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Abstract—We present an approach to constructing a neuromor-
phic device that responds to language input by producing neu-
ron spikes in proportion to the strength of the appropriate pos-
itive or negative emotional response. Specifically, we perform a
fine-grained sentiment analysis task with implementations on
two different systems: one using conventional spiking neural
network (SNN) simulators and the other one using IBM’s Neu-
rosynaptic System TrueNorth. Input words are projected into a
high-dimensional semantic space and processed through a fully-
connected neural network (FCNN) containing rectified linear
units (ReLU) trained via backpropagation. After training, this
FCNN is converted to a SNN by substituting the ReLUs with
integrate-and-fire neurons. We show that there is practically
no performance loss due to conversion to a spiking network
on a sentiment analysis test set, i.e. correlations with human
annotations differ by less than 0.02 between the original DNN
and its spiking equivalent. Additionally, we show that the SNN
generated with this technique can be mapped to existing neuro-
morphic hardware – in our case, the TrueNorth chip. Mapping
to the chip involves 4-bit synaptic weight discretization and
adjustment of the neuron thresholds. The resulting end-to-end
system can take a user input, i.e. a word in a vocabulary of
over 300,000 words, and estimate its sentiment on TrueNorth
with a power consumption of approximately 50 µW .

1. Introduction

The rise of the internet and more powerful computers has
enabled an unprecedented ability to interpret and understand
natural language. Deep neural networks (DNN) can be trained
on massive datasets to perform a wide variety of natural
language understanding and generation tasks [1], [2], [3].
One drawback of DNNs is that they usually require power
hungry hardware, such as GPUs, posing a problem for mobile
devices (e.g. smartphones) which present very stringent
power constraints. A common solution is to outsource the

computation to the cloud by sending the data to a data center,
processing it there, and then sending the results back to the
mobile device. This works well as long as the amount of data
to be processed is limited and as long as there is a reliable
connection between the data center and the mobile device. If
either one of these conditions is not met, the system will not
operate adequately and the user is left without the desired
functionality.

A possible solution for the problem of high power
consumption is to use neuromorphic hardware to perform
the processing [4], [5], [6], [7]. These brain-inspired systems
work on an extremely low power budget: for example, the
IBM’s Neurosynaptic System TrueNorth can simulate 1
million neurons using less than 100 milliwatts (mW ) [8].
Mapping DNNs to neuromorphic hardware would enable
pattern recognition systems which present simultaneously
low power and high performance [9], [10]. To set this in
perspective, a TrueNorth chip analyzing a stream of language
content could run on an iPhone battery nonstop for a week.

Here we present a first example of a NLP system that is
based on spiking neural networks and is also implemented
on neuromorphic hardware. Specifically, the system per-
forms fine-grained sentiment analysis, i.e. evaluating how
positive/negative a word is on a 1 to 9 scale. We start by
training a DNN with rectified linear units (ReLU) on a dataset
labeled with crowd-sourced happiness ratings [11]. After
training, we substitute the ReLUs with integrate-and-fire
neurons and adjust neuron thresholds and scale the weights
appropriately [12]. A comparison between the original DNN
and the converted SNN on the sentiment analysis test set
shows that the drop in correlation between prediction and
target due to the conversion to a spiking network is less
than 0.02 for any of the tested setups. Using the SNN, we
provide code for a real-time interactive demo, where the user
can query any word in a >300,000 word vocabulary and
compute the associated sentiment estimate.

In addition to the SNN that is simulated on a traditional



computer, we present an implementation of the same fine-
grained sentiment analysis task on TrueNorth. For the con-
struction of this network we start from the generic SNN and
proceed by mapping the synaptic weights between neurons
using a quantization strategy with resulting weight precision
of 4 bits.

We call this approach “train-then-constrain”, comparing
it to the “constrain-then-train” used in [13]. Using the “linear
reset” mode, TrueNorth neurons can be configured to produce
spiking rates similar to ReLUs. The final network uses 3
cores, consuming less than 0.1% of a TrueNorth chip to
process language with an estimated power consumption of
less than 50 µW .

The result is an important first step in the creation of a
new generation of spiking cognition systems: a neuromorphic
device which receives words as input and outputs a variable
number of spikes in proportion to the strength of expected
emotional response.

2. Methods

The workflow is depicted in figure 2.1. We begin by
learning distributed word representations using the word2vec
method, which models word meaning via a training process
that predicts word co-occurrences in an unlabeled text corpus.
We then convert the words in our training set into vectors,
which we use as input features to the next processing stage
where a neural network learns to predict the sentiment
score associated with the input word. Training is done using
traditional backpropagation.

After training is completed, the learned weights are used
to construct a spiking neural network that performs the same
task1.

Finally, this spiking network is mapped onto TrueNorth.
This is a ”train-then-constrain” methodology, where an
unconstrained network is learned using full precision weights,
activation values, and neuron types, and then converted
to a hardware compatible network. This contrasts with a
”constrain-then-train” approach that accounts for the archi-
tectural constraints directly in the learning algorithm [13].

2.1. Data and Pretraining

The dataset used here was constructed from data first
presented in [11]. It contains 4460 words with corresponding
crowdsourced sentiment labels, i.e. a number between 1 and
9 (inclusive).

Our goal is to learn a fine-grained sentiment predictor
that generalizes to words and phrases that are not in the
training set. As such we need a large dictionary of words
encoded with a feature representation that captures latent
attributes of word meaning and usage. For this purpose we
pre-train a word2vec [2] model which projects words into a
high-dimensional space such that the location of the words
corresponds to aspects of their meaning. Word similarities

1. The code for running the python based demo of TrueHappiness is
available under https://github.com/peter-u-diehl/truehappiness.

Figure 1. Conversion of the fully-connected neural network to a spiking
neural network and a TrueNorth compatible network. The necessary steps
are 1) training of the network using a traditional deep-learning library 2)
substitution of the ReLU units with integrate-and-fire neurons 3) making
inputs non-negative by either doubling the number of input units or applying
the exponential function 4) converting the real-numbered inputs to Poisson
spike-trains. Additionally, for the TrueNorth network the weights are
discretized to 4-bit precision and unit thresholds are adapted.

can be computed using the cosine distance between word
vectors, e.g. ”good” is close to ”great” in this space but
far away from ”terrorist”. It is also possible to use vector
arithmetic to compute analogies and create features for novel
or ambiguous concepts. For example, in our model the vector
calculated from wordvector(’laughter’) - wordvector(’happy’)
+ wordvector(’sad’) is nearby wordvector(’anguish’). A down-
stream model trained to recognize the sentiment of ’happy’,
’laughter’, and ’sad’ could thus infer without explicit training
that ’anguish’ is a strongly negative term.

Our word vector representations are learned from a large
corpus, in particular the text of the English Wikipedia. After
some preprocessing of the 3.4 billion tokens in the corpus,
like substitution of uncommon words with an ”unknown”
token, we use word2vec’s skipgram algorithm with negative
sampling [2] to learn a vector for the most common 324,263
words. Each word is thus represented as a vector of 64
dimensions, a number selected for convenience in mapping
to the TrueNorth architecture (explained in section 2.4).

These word vectors form the basis for the inputs to
a fully-connected feedforward neural network which we
train to predict fine-grained sentiment scores. The network
contains a hidden layer of 64 rectified linear units without
biases and a single output unit connected by linear weights.
The weights were trained via stochastic gradient descent
using 4000 labeled examples. Hyperparameters were tuned
to optimize performance on a held-out evaluation set of 460
examples.

2.2. Converting to a Spiking Neural Network

The conversion of the original FCNN to a spiking network
has to address the following issues. First, it needs to substitute
the 32-bit precision information transmission with single
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Figure 2. High-level abstraction of a TrueNorth core: the axons can be seen as the inputs, while the neurons integrate weights and produce output spikes.
The synaptic connection between neurons is realized inside each core, with a weight value associated to each connection (dependent on the programmed
axon type). Each core is formed by 256 axons and 256 neurons, totaling 216 configurable synapses per core [8].

bit precision. Second, the information is not transmitted at
every time step but instead only when enough information
is acquired by the processing unit (i.e. when the neuron’s
membrane potential crosses its threshold).

These differences in information transmission imply a
range of changes to the original architecture. The first issue is
easily addressed by only sending ”spikes”, i.e. the single bit
information packet. This discretization will lead to high error
if it is not compensated for. Two common ways of dealing
with this discretization are to either use many units that
send the same information to increase precision (population
coding), or to use more than one time step to transmit the
information (rate coding). In both cases, there needs to be
a mechanism to determine when transmission of the next
input pattern begins.

The second issue, in theory, can be easily addressed by
setting the spiking threshold as small as the smallest incoming
weight. However, in practice the amount of information
which is integrated before a spike is transmitted should
be taken into account. In other words, the magnitude of
the incoming weights must be considered when selecting
the ”spiking threshold” of the unit to reduce the loss of
information when many spikes arrive at the neuron during
one timestep [12]. Here we decided to substitute the ReLUs
with integrate-and-fire neurons since both units’ response is
linearly proportional to the input signal and is zero if the
sum of the input is negative, see Figure 4 (left). For a better
representation of the input we chose to accumulate inputs
over time, the duration of which is known as the integration
time. Specifically, we use spike rate code with a Poisson
spike-train [14], where at each time step the probability of an
input spike is proportional to the strength of the input. One
caveat of the system involves negative inputs, since there is
no direct way of representing them using only an ”on” signal.
We present two approaches to address this problem. The first
consists of doubling the number of input neurons, copying
the weights from the trained network and then multiplying
them by -1. If the number of input neurons is an issue,

which is commonly the case in neuromorphic systems, it
would be more useful to transform the input such that it is
non-negative. For our TrueNorth implementation, we chose
to follow the second strategy, where we trained and tested
the network using the exponential transform of the original
input, thereby assuring that all input values are non-negative.

2.3. TrueNorth

The IBM TrueNorth is a very low power digital neu-
rosynaptic processor that uses brain-inspired processing
and topology [8], [15]. The chip consists of 1 million
programmable spiking neurons and 256 million configurable
synapses, uniformly distributed throughout a 64 x 64 core
architecture. Each core is composed of 256 axons (inputs) and
256 neurons (outputs), connected via a 256 x 256 crossbar of
configurable synapses (see Figure 2). The system operates in
1 ms timesteps (“ticks”), during which membrane potential
processing and spike event routing occur asynchronously
inside the chip. Spikes generated by a neuron can target any
single axon on the chip, with each neuron presenting over
20 individually programmable features (e.g. threshold, leak,
and reset).

The following three sequentially processed equations
define the dynamics of the membrane potential Vj(t) for
neuron j at time t (for the full equation see [16].)

Vj(t) = Vj(t− 1) + Σ255
i=0 Ai(t) wi,j s

Gi
j (1)

Vj(t) = Vj(t) + λj (2)

if (Vj(t) ≥ αj), Spike and set Vj(t) = Vj(t)−αj (3)

The first equation represents the synaptic integration of
all active axons at time t. The term Ai(t) is the binary-valued
input spike on the i-th axon at time t; wi,j is the binary-
valued synaptic connection between axon i and neuron j;
and sGi

j is the synaptic weight between axon i and neuron j.
The last term in equation 1 is dependent on the axon type.
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Figure 4. Rectified linear unit (ReLU) implemented using TrueNorth neurons (left). Example of a TrueNorth crossbar with multi-axon strategy per input for
better weight representation per effective synaptic connection (right).

An axon can be configured to be one of four types, and this
defines which of the four weights will be integrated into
each neuron when the axon is active.

The second equation simply integrates the configurable
leak value for the neuron. Lastly, the third equation compares
the updated membrane potential (after weight integration)
with the threshold. One of the neuron properties particular to
TrueNorth is the “linear reset mode”. In this mode, if Vj(t) is
equal to or surpasses the threshold (αj(t)), the neuron spikes
and its membrane potential is subtracted by the threshold
value.

Given this high-level view of the TrueNorth system, the
following subsection will cover the implementation details
of the neural network mapped onto TrueNorth, including the
architectural and algorithmic adaptations demanded when
using digital spiking neurons for inference [17].

2.4. Implementation Details

The architecture of the original artificial neural network
to be mapped onto the TrueNorth system can be seen in
Figure 3 (left). The entire network was mapped using 3

TrueNorth cores – one per layer. A high-level architecture of
the TrueNorth network is shown in Figure 3 (right). The first
layer consists of 64 inputs: the 64-dimensional word2vec
representation of the input word under analysis. The next
layer is comprised of 64 hidden units, all connected to a
single output neuron.

The TrueNorth implementation of the FCNN uses the
linear reset mode to more closely match the response of the
neurons to the ReLUs of the original network. Figure 4 (left)
shows how a linear reset TrueNorth neuron configured with
threshold α = 100 and λ = 0 behaves similarly to a ReLU:
there is a linear relationship between “normalized product of
input firing rate and connection weight” and the “normalized
output firing rate”.

The 64 inputs to the second and third layers (cores) make
use of all of the 256 axons on their respective cores, while
the first core is used simply for splitting (replicating 4×)
the inputs. The reason for using all 256 axons on one core
for 64 inputs is that the weight precision on TrueNorth is
limited to a small set of quantized values since the axon
type defines the weight used at each connection. A strategy
for obtaining a more precise effective weight representation
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Figure 5. Example configuration of the crossbars on TrueNorth cores for each network layer. The first core is used to replicate the inputs for higher
precision weight representation (left). The second core processes spikes between the input layer and the hidden layer (center). The third core processes
spikes between the hidden layer and the output neuron, where the number of output spikes represents the predicted emotional response (right).

in TrueNorth is to use multiple axons for each input. In this
manner, the total effect of an active input will be a linear
combination of all the weights for the axons it is connected
to. Figure 4 (right) visualizes this strategy, where 4 axons
are used per input, resulting in 24 different possible effective
weight values available per input-output connection. In this
example, the total weight between in1 and out equals +5,
while the weight between in2 and out equals -5. The main
drawback is the need to use “splitter” cores for replicating a
single input to multiple axons.

Figure 5 (left) shows how the neurons and axons are used
for each layer. The first core is used to create replicas of
the 64 inputs, which is obtained by setting the neurons with
threshold α = 1 and making the weight of all connections
also equal to one. In this manner, any incoming spike event
will trigger 4 replicas of this event. The second core, shown
in Figure 5 (center), is used to process the input spikes by
integrating the mapped weights and generating hidden layer
spike events whenever the membrane potential crosses its
spiking threshold. The final core is depicted in Figure 5
(right) and operates in the same manner as the second core,
however now the spiking activity of the output neuron is sent
off-chip. The regression task, therefore, produces a result
based on the number of spikes which were output during
the experiment time window T .

The data, code for the Python implementation, and code
for the real-time TrueNorth demo will be made publicly
available but the latter will require access to a TrueNorth
chip or to the Compass simulator (for which currently an
agreement with IBM is required).

3. Results

After training the fully-connected network on 4000 word
vector and sentiment pairs, we test the sentiment prediction
performance on the remaining 460 word-sentiment pairs of
the dataset. We measure the Pearson correlation between the
human sentiment annotations and our networks’ predictions.
Table 1 shows the performance for the original DNN and
for the converted SNN using a range of different setups. The
original DNN and the DNN trained with exponentiated inputs

Configuration Correlation
Original DNN 0.637
SNN, 0.01s integration 0.291
SNN, 0.10s integration 0.377
SNN, 1.00s integration 0.631
Original DNN - exp 0.661
SNN, 0.01s integration - exp 0.279
SNN, 0.10s integration - exp 0.544
SNN, 1.00s integration - exp 0.651
Original DNN - 4 bit 0.499
SNN, 0.01s integration - 4 bit 0.183
SNN, 0.10s integration - 4 bit 0.293
SNN, 1.00s integration - 4 bit 0.486
Original DNN - exp, 4 bit 0.408
SNN, 0.01s integration - exp, 4 bit 0.310
SNN, 0.10s integration - exp, 4 bit 0.380
SNN, 1.00s integration - exp, 4 bit 0.392

TABLE 1. RESULTS FOR SENTIMENT TEST SET. THE TABLE SHOWS THE
CORRELATION BETWEEN THE PREDICTED SENTIMENT AND THE

CORRECT SENTIMENT LABELS. WITH INCREASING INTEGRATION TIME
THE PERFORMANCE OF THE SNN APPROACHES THE PERFORMANCE OF

THE ORIGINAL RATE-BASED NETWORK.

both achieve a fairly high correlation above 0.63. When
discretizing the weights of the networks, the correlation goes
down to 0.499 and 0.408 for the original and the exponential
inputs, respectively. The SNNs derived from these four
different networks show comparable performances. Adjusting
the integration time allows for a tradeoff between throughput
and accuracy. Notably, as integration time increases, the
performance of the SNNs approaches the performance of
their 32-bit counterpart for every single one of the four
setups.

TrueHappiness, the sentiment prediction system adapted
for TrueNorth, uses an interactive GUI where the user can
type any word in the >300,000 word vocabulary. The input
word is then converted to a constant length vector using
word2vec, which is then converted to Poisson spike trains
and transmitted to the TrueNorth chip. On TrueNorth, the
SNN processes the input and sends the output spikes back
to the computer where spike count is displayed in the GUI
(see Figure 6) along with an emoji representing the direction



Figure 6. The interface for the real-time interactive demo. The user can
type words contained in the >300,000 word vocabulary and the system
will predict its sentiment using TrueNorth.

and magnitude of the predicted sentiment.

4. Discussion

We showed the first example of a low power NLP system
that leverages established machine learning techniques and
maps the resulting neural networks to the TrueNorth chip.
This framework for converting fully-connected networks
trained with backpropagation to a TrueNorth compatible
network is generally applicable to many other machine
learning tasks. In particular, the framework offers high
flexibility because of its modularity. A neural network
designer can optimize the performance of the network by
improving optimization methods, loss functions, or regulariza-
tion techniques and, as long as the weights and connectivity
are in the required format, the adaptation technique does
not change. Similarly, the rest of the pipeline is oblivious
to which library is used for training the NN, which means
the NN designer has the freedom to choose libraries such
as Pylearn2/Theano [18], Torch, or Caffe [19]. Moreover,
none of the steps in the framework (besides the word2vec
preprocessing) depend on the task to be solved. For example,
a similar approach has been used for question classification
[20]. The inputs might just as well be pixel intensities or an
audio signal, without needing to change the framework.

One important issue that is not tackled here is the
connectivity of the NN and it is assumed that the NN designer
takes care of the connectivity constraints on TrueNorth, i.e.
every neuron can only connect to one other axon (i.e. 256

neurons) and every neuron can only receive up to 256 inputs.
While this might sound like a harsh restriction, many high
performance NNs, like convolutional neural networks [21],
use local connectivity by design and are therefore easier to
adapt to TrueNorth. Another restriction is that learning is
done offline, i.e. the system can not adapt its parameters
to new incoming data. While this is often acceptable for
many practically relevant systems, other systems might
need to adjust to a specific user or a new environment.
In such cases it would be necessary to use neuromorphic
hardware that brings efficient online learning [5], [22], [23]
in combination with online learning algorithms [24], [25],
[26], [27], [28]. However, so far it remains a challenge to
achieve performances comparable to conversion methods
using such online learning approaches.

The mapping from the FCNN to the spiking network
does lead to a performance gap between the original network
and its spiking counterpart. However, this gap is very small
for longer presentations of the inputs and makes it possible
for the system designer to trade-off accuracy for resources
depending on the application. For example in an application
where there is very high variance in the inputs, it is likely
not useful to push the limits of accuracy for a given input but
instead decrease latency, thus increasing throughput. Another
way to minimize the performance gap, would be to duplicate
the inputs and thereby use multiple Poisson spike-trains
as inputs per actual input. Since those two methods are
complementary, they can also be combined.

A more important source of performance loss is the
weight discretization to 4 bits which is used here for
the mapping to TrueNorth. Using the naive approach of
discretizing or rounding the weights to the nearest of the
16 values results in a reduction in Pearson correlation of
0.138. While this is quite a significant reduction, there are
many ways to improve upon this method. One possibility
is to use a layer-wise training method where after the first
rounding step the resulting network is trained again (using
standard backpropagation) but with fixed weights for the
first layer. After this re-training, the weights are rounded
again and the re-training could then be repeated as often
as there are remaining layers. In this way, the network will
learn to use the discretized weights in the earlier layers in
a better way and potentially compensate the discretization
loss. Other ways would be to use stochastic rounding [29]
or more sophisticated training methods such as the dual-
copy rounding [30], where the weights are discretized in
the forward pass of the backpropagation algorithm but full
resolution weights are used for backpropagating the error
signal. This results in weights that show only minimal loss
due to discretization. If resources are not a major issues at
run time, it would also be possible to use a probabilistic
rounding of the weights and use multiple instances of the
network. For example if a weight has a value of 0.7 and
we want to discretize is to 0 or 1, we could flip ten biased
coins, using every coin for one of ten different networks. A
possible outcome of those coin flips would be that seven of
the ten networks use a weight of 1 and the remaining three
networks use a weight of 0. By averaging over the results of



these networks, the result will most likely improve, similar
to other committee methods in machine learning [31], but
only requiring the practitioner to train the original network
once. ”Constrain-then-train” approaches [13] successfully
employ strategies such as these for maximizing runtime
system accuracy.

In order to deal with negative inputs, we introduced two
methods for representing these data using spike trains. The
first one consists of duplicating every input neuron which
potentially needs to represent a negative value. This leads to
a very small performance gap between the original and the
spiking network, i.e. the correlation only decreases by 0.006.
The other presented approach is to exponentiate the inputs
to ensure that they are non-negative. Interestingly, for the
sentiment analysis task this even improved the performance
of the original network as well as the performance of the
spiking network, even though the performance gap slightly
increased to 0.01. After discretizing the weights to 4 bits
to be able to map them on TrueNorth, the performance gap
increases slightly for both methods: to 0.013 for the input
duplication and to 0.016 for the exponentiation. However in
the case of the exponentiation, the drop in correlation due
to weight discretization is 0.253, which is much bigger than
the performance gap for spiking networks, rendering the
performance gap due to a spiking representation relatively
insignificant. A likely explanation for this increased loss
is that the exponentiation reduces the absolute difference
between some words and increases the difference for other
words. This would require more finely tuned weights to
correctly process the small differences, but this exact fine
tuning will not be represented in the 4-bit weights. It remains
an open question whether the above mentioned methods for
reducing the discretization loss might help to avoid the
negative effect of the exponentiation.

An interesting idea to improve the performance after
mapping the network from DNN to SNN would be to retrain
it using other SNN-based learning techniques, e.g. [28], [32],
[33]. While it is possible that such an approach improves
the results, first tests of re-training NNs that were previously
trained using a different mechanisms have shown a decrease
of performance of the resulting system (at least in cases
where the system before training performed well). A likely
reason for that is that different learning mechanisms learn
different types of encodings which cannot necessarily be
reused or are compatible with each other, i.e. during the
relearning process the previous encoding cannot be used for
transfer learning and is overwritten. Nonetheless, this is an
exciting direction of research with great potential to adapt
pre-trained networks faster to new applications or to further
improve the performance.

Despite the mentioned challenges, this work represents
an important first step towards practically relevant and
extremely low power NLP systems and other neuromorphic
pattern recognition systems. The main advantage of our
method lies in its modularity and flexibility since progress in
deep learning research will directly impact the performance
of neuromorphic recognition systems designed with our
framework.
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