depends on the model parameters and in particular
inversely scales with the permission probability:

⌧min ' max(b � 1, 1)(a + 1)

p

+ 2 (15)

This condition is obtained by combining the conditions required to derive Eq. (13) (i.e. ⌧ �
1/p + 2) and Eq. (14) (i.e. ⌧ � (b � 1)(a + 1)/p).

6. This can be found by Taylor expansion: (1 � px)⌧�2 ' 1 � p(⌧ � 2)x. Therefore 1 � p(⌧ � 2)x⇤ = 0 ) x

⇤ =
1/(p(⌧ � 2))
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Figure 1: Smartphone Touching Model. a Priority distribution for the touch tasks for various pa-
rameters, see Eq. (1). (red: a = 3, b = 1, black: a = b = 3, a = 1, b = 3). b Priority
distribution for the other tasks. c Sample trace from the priority model. d-f Properties
of the model. Distribution p(⌧) of inter-touch intervals ⌧ (d) for various permission prob-
ability p, (a = 1, b = 1) (e) for various a (p = 0.1, b = 1) and (f) for various b, (p = 0.2,
a = 0.5). Analytics (solid lines, see Eq. (3) match well simulations from the coarse grain
model (circles) and detailed model (crosses).
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Figure 2: Results. a ITI distribution for one given subject (red crosses) is well captured model (solid
line: analytics, circle: simulations of the coarse-grain touch model). Inset Touch priority
distribution inferred for this subject. b Same as in a but for each of the 84 subjects
(gray lines). Solid lines are obtained with the median of the fitted parameters i.e. a = 0.7,
b = 0.4 and p = 0.14. c Distribution of the permission probability p. d Each dot represents
the fitted touch priority parameter a and b for one subject. If a > b (red shaded region),
the average touch priority is higher than the average other priority. e Distribution of the
priority index x̄ = a/(a + b). 76% of subjects (red) have a higher touch priority index
> 0.5 (i.e. the average touch priority is higher than the average priority of other tasks). f
Distribution of the spread � of the touch priority distribution. 84% of subjects (red) have
a touch priority spread larger than the s.t.d. corresponding to a uniform distribution.
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a Detailed model

Input: p, k, N ;
x ⇠ p(x); y ⇠ q(y);
n = 0, t = 0;
while n < N do

t = t + 1;
if x > y and Rand < p then

n = n + 1; Event(n) = t;
x ⇠ p(x);

else

y ⇠ q(y);
end

end

Return: Event;

b Coarse Grain model

Input: p, k, N ;
x ⇠ p(x); y ⇠ q(y);
n = 0, t = 0;
while n < N do

n = n+1;
if x > y and Rand < p then

t = t + 1;
else

⌧ ⇠ Q(⌧ |x) % see Eq. 7 ;
t = t + ⌧ ;
y

⇤ ⇠ q(y), y = xy

⇤;
end

Event(n) = t;
x ⇠ p(x);

end

Return: Event;

Table 1: a. Detailed priority model which generates a list of N event times. b Coarse grain model
which is much faster to simulate.
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Figure S1: Model comparison. Distribution of the di↵erence between the Bayesian Information
Criterion (BIC(3)) of the full touching model - which contains 3 parameters and the
BIC(2) for the restricted touching model (where b = 1 ) and therefore contains only 2
free parameters. Only 6 subjects have BIC(3)-BIC(2)> 0 (red shaded) and therefore can
be better described by the 2 parameter model instead of the 3 parameter model.
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