
Retinal ganglion cell software and FPGA model
implementation for object detection and tracking

Diederik Paul Moeys1, Tobias Delbrück1, Antonio Rios-Navarro2 and Alejandro Linares-Barranco2
1Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland

2Robotic and Technology of Computers Laboratory University of Seville, Spain

Abstract—This paper describes the software and FPGA

implementation of a Retinal Ganglion Cell model which detects
moving objects. It is shown how this processing, in conjunction
with a Dynamic Vision Sensor as its input, can be used to
extrapolate information about object position. Software-wise, a
system based on an array of these of RGCs has been developed in
order to obtain up to two trackers. These can track objects in a
scene, from a still observer, and get inhibited when saccadic
camera motion happens. The entire processing takes on average
1000 ns/event. A simplified version of this mechanism, with a mean
latency of 330 ns/event, at 50 MHz, has also been implemented in
a Spartan6 FPGA.

I. INTRODUCTION

To increase power efficiency, decrease data rate and latency,
neuromorphic sensors have been developed over the last 30
years. The Dynamic Vision Sensor (DVS) [1] is an example of
such category of devices which draws inspiration from the real
functioning of the retina. This vision sensor outputs temporal
contrast of logarithmic intensity, asynchronously, through
Address Event Representation (AER). The AER protocol
encodes the x-y address of where the change happened, to which
a microsecond timestamp is added. The in-pixel processing
imitates the inherent processing of the Retinal Ganglion Cells
(RGC) in biological retinas with microsecond resolution,
allowing tasks such as high-speed tracking [2]. Therefore, to
investigate further the efficient processing of visual information
of the brain, this work tries to mimic further the pre-processing
intrinsic to the retina, computed by a specific type of RGC,
described in [3]. The Object Motion Cell (OMC) detects local
motion by getting excited by small moving objects and being
inhibited by large synchronous global motions of the scene
(saccades). This feature can be used to extract basic information
about motion of a target object. A simulation of an analog
imager based on the OMC was previously attempted in [4] but
was centered around a different model and technology.

II. THE CIRCUIT MODEL

A. The observed neural mechanism

The mechanism of the OMC is possible due to its excitatory-
inhibitory center-surround morphology. Although the
Receptive Field (RF) of the cell is in practice more like a two-
dimensional (2D) Laplacian function, it can be simplified to a
2D top-hat function, with positive weight in its center and
negative on its outside. The basic algorithm on which this cell
is based is summarized in Fig. 1 and is reported in the following

steps. The RF of the cell is composed of subunits of similar
sizes: these represent the single bipolar cells of the retina. The
central subunits are excitatory while all the other subunits are
inhibitory. Since the bipolar cells are not inhibitory themselves,
their inhibition is theorized to be mediated by fast amacrine
cells [3]. When a change in brightness is detected somewhere
in the RF of the cell by a hyperpolarizing cone, the membrane
potential of the bipolar cell connected to it is increased linearly.
Then, a non-linear rectifying transformation is applied to it.
While the subunits are integrating they also decay due to an
ionic leakage, adapting to the present visual situation. The RGC
contacting the bipolar cells of the exciting center and the
inhibiting amacrine cells then integrates the net synaptic input
(the difference between excitation and inhibition) on its own
membrane. If this is higher than its response threshold, the cell
fires. The cell works such that if there is a perfectly synchronous
motion in the inhibitory surround, the center excitation is
cancelled. Otherwise if the excitatory subunits are triggered and
not compensated for, the cell spikes.

Fig. 1 Object motion cell’s simplified computation.

B. Single jAER OMC implementation

To mimic the behavior of a simple OMC, an algorithm has
been developed in jAER, the software which processes the
events of the DVS neuromorphic sensor [5]. To create the
subunits of the OMC, these are set by subsampling the address
of the incoming events, making it possible to scale the size of
the single subunits by a power of two, to better fit the size of
the object to be detected. Then all subunits are set to be
inhibitory apart from the central four which are excitatory.
When an event is received at a particular x, y coordinate within
a subunit, its membrane potential is increased linearly by one
unit and its non-linearity is calculated. This non-linear
rectification can be set to be, in the developed model, of
exponential type of any order or of exponential tangent type. In
the first case, a clipping is artificially placed on the membrane
potential of the single subunit, so that if too much activity is
registered, a single subunit cannot constantly dominate over
other weak subunits. In the second case, the natural saturation

This research is supported by the European Commission project
VISUALISE (FP7-ICT-600954) and by the Spanish grants (with support from
the European Regional Development Fund) BIOSENSE (TEC2012-37868-
C04-02) and the Andalusian Council Excellence grant MINERVA (P12-TIC-
1300). We thank the Sensors group at INI and the RTC lab in Seville.

of the exponential tangent already inherently performs this
operation. To model the ionic leakage which makes the
subunit’s membrane potential decay if no further activity is
detected in its RF, an adjustable exponential decay with time
constant ߬௦ is computed at every event timestamp received and
applied to the subunit.

For the whole array of subunits, the total surround inhibition
is computed by adding the non-linearized membrane potentials
of each subunit and by normalizing. The same is done for the
center excitation. The excitation can be scaled by a synaptic
weight	ߙ. This empirically ensures stability and allows the
OMC to be adjusted to different visual scenes. The final
membrane potential of the RGC is computed by integrating the
net synaptic input and, if larger than the adjustable threshold,
the cell fires, signaling object motion detection. The RGC’s
membrane potential is also decayed exponentially with time
constant	߬. If the exponential tangent non-linearity is chosen
then the computation of the OMC can be modelled as:

 ቊ
݂݅		 ܸ݁

ି௧ ఛൗ ூܸி			݀	ݐ݊	݁ݎ݂݅

݂݅		 ܸ݁
ି௧ ఛൗ ூܸி			݂݅݁ݎ

Where ܸ is the integrated membrane potential of the OMC
expressed in equation (2), ݐ is the timestamp time, ூܸி is the
Integrate and Fire (IF) threshold to be overcome to spike.

ܸ ൌ ൮ߙ
∑ ௧൭ೣ

ష
ഓೞ൱ర

సభ

ସ
െ

∑ ௧൭
ష
ഓೞ൱ೖషర

సభ

ିସ
൲݀ݐ

௧

Where ߙ is the weight of the excitation, ܸ௫ and ୧ܸ୬are the ith
excitatory and inhibitory subunit membrane voltages
respectively and ݇ is the total number of subunits. As an option,
the total inhibition (or excitation) can be computed, not only by
the membrane potential but by its difference to the neighboring
subunits. This local normalization removes the problem of
global dimming, which could trigger the RGC response.

Fig. 2 jAER output showing the DVS camera output events (ON in white, OFF
in black). Left: saccade inhibiting the OMC. Right: single object movement
exciting it. The green disks represent the activation of the inhibitive subunits
and the red ones represent the excitation. The bars on the side compare the
normalized activities. The positions of the subunits are highlighted by a grid.

The simple OMC was initially tested in jAER with 8 x 8
subunits. The algorithm works for different natural visual
stimuli such as the ones shown in Fig. 2. On the left image, the
DVS camera output shows a saccade view of the office. On the
right side, only a person moves in the scene. As it can be seen,
when the camera is moved in a saccade, the inhibition subunits
are maximally active (green disks) and compensate for the

excitatory input (red disks). If the local motion at the center of
the RF is instead not compensated, then the cell fires. This can
be seen in the graph of Fig. 3, which illustrates a plot of center
excitation and surround inhibition with a second order non-
linearity added to each subunit.

Fig. 3 Plot of surround inhibition versus center excitation for the video of Fig.
2 in arbitrary units. The non-circled parts correspond to global motion
(excitation smaller than inhibition). The circled part corresponds instead to
local motion (excitation larger than inhibition).

III. MULTIPLE OMC TRACKER JAER IMPLEMENTATION

A. Multiple jAER OMCs implementation

To make use of the OMC for tracking, it is important not to
just detect the object’s presence but also its direction. To
achieve this goal, an array of 16 x 16 subunits was set up in
jAER. By sliding the 2 x 2 excitation center of the OMC across
all subunits with unity stride, 15 x 15 OMCs (this number is
dictated by the size of the target) can be constructed. To speed
up computation, all subunits are regarded as the inhibiting
surround, including the central ones, so that the total inhibition
can be computed just once for all OMCs with minimal error.
This would mean that the term ݇ െ 4 in the right hand side of
equation (2) simplifies to	݇. The final result is that now all these
overlapping cells respond to object motions at specific
locations. To make the algorithm more robust, the average
event rate is used. For the DVS128 sensor, if this is lower for
example, than 500 ev/s (events/second), then the IF threshold
of the RGC can be set to a high value. This is because for such
low event rates the pixels producing a response constitute
mostly random activity due to leakage in the reset transistor of
the DVS pixel [1]. Increasing the threshold prevents the cell
from firing for no relevant activity. An upper threshold can also
be set if the activity is too high: in such case it is likely that the
sensor either moves very close to a high contrast wall or that the
target is too close and covers the entire field of view. In this
case, tracking is not necessary and can be suppressed. Any
event rate in between these boundaries can be associated with a
moving object. The event rate numbers used in this design have
been obtained empirically by placing a 128 x 128 DVS sensor
on a moving robotic platform following another robot.

B. Tracking

 The single OMCs spiking in the presence of a moving object
can be easily clustered, so as to obtain the position of the
moving object by correlation. A tracking scheme was
implemented to draw a containing box around the last 3 spiking
cells close in time and space, and to find its center of mass by
geometry. If some OMCs spike due to a second object moving
in the scene, therefore beyond the reach of the first tracker, then

 Surround Inhibition
 Center Excitation

these outputs can be associated to a second tracker. Double
tracking is shown in the left image of Fig. 4, for a still camera
staring at the scene where two objects are moving
independently. The trackers reset automatically when no OMC
near them spikes within an adjustable amount of time, and
reappear at another location where an object seems to be
moving. This way the tracker can be reused once the first object
stops moving and the reset event can trigger the memorization
of its last known position.

Fig. 4 15 x 15 array of OMCs: on the left, two objects activate both the trackers
(yellow and blue with respective blue and red center of mass), on the right the
moving object can still be tracked while the camera is moving in the scene
thanks to excitation weight adjustment. The position of the center of mass with
respect to the 9 red quadrants can be used by a robot to plan its next action.

By dividing the field of view in 9 quadrants and knowing
the position of the center of mass of the tracker within one of
them, it is possible for the robot carrying the sensor to plan its
next move and follow, or just shoot, the target. The size of the
target can also be roughly estimated with a very simplified
inverse pinhole camera model in the x direction knowing the
width of the target object and ignoring lenses’ distortion. The
numbers need to be heavily low-pass filtered in order to obtain
a reliable measurement, but the order of magnitude of the result
is at least consistent with the ground truth.

Since the algorithm works in such a way that the OMC gets
inhibited in the case of global motion, the same happens when
the observer is moving and tracking gets suppressed. To still
allow the OMCs to fire and continue tracking even while the
observer is moving at moderate speed, parameters need to
adapt. An approach to solve this problem effectively is to
increase the weight of excitation ߙ by a fixed amount when a
certain activity, indicating apparent scene motion, is detected.
This way the firm movement of an object can still cause the
OMCs to fire even though inhibition is stronger.
This algorithm works however only if the apparent motion of
the scene is slower than the one of the target object. Also, if
corners or high-contrast features suddenly appear in the field of
view, these might be detected as objects to be tracked. Only the
temporal and spatial correlation of the OMCs spiking which are
part of the tracker can guarantee that the correct object is still
followed. This can be seen in the right image of Fig. 4.

IV. FPGA IMPLEMENTATION

A. Hardware used and multiple OMC FPGA implementation

 The FPGA design was approached to explore the possibilities
of implementing complex cell types in logic to exploit

parallelism. The OMC mechanism was prototyped in the
Spartan6 XC6S1500FXT Xilinx FPGA board developed in [6],
called AERNode board. The design of this platform allows
multi-board communication with conventional parallel-
handshake-AER chips, serial Low-Voltage Differential
Signaling (LVDS) connections or robots with the adequate
motor interfaces. A daughter board based on an OpalKelly
module, called OKAERTool, is used for monitoring, or
sequencing, and logging, or playing, events from and to the
AERNode board. It is in fact able to sequence events from its
on board DDR2 128MB SDRAM to the AERNode board and
to monitor its output through USB2.0 in jAER. OKAERTool is
fundamental for debugging the design implemented in FPGA.
 Due to the limited number of resources of the FPGA
available (gates and memory), the OMC implementation
strategy was changed into a much more simplified one. Five
OMCs’ centers were fitted in the center of each quarter of the
field of view and in its center to obtain the most basic directions
of a moving object. Every OMC center consists of 2 x 2
subunits. The design consists of two levels: a Mother Cell (MC)
which deals with the four-phase AER handshake protocol
(request and acknowledge) with the outside neighboring blocks
and five inner Daughter Cells (DC) which, in parallel, each
calculate the excitation of a particular OMC. The MC calculates
the inhibition (set to be the entire field of view, as in the jAER
model) and feeds it along with the incoming request to the DCs
if the input event falls within their excitation center. The MC
also manages the global high-priority decay of the subunits by
a counter. The DCs then propagate their request, in case of
firing, to the following stage through the MC. Since the cells all
work in parallel and store their firing in a one-hot coded output
vector, the processing delay does not scale with the number of
DCs active. The active low requests are anded so that the
request to the next stage is active for at least one DC active.
 The algorithm of each single DC follows the most basic
jAER implementation, however, to reduce the use of resources
variables are restricted to 16 bit values and every operation is
simplified. Since divisions (for normalization of inhibition and
excitation) are performed by even numbers, these are done by
multiples of 2 by bit-shifting. The same bit-shift operation
substitutes the non-linearity and a saturation is achieved with a
comparator when a certain value is attained. The global decay
is also achieved with bit-shifts and it is adjustable by the
counter’s limit. Finally, only one multiplication is present, the
one for the integration of the single daughter OMCs’ membrane
potential. Three parameters can be set via Serial Peripheral
Interface (SPI) through the OKAERTool. These are the IF
threshold, the decay counter’s limit and the excitation weight	ߙ.

B. System integration and hardware

The system of OMCs, enclosed by the MC, was integrated with
a pre-existing system architecture. This was achieved by
creating a separate, parallel processing branch through a splitter
and a merging element. This can be seen in Fig. 5. The input
request and parallel data which the OMC receives are the same
that the cascade of filter elements receives (in this case the Hot
Pixel Filter, which filters out addresses of pixels with high spike
rate). In case of firing, the OMC sends its request further to a

merging arbiter along with its output data (the one-hot-coded
firing DC’s address). The arbiter decides randomly which
branch will be serviced first and acknowledges it after reading
its data. The acknowledge signals of both branches propagate
back to a Muller C-element latch which combines them into a
single one which is then sent back to the event source (the DVS
or the event sequencer).

Fig. 5 Integration of the OMC with the existing architecture of [7].

A problem which was encountered during design was that if
both branches would be requesting at the same time, the arbiter
would be waiting for the request withdrawal of the branch
requesting first, before servicing the second branch. The request
withdrawal cannot happen until the acknowledge signal of the
branch is propagated back to the event source. Since, due to the
C-element, this cannot happen until both acknowledge signals
are received, the system effectively deadlocks. To overcome
this problem caused by the dependency of the merger from the
splitter, a feature of collision detection was added to the arbiter:
the latter can in fact now acknowledge the two branches one
after the other even though the request of the first is not yet de-
activated. The implementation of Fig. 5 for 5 DCs uses 4% of
the slice registers, 11% of the slice Look-Up Tables (LUT) and
occupies 16% of the available slices. For 9 DCs, the resource
consumption changes to 5%, 12% and 19% respectively.

V. RESULTS

A. Latency and power consumption comparison

To estimate the delay of the OMC tracker in both jAER and
FPGA, the time taken for an input event to be processed was
measured. For the jAER OMC tracker, the nanoTime() method
of class System was used to measure the processing time for 3
different numbers of OMCs (though the difference between 5
and 9 cells is irrelevant). It should be noted, however, that this
delay increases by 25-30% if the input events are not being read
directly from the hard disk (as it is the case for the reported
numbers) but if they are obtained in real-time from the DVS
sensor. This is because events are processed at a higher speed (at
the maximum of the system’s capabilities) if read from a logged
file rather than if the data is obtained from the real world. For
the FPGA performance, the numbers were obtained using the
Xilinx ChipScope tool, since the processing delay was below the
microsecond event timestamping resolution. The results are
summarized in TABLE I. The OMC in FPGA takes 22 and 11
clock cycles, depending if the incoming event falls in one of the
DC’s RF, to process an input event and complete the AER
handshake with a 50 MHz clock. As regards the power
consumption comparison, the FPGA has a factor of at least 100

of advantage over even the small embedded Intel Next Unit of
Computing (NUC).

VI. CONCLUSION

This paper offers two implementations of the OMC model
for the purpose of object detection and tracking: one software-
based and FPGA-based. A comparison study is presented
between these two systems and highlights the power
consumption and latency advantages of the FPGA. Due to its
parallelism, the nanosecond latency does not scale with the
number of OMCs implemented. This paper however does not
yet present the next step: the recreation of the 15 x 15 OMCs
tracker of jAER into FPGA. This is because the resources of the
Spartan6 constrain for the moment the OMC array size.
Knowing that the number of occupied slices for the 5 OMCs
design is 16% and for the 9 OMCs design this is 19%, it can be
approximately estimated that at most another 108 OMCs, each
taking 0.75% of the resources, can be fitted into the current
design (still 117 below the desired 225). The work to come will
therefore focus on further reducing the size of the DCs and on
the optimization in the integration with the existing
architecture. At the moment, the output of the OMCs is already
used to choose the location where to initialize the trackers of [7]
and to validate their operation: the object tracker which is active
can now only exist if its center of mass location falls within the
RF of a DC firing.

TABLE I. SPECIFICATION TABLE OF THE FPGA OMC

REFERENCES
[1] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128 120dB 15us

Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[2] T. Delbruck and M. Lang, “Robotic Goalie with 3ms Reaction Time at
4% CPU Load Using Event-Based Dynamic Vision Sensor,” Front.
Neurosci., vol. 7, p. 223, Nov. 2013.

[3] S. A. Baccus et al., “A Retinal Circuit That Computes Object Motion,” J.
Neurosci., vol. 28, no. 27, pp. 6807–6817, Jul. 2008.

[4] K.-C. Tseng and A. C. Parker, “A neuromorphic circuit that computes
differential motion,” in 2012 IEEE 55th International Midwest
Symposium on Circuits and Systems (MWSCAS), 2012, pp. 89–92.

[5] “jAER Open Source Project,” jAER Open Source Project. [Online].
Available: http://jaerproject.org. [Accessed: 17-Sep-2013].

[6] T. Iakymchuk et al., “An AER handshake-less modular infrastructure
PCB with x8 2.5Gbps LVDS serial links,” in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 1556–1559.

[7] A. Linares-Barranco et al., “A USB3.0 FPGA event-based filtering and
tracking framework for dynamic vision sensors,” in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), 2015, pp.
2417–2420.

Specification Table
jAER	ሺ64‐bit	Intel	
NUC,	4 GB	RAM,	i5‐
4250U,	1.30	GHzሻ

jAER	ሺ64‐bit	PC,	16	
GB	RAM,	i7‐4770K,	

3.50	GHzሻ	

FPGA	ሺXilinx	
Spartan6,	50	

MHzሻ
Latency	
of	5x and	
9x	OMCs

~500 ns/ev at	0.2	
Mev/s,	at	CPU	load	

൏	5%

~250	ns/ev	at	0.2	
Mev/s	,	at	CPU	load	

൏	2%	

220	or	440	
ns/ev at	any	
event	rate

Latency	
of	 15x15	
OMCs

~1000	ns/ev at	0.2	
Mev/s	,	at	CPU	load	

൏	5%

~500	ns/ev	at	0.2	
Mev/s	,	at	CPU	load	

൏	2%	
NA

Power	

6.2	W	static		6.2	
W	for	running	jAER
	2.48	W	for	5/9x	
OMCs or 3.72	W	for	

15x15	OMCs

A	few	hundreds	of	
Watts	

0.775	W	
static		0.05	
W	for	5/9x	
OMCs

