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Abstract—Does the brain operate at criticality, to op-
timize neural computation? Literature uses different fin-
gerprints of criticality in neural networks, leaving the rela-
tionship between them mostly unclear. Here, we compare
two specific signatures of criticality, and ask whether they
refer to observables at the same critical point, or to two
differing phase transitions. Using a recurrent spiking neu-
ral network, we demonstrate that avalanche criticality does
not necessarily lie at edge-of-chaos.

1. Introduction

In the endeavour of understanding the functioning of
the brain, the hypothesis has emerged that biological neu-
ral networks might be operating at criticality [1]. The
promise of this hypothesis is that at the critical point the
particular details of the system’s individual elements and
their interaction laws cease to be of importance. In this
case, the phase transition itself dominates the behavior of
the system and therefore the astounding anatomical and
biophysical details of neural circuits would surrender to
some very generic network properties, allowing to grasp
the fundamentals of the information processing and com-
putation in the brain. A “fingerprint” of criticality is power
law distributions of the properties exhibited by local de-
scriptors evaluated across the ensemble. Such a finger-
print was also discovered in the statistics of spontaneous
activity avalanches of cortical neural tissue recorded with
multi-electrode arrays [1]. While alternative explanations
for power law observations have been proposed, the propo-
nents of the avalanche criticality hypothesis attribute sev-
eral advantages of this state: optimized information trans-
mission and capacity, as well as increased flexibility of re-
sponses granted by diverse activity patterns [2, 3]. The no-
tion of computation used in this context remained, however,
rather vague, similar to the dynamical (in contrast to the
topological) situation counterpart, where it has been con-
tended that computation, in the sense of the ability of a
system to transmit, store and modify information, would be
optimized at edge-of-chaos [4] criticality. Links have been
occasionally drawn in the literature between the edge-of-
chaos and the avalanche criticality [5], however, the rela-
tionship between these two phase transitions in neural net-
works is far from established. Here, we examine whether
avalanche criticality lies at the edge-of-chaos, character-
ized by a zero largest Lyapunov exponent.

2. Neural network model

The neural network model used in this study reflects
the general features ascribed to cortical networks: sparsely
connected and consisting of 80% excitatory and 20% in-
hibitory neurons, where inhibitory synapses are several
times stronger than the excitatory ones. The network topol-
ogy was a directed Erdös-Rényi random graph; this type
of connectivity is more in line with the networks in disso-
ciated cortical cultures [6]. The number of nodes in the
network was set to N = 128, and the mean in-degree was
set to k = 5, which is equal to 4% connectivity. The size
of the network was chosen to satisfy a trade-off between
obtaining enough statistics for the avalanche size distribu-
tions and minimizing the calculation time of the network’s
Lyapunov exponents.

To assess the dynamical stability properties of the net-
work, we need nodes that exhibit dynamics similar as pos-
sible to the membrane potential dynamics of real neurons,
which can be achieved by using the Rulkov map model
(cf. Eq. 3, 4 in Ref. [7] where u = yn + βI syn

n and
σn = I syn

n ). The parameter values for excitatory and in-
hibitory neurons were identical: α = 3.6, µ = 0.001,
σ = 0.09, β = 0.133. Synaptic input I syn

n was modelled
by exponential decay and step-like increase upon a presy-
naptic spike event, I syn

n+1 = γI syn
n −

∑N
j Wscalewi j(xn − xrp),

where γ controls the decay rate of the synaptic current,
wi j is the synaptic strength between the presynaptic neu-
ron j and the postsynaptic neuron i, xrp is the reversal po-
tential which determines whether the synapse is inhibitory
or excitatory, and Wscale is a global scaling parameter of
the synaptic weight. We used the following parameter val-
ues for excitatory (‘Ex’) and inhibitory (‘Inh’) synapses:
xEx

rp = 0, γEx = 0.75, wEx
i j = 0.6, xInh

rp = −1.1, γInh = 0.75,
wInh

i j = 1.8. Because this would pertain to self-organized
criticality, which is not the goal of the present investiga-
tion, synaptic plasticity was not included in the network
model.

To introduce spontaneous activity, we modelled one of
the neurons to spike intrinsically by setting its parameter
σ = 0.103, which is just above the spiking threshold. By
embedding this neuron in the network, the network’s in-
fluence on spontaneous firing is much more realistic com-
pared to if the network were solely external input-driven.
Additionally, we also added a sparse, excitatory external
input to all neurons in the form of independent Poisson
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spike trains. The probability for a single neuron to receive
an external input spike at any given iteration was 6 · 10−4.
This type of input models randomness similar to the spon-
taneous neurotransmitter vesicle release.

The parameters of the network model were kept fixed
except for the synaptic weight scaling parameter Wscale that
was varied for accessing subcritical, critical and supercrit-
ical activity states. For each of the three states we ran 50
simulations and pooled the results. For each simulation,
the synaptic connections were randomized. A single simu-
lation covered 5 ·105 iterations, and the first 5000 iterations
were discarded.

3. Analysis of neuronal avalanches

Neuronal avalanches are generally defined as periods
of uninterrupted neural activity, either local-field potential
events or spikes, with respect to a given time binning. In
our case we will analyse spike avalanches. Time is divided
into bins of length ∆t and an avalanche is a sequence of
bins that each features at least one spike, preceded and fol-
lowed by at least one bin without any spikes. The lifetime
of the avalanche T is the number of bins in the sequence.
The size of the avalanche S is the sum of the spikes in the
sequence. A popular decision in the experimental studies
is to use a temporal bin size equal to the average time be-
tween two subsequent events across all of the electrodes:
the inter-event interval IEIavg [1, 8, 9, 10]. In order to put
our study in the same context as the experimental investi-
gations of the avalanche criticality, we will follow the es-
tablished approach of defining neural avalanches by using
a binning size of ∆t = IEIavg [1].

Power law distributions can be caused by several dif-
ferent mechanisms and not necessarily by a phase tran-
sition, which necessitates additional tests to confirm that
the network is really at criticality. An important test for
the scale-free property of the avalanches is the universal
scaling of avalanche shapes [10]. The avalanche shape of
length T is defined as the temporal profile of an avalanche,
i.e., the number of spikes over time V(T, t). The critical
point is characterized by power laws in many variables
and these relationships give rise to the fractal structure of
avalanches: the average shapes are similar over different
time scales and they collapse to one universal shape after
rescaling. In contrast, subcritical or supercritical avalanche
shapes should not collapse. We let 〈V〉(T, t/T ) be the av-
erage temporal evolution of the size of an avalanche with
a normalized duration t/T and rescale the avalanches to
V(t/T ) = T 1−γ〈V〉(T, t/T ), where V(t/T ) is the univer-
sal scaling function, i.e., the characteristic shape of all
avalanches. The critical exponent γ can be obtained from
〈S 〉(T ) ∝ T γ, where 〈S 〉(T ) is the mean size of avalanches
as a function of the duration T , which can be easily esti-
mated from the simulation results.

Figure 1: Avalanche size S distributions: (a) subcritical,
(b) critical, (c) supercritical networks. The critical network
shows a power law behavior for S ≥ 6, with α ≈ 2.4 (fit-
ted using the maximum-likelihood estimation; goodness of
fit evaluated using the Kolmogorov-Smirnov distance with
1000 synthetic samples [11], p-value = 0.52). The decay of
the subcritical distribution can be fitted by an exponential
with exponent λ ≈ 0.21 (p-value = 0.26).

4. Results and discussion

By globally increasing the synaptic strength of the con-
nections with the parameter Wscale, we observed an overall
increase in network activity and an evolution of the topo-
logical network state from subcritical, to critical, to super-
critical (Fig. 1). The values of Wscale corresponding to sub-
critical, critical and supercritical networks were 0.13, 0.139
and 0.15, respectively. The mean IEIavg ± S D was 110 ± 8
(subcritical network), 48±6 (critical network) and 8±2 (su-
percritical network) iterations. Changing Wscale appeared
to have a similar effect to changing the levels of excitation
in biological experiments by using pharmacological agents
that alter the efficiency of neurotransmitter receptors [3].
The avalanche size distribution of the critical network fol-
lows a power law with the exponent α ≈ 2.4 (Fig. 1(b)),
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with a power law noise cut-off at about S ≈ 100. This is
expected because the network is a finite system of the size
N = 128 and in most of the avalanches a single Rulkov neu-
ron fires only once. In the subcritical case, the avalanches
were smaller and their size decayed exponentially, while
in the supercritical case there was an increased number of
large avalanches signified by the hump at the end of the dis-
tribution. If the synaptic strength were to be increased fur-
ther, the hump would become even more prominent. Sim-
ilar metamorphosis of the distribution shape was also ob-
served for avalanche lifetimes. At criticality, the lifetime
distribution could be fitted with a power law for T ≥ 10,
with an exponent τ = 2.9.

The critical exponent α = 2.4 of our avalanche size dis-
tribution is different from the slope α = 1.5 measured in
the original experiments [1]. However, in subsequent re-
ports of critical spike avalanches the exponents have varied
substantially, in the range from 1.5 to 2.1 [8, 9]. Some re-
searchers explicitly reject the idea of a universal exponent
(such as α = 1.5) because of insufficient experimental and
theoretical basis [12]. Our critical avalanche size distribu-
tion is rather similar to that of dissociated rat cortical neu-
rons reported in Ref. [9], which had α = 2.1 at the tail of
the distribution and another scaling regime for very small
avalanches.

The critical network showed a rather noisy collapse of
the avalanche shapes of duration T ≥ 20 (Fig. 2(a)), but
overall the avalanche shapes were more self-similar than in
the case of the supercritical network (Fig. 2(b)). The scal-
ing could not be assessed for the subcritical network, as the
maximum lifetime of the subcritical avalanches was only
Tmax = 26. A collapse similarly noisy to ours was reported
for avalanches recorded in dissociated neuron cultures [10],
which have a topology similar to our network model [6].

As the final test, we examined the relation among crit-
ical exponents τ−1

α−1 = γ [10]. The critical exponents
of avalanche lifetime distribution (τ = 2.9), avalanche
size distribution (α = 2.4), and the function of the mean
avalanche size depending on the lifetime (γ = 1.37) ful-
fills this relation. Taken together: power law distributions,
the similarity of avalanche shapes and an excellent fulfill-
ment of the fundamental relation between critical expo-
nents, strongly suggests that our ‘critically tuned’ network
is indeed critical.

The largest Lyapunov exponents for the three network
states, calculated using the network’s Jacobian matrix eval-
uated at points along the trajectory of the state vector [13],
were, however, all positive and practically the same for sub-
critical and supercritical networks and slightly smaller for
the supercritical network: λ1 ≈ 18 s−1 for subcritical and
critical networks and λ1 ≈ 16.5 s−1 for the supercritical net-
work (applying the time rescaling of [7] with one iteration
accounting for about 0.5 ms).

The Lyapunov spectra in the three cases provided more
insight by showing that the number of positive Lyapunov
exponents increased with coupling strength. The upper

Figure 2: Time-rescaled avalanches: (a) critical, (b) super-
critical case. Colors indicate avalanche lifetime T .

bound of the Kolmogorov-Sinai entropy H =
∑
λi>0 λi in

our networks increased with a higher coupling strength and
was the highest for the supercritical network: 28 s−1 (sub-
critical), 46 s−1 (critical), 88 s−1 (supercritical). Although
the supercritical network has a slightly smaller largest Lya-
punov exponent, it loses the information about the past
states at the fastest rate.

As chaotic dynamics could be a collective effect of the
network interactions or arise simply because the nodes
themselves have chaotic dynamics, we measured the largest
Lyapunov exponent of the intrinsically spiking neuron and
found it to be positive (λ1 = 20 s−1), in the absence of net-
work input. In the presence of external input, the neuron
was occasionally silenced, a behavior that can be also ob-
served in Class II neurons. As a result, the neuron’s largest
Lyapunov exponent decreased to λ1 ≈ 18 s−1 which is in
agreement with λ1 of our networks. This suggests that the
largest Lyapunov exponent of the network might be cap-
turing the dynamics of the intrinsically spiking neuron. In
the subcritical and critical cases there were 3-4 other posi-
tive Lyapunov exponents, which is close to the number of
neurons that receive inputs from the intrinsically spiking
neuron. Therefore, the source of chaos in our networks
resides in the single neuron dynamics; the increase of cou-
pling strength made the chaos more intensive because it
allowed more neurons to spike.
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5. Conclusion

Our network showed chaotic dynamics, for all choices
of the synaptic weights. The main result of the present
study is that we did not observe a coincidence of avalanche
and edge-to-chaos criticality in our network type. This sug-
gests that in neural networks with non-trivial node dynam-
ics these are two separate phase transitions. Both phase
transitions have been occasionally mentioned in the same
context in the literature; our demonstration also elucidated
that any computational benefits of one criticality cannot be
directly translated to the other, and that in this regard the
internal neuronal processes appear to play a decisive role.
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