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Abstract—State-dependent computation is one of the main
signatures of cognition. Recently, it has been shown how it can be
used as a computational primitive in spiking neural networks for
constructing complex cognitive behaviors in neuromorphic agents.
However, to achieve the desired computations and behaviors
in mixed signal analog-digital neuromorphic electronic systems,
these computational primitives should be able to cope with noisy
and imprecise components, such as silicon neurons and synapses,
with noisy and unreliable external signals, and with interference
from the environment. Here we present a spiking neural network
model that addresses all these issues while exhibiting both analog
signal processing properties and digital symbolic computational
abilities. We show how this Neural State Machine (NSM) model
can be used for realizing robust state-dependent computation on
neuromorphic hardware, and we validate it with experimental
results obtained from a recently developed multi-neuron multi-
core neuromorphic computing architecture.

I. Introduction

State-dependent computation is a hallmark of cognition [1]:
external inputs and internal memory collaboratively determine
the response of subjects. At the same time, state-dependent
computation in finite-state automata is one of the most impor-
tant computational models in the theory of computation. A va-
riety of complex computations can be developed based on this
simple mechanism. In spiking neural networks, Neural State
Machines (NSMs) provide a generic computational model for
implementing state-dependent computations [2].

Different from von Neumann processor architectures, neu-
romorphic processors comprise populations of spiking neurons
implemented using a combination of slow, low-power, sub-
threshold analog circuits, and fast programmable asynchronous
digital circuits [3]. In this paper, we demonstrate NSMs
implementations using a recently developed multi-core neu-
romorphic processor that integrates 1k analog neurons and
64k digital synapses [4], and that can be configured such
that any neuron can send spikes to any other neuron on the
same or on other chips. Unlike approaches using clocks or
temporal logic, asynchronous neuromorphic systems process
data and transmit signals only if and when events (spikes) are
produced. Similar to what is observed in biology [5], analog
neurons are affected by the variance in their physical substrate
and therefore have an amount of mismatch that makes the
design of accurate and reliable computing systems challenging.
However, biological neural processing systems are an existence
proof that reliable and robust computation is indeed achievable
using these computational primitives. Here we show how
it is possible to achieve equivalent levels of stability and
robustness in analog/digital neuromorphic electronic systems
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Fig. 1: Neural State Machine. (a) Network structure. (b) Schematic represen-
tation.

by exploiting the dynamics of spiking neuron populations,
appropriately connected to each other.

NSMs typically transition from one state to another when
both the internal state and external signals are present at the
same time. In previous works [2], [6], prescriptions were
given for enabling these transitions by putting a threshold
on the sum of the activities, and triggering the transition
when the sum was above some threshold. This however only
works if the activities of the state neuron populations and
sensory input populations are in well-defined ranges and if the
noise and variability levels are much smaller than the signals.
Unsurprisingly, neuromorphic hardware implementations of
such models proved to be very sensitive to noise and difficult to
control. In this work, we introduce a dis-inhibition mechanism
that decouples the parameters of spiking silicon neurons so that
their values are no longer restricted to a limited range. With this
model, the parameters that determine the neuron and network
properties can be configured to have a tolerance distance to the
boundary condition required by the state-dependent behaviors.
This provides a mechanism that is robust to noise and fabri-
cation mismatch of analog neurons affecting the behavior of
NSMs, which emerges out of the network dynamics and does
not require the use of large populations of neurons, or careful
calibration procedures as in previous cases [2]. In the next
section, we describe the spiking neural architecture that gives
rise to NSMs and show how they can be implemented with
neuromorphic spiking neural network chips. In Section III,
we analyze their dynamics and present experimental results
measured from the chips that are consistent with the theoretical
predictions. In Section IV, we present experimental results



from the neuromorphic hardware, and in Section V we present
the concluding remarks.

II. Neural State Machines

Similar to finite-state automata, NSMs are defined by
four sets of Boolean variables, which include a set of
states S = {s1,s2,s3 . . .}, a set of excitatory input signals
E = {e1,e2,e3 . . .}, a set of inhibitory input signals I =
{i1, i2, i3 . . .}, and a set of transition signals T = {t1, t2, t3 . . .}.
Each transition of T links one source state of S to at least
one target state of S and is also linked to an additional
set of input signals. The co-occurrence of input signals and
source state signals are used to switch transitions on and off.
In particular, we can calculate the external input signal that
is sufficient to either start or stop a transition (e.g., ti) by
considering, for all potential inputs E ′ ⊆ E and I′ ⊆ I to the
transition population, the two dis-junctions of inputs e = ∨ je j
and i = ∨ ji j, where e j ∈ E ′ and i j ∈ I′. The final valid input
for the transition is then v = e∧¬i. The transition is triggered
only if both the source state (e.g., si) and v are true, otherwise,
it is inhibited. This condition can be expressed as ti = v∧ si.
This derivation shows how the inhibition has a stronger effect
than excitation. The binary, symbolic, behavior that emerges is
based on the assumption that the transition periods are much
shorter than the interval of inputs. This assumption can be met
by appropriately setting the synaptic and neural time constants
in the network. Specifically, to realize the state-dependent
computation with spiking neurons, we encode state, input, and
transition variables with populations of neurons recurrently
connected among each other as illustrated in Fig. 1(a). With
the current hardware setup, we use 8 silicon neurons for
each population and a shared probability p ∈ (0,1] for all the
connections. The state populations of S compete among each
other in a soft Winner-Take-All (WTA) network. Once a state
population wins the competition, its recurrent connectivity
self-sustains its activity. The inputs coming from the transition
populations ti can bias the competition by activating other state
populations, which would then suppress the currently winning
one and compete with each other to become the new winner.
In Fig. 1(a), we denote as “transition gate” the structure that
determines which transition population ti can transfer the input
to the next states. Only the transition gate gi connected to the
winning state population si is open, and all the other gates
are actively suppressed through an inhibitory population that is
driven by the global activity of the state neurons (through Ssum
in Fig. 1(a)). This active suppression to close the gates and dis-
inhibition to open the desired one is the mechanism that allows
us to realize extremely robust state-dependent computation in
NSMs. For example, in Fig. 1(a), when s1 is the winner, t1 will
not be inhibited any more due to the dis-inhibition between In1
and In2, which means the transition gate g1 is open. Once g1
is open, if i1 is not given, e1 can be passed to s2 by activating
t1. Therefore, transition populations act as a lookup table in
which the co-activation of the corresponding state and input
neurons enable the activation of the next state population in the
network. Fig. 1(b) shows a simplified diagram that represents
the full NSM network depicted above.

III. Robustness conditions

We use a mean firing rate model [2], [7] to analyze the
dynamics of the NSMs. To simplify the analysis, we make
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Fig. 2: Fluctuation range of population activity required to maintain the
steady state, in WTA networks. Solid lines illustrate the relationship between
neurons mean firing rate and its differential when InWTA is turned off and
on respectively. To ensure that each state population is a bistable dynamic
system, the projection of their intersection onto X-axis must be located between
νthreshold and νsteady. This condition defines (5), (6), (7) and (8).

use of a single population of neurons that represents the
combination of the populations in Fig. 1(a) (i.e., Ssum, InWTA
and In2, or s1 and In1), which can both excite or inhibit the
state neurons and the transition gate neurons. Under these
conditions, the dynamics of a WTA network is described as:

τν̇sn +νsn = f (ωtsνt +ωssνsn −ωisνi−Ts) (1)
τν̇sc +νsc = f (ωssνsc −ωisνi−Ts) (2)

τν̇i +νi = f (ωsiνsn +ωsiνsc −Ti) (3)

Where f (·) is the half-wave rectification function max(·,0), ν

is the average firing rate of the population neurons, s, t and i
represent state, transition and inhibitory populations, and c and
n indicate the current and the next state respectively. The term
τ is equal to the synaptic time constant. The term ω represents
the product of a single synapse weight factor with the number
of potential neurons in a population and with the connection
probability (e.g., 0.9). The input activity νt is determined by
the dynamics of transition gates, which are described as:

τν̇t +νt = f (ωbtb(t)−ωii f (ωitνi−ωstνsc −Tt)−Tt) (4)

Where b(t) denotes the frequency of external input stimuli, and
ωii is the factor for dis-inhibition (e.g., between In1 and In2 in
Fig. 1(a)). It shows that νt is controlled by the average firing
rate of the current state neurons and b(t), which represents the
behavior of transition populations (e.g., t1 in Fig. 1).

In the following analysis, we derive the steady-state solu-
tion of the model, which can also approximate the dynamics
if we assume that the model time constants are faster than the
changes in the inputs [7]. This approximation, however, will
not affect the robustness features of the NSM.

A. Steady state of working memory
Given the properties of the WTA network, at steady state,

there will always be one winning state population (e.g., sc),
with constant activity, and all other populations will be silent.
To self-sustain the activity for the winning state neurons as
working memory, the parameters of the soft WTA network
should fulfill the following conditions (derived from Fig. 2):

ωisTi−Ts > 0 (5)
−1+ωss−ωsiωis < 0 (6)

−1+ωss > 0 (7)
ωssTi−Ti−ωsiTs > 0 (8)

Each state population can be modeled as a bistable dynamic
system with three equilibrium points. Two minima locate



where its average firing rate νs is equal to 0 and νsteady
respectively, and the maximum locates at νthreshold (see Fig. 2).
If the fluctuations of νs do not make it cross νthreshold then it
will be sustained to the same average value (see data in Fig. 3
for t > 2s). By combining multiple bistable state populations,
we can create robust multistable NSMs systems. For all these
bistable and multistable systems, νt (see (1)) provides the
energy to penetrate the barrier (i.e., trigger state transitions).
Nevertheless, the settings of all the parameters above are not
restricted by the dynamics of state transitions. Based on the
conditions above, derived from (1), (2), (3) and (4) when
νsn = 0, b(t) = 0, and knowing that at the steady state, all
the differentials are equal to 0, the average firing rate of the
winning neurons is given by:

νsteady = νsc =
ωisTi−Ts

1−ωss +ωsiωis
(9)

Here νsteady and its fluctuation are assumed to be smaller than
the saturation frequency of the neurons, set by their refractory
period bias. The convergence threshold (see Fig. 2) for the two
steady frequencies (the other one is 0) is defined as

νthreshold =
Ts

ωss−1
(10)

In practice, to ensure that the working memory will be able
to maintain its state in a stable regime, it is necessary to
maximize the distance between νsteady and νthreshold as well as
the distance between νthreshold and 0. These distances should
always be higher than the fluctuation range of the average
firing rate of neurons, which can vary due to neuron dynamics,
intrinsic and external noise, temperature, etc.

B. Dynamics of state transitions
Other cases that cause the decrease in robustness are unde-

sired or unsuccessful state transitions. The NSM architecture
we propose provides a group of conditions that can be used
to avoid both of these two cases. In this section, we keep
all the parameters discussed in the previous section constant
and determine these extra conditions. To simplify the analysis,
assume that all the external inputs provided to the transition
population ti are spike trains with constant mean frequency.
When an excitatory input is given to the transition population
and there is no inhibitory input, b(t) will be equal to a constant
value b in the following discussions.

Consider a transition population ti. When its corresponding
state si is not firing (i.e., νsc = 0), according to (4), if (11)
is satisfied, the network has νt = 0, which means that the
transition gate is closed by the suppression from the current
firing state. This mechanism prevents undesired transitions.

ωbtb−ωii f (ωitνi−Tt)−Tt ≤ 0 (11)
Conversely, when the state population si linked to the transition
population ti is active (i.e., νsc = νsteady), according to (4),
if (12) is satisfied, the network has νt = f (ωbtb−Tt), which
means that the corresponding transition gate is completely
open and ready for incoming external signals. Then according
to (1), (13) ensures the start of a new transition, which means
that the next state neurons receive enough inputs to increase
their firing rate.

ωitνi−ωstνsc −Tt ≤ 0 (12)
τν̇sn = ωts f (ωbtb−Tt)−ωisνi−Ts > 0 (13)
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Fig. 3: Dynamics of state transitions measured on silicon neurons from the
neuromorphic chip. After the transition at t = 2s, the neurons self-sustain their
firing rate without any additional external input.

Where νsn = 0 due to the previous suppression, and because it
is a transient analysis for νsn , assume all the other differentials
equal to 0 (same for below). According to (13), the network
needs a relatively high ωbt to amplify the external input b if
its frequency is not high enough to ensure ωbtb−Tt > 0. In
addition, according to (11), (12) and (13), with higher ωii, ωst
and ωts, the network has higher tolerance to the variance of
input frequency and the mismatch of silicon neuron circuits.

When the average firing rate of the current state neurons
decreases, the frequency of spikes transferred by the transition
gate will decrease as well, which means there are fewer events
pushing the WTA network to update its winner. To reliably
finish this transition, the network should make sure that when
the external input is not strong enough to increase the activity
of the next state neurons, their average firing rate is still higher
than a threshold frequency νequal , which occurs when two
populations have equal chance to win the competition. This
threshold value is higher than the ideal value given in (14),
which holds for steady state conditions, or conditions in which
all the time constants are equal to 0, and there is no noise. It is
derived from the νsn of (1), (2) and (3) at a steady state when
νsc = νsn and νt = 0. If there is no fluctuation, νequal should
be smaller than νsteady.

νequal ≥
ωisTi−Ts

1−ωss +2ωsiωis
(14)

To finish the transition, when νsn is increased to νequal , it is
required that the transition gate is not totally closed (described
in (15)). Also, the network should satisfy the condition given
in (16), which means the activity will continue increasing to
cross this point. These conditions are derived from (4) and (1)
respectively when νsc = νsn = νequal .

νt = f (ωbtb−ωii f (ωitνi−ωstνequal−Tt)−Tt)> 0 (15)
τν̇sn = ωtsνt +(ωss−1)νequal−ωisνi−Ts > 0 (16)

According to (15) and (16), ωst should be high enough (com-
pared with ωit ) to keep the transition gate open. In addition,
ωts needs to be high for transferring the input to the next state
neurons. These conditions prevent unsuccessful transitions.
The state transition fulfilling all the conditions described above
is illustrated in Fig. 3 at t = 2s.



s1 s2

g1

e1

s3 s4

g2

i1=e1
g3

e1

Ssum

Fig. 4: Network for eliminating ambiguous inputs.
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Fig. 5: Consecutive transitions using the same input. Input population e1
receives 10 Hz constant external stimuli with an interval between t = 4s and
t = 5s. Because of the interval, the NSM transitions from state s2 to s3, then
consecutive input from e1 triggers another transition.

As discussed above, the parameters of NSMs cooperatively
define the state-dependent behaviors. However, the tuning of
these parameters is not restricted to a narrow range which is
correlated to the value of other parameters.

IV. Hardware experiments

We implemented the NSM architecture illustrated in
Fig. 1(a) using a multi-core neuromorphic chip [4] and mea-
sured mean firing rates from its silicon neurons. We show
that in the hardware NSMs, a wide range of probabilities
can be used to define the connectivity between populations
(e.g., p = 0.9 for Fig. 3 and Fig. 5, or p = 0.5 for the
robustness test). This demonstrates the increased robustness
of the architecture proposed, relieving the precision limits
from the hardware resources and providing more options when
developing applications on neuromorphic hardware.

A. Ambiguous inputs

In addition to mismatch and noise both in the circuits and
in the environment, also ambiguous inputs can cause undesired
transitions, as also discussed in [2]. Due to the analog circuit
mismatch, the system noise, and the analog neural dynamics,
it is hard to precisely control the duration and strength of
the inputs given to individual neurons. When the same input
condition is applied multiple times for state transitions, the
network cannot easily distinguish how many transitions should
be triggered. In this work, to eliminate this ambiguity, we
propose to use a NSM that has a dedicated transition unit to
signal the end of an input symbol and a new transition gate
to initiate new transitions triggered by the same input symbol
(see Fig. 4). In this way, multiple transitions are triggered by
the same input symbol only if there is an interval between
instances of the applied input signal (see Fig. 5).

TABLE I: Proportion of successful transitions.

Model in [2] Neural State Machine

Self-transitions 97.4% 100%
Without ambiguity 95.44% 100%
With ambiguity 88.97% 100%

B. Robustness test
We tested the system with a NSM that has 8 states, 16

inputs and 128 random transitions (97 self-transitions, 24 tran-
sitions without ambiguity and 7 transitions with ambiguity).
We triggered 10,000 transitions in random order and compared
the robustness of our model to previously proposed approaches
(see Table I). In the test, each input signal consists of 5 spikes
sent with 20 Hz. The inputs are given with 500 ms intervals.
During the test, state holding neurons are firing at 25 Hz on
average.

V. Conclusions
We proposed a novel NSM architecture that makes use of

transition gates to realize robust state-dependent computation
in analog/digital neuromorphic circuits. The reliability and
robustness features of the model do not require more than
8 neurons/population. This allows us to use one single self-
excited soft WTA network to hold and update the memory
of internal states, overcoming the requirement of multiple
coupled soft WTAs of previous models [2], [6]. In this work,
we analyzed the dynamics of NSMs and provided a set of
conditions for ensuring their robust behavior. NSMs provide
a computational primitive for integrating large-scale asyn-
chronous cognitive computations in neuromorphic electronic
systems. In addition to solving practical engineering problems,
the proposed architecture might shed light on the role of dis-
inhibition in biological networks.
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