
         

Combined frame- and event-based detection and tracking 

Hongjie Liu1, Diederik Paul Moeys1, Gautham Das2, Daniel Neil1, Shih-Chii Liu1, Tobi Delbrück1 
1Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland  

2Intelligent Systems Research Center, University of Ulster, Ireland 

 
Abstract— This paper reports an object tracking algorithm 

for a moving platform using the dynamic and active-pixel vision 

sensor (DAVIS). It takes advantage of both the active pixel 

sensor (APS) frame and dynamic vision sensor (DVS) event 

outputs from the DAVIS.  The tracking is performed in a three 

step-manner: regions of interest (ROIs) are generated by a 

cluster-based tracking using the DVS output, likely target 

locations are detected by using a convolutional neural network 

(CNN) on the APS output to classify the ROIs as foreground and 

background, and finally a particle filter infers the target 

location from the ROIs. Doing convolution only in the ROIs 

boosts the speed by a factor of 70 compared with full-frame 

convolutions for the 240x180 frame input from the DAVIS. The 

tracking accuracy on a predator and prey robot database 

reaches 90% with a cost of less than 20ms/frame in Matlab on a 

normal PC without using a GPU. 

Keywords— event-based tracking and detection, DVS, 

DAVIS, particle filtering, Convolutional Neural Network. 

  INTRODUCTION  

The DAVIS [1] is a neuromorphic camera that outputs 
static active pixel sensor (APS) image frames concurrently 
with dynamic vision sensor (DVS) temporal contrast 
events [2]. DVS address-events (AEs) asynchronously signal 
changes of brightness in the scene. The application of 
Convolutional Neural Networks (CNNs) to tracking have 
become widespread and there are a large number of tools 
available for application of this technology. Our aim in this 
study was to develop an object tracking system that uses DVS 
events to guide efficient application of CNN technology to 
DAVIS sensors and to demonstrate benefits from such a 
system. 

 Object tracking has been studied for many years. Speed 

versus accuracy are traded off in conventional frame-based 

visual tracking. Reported CNN based trackers (CNT) (e.g. 

[3], [4]) are usually either too slow or too expensive for real-

time applications. Increasing attention has been on tracking 

using event-based vision sensors [5]–[13]. These event-based 

tracking systems can achieve relatively high accuracy and 

high speed due to the low-latency and sparse data output from 

the DVS. However, these DVS trackers usually do not deal 

with the scenario of tracking a moving object on a moving 

background, because the distinction between the events 

generated by object and ego movement is a hard task. Citation 

[14] proposes an algorithm for separating the two kinds of 

events, however their algorithm has only been tested with 

simple simulated environments and realistic scenarios are as 

yet unproven.  

 This work aimed to develop a tracker that can perform 
tracking in an ego-motion scenario where both the observer 
and the object move around a cluttered environment. We used 

a sliding window CNN which labels the input image with a 
likelihood score to perform classification-based detection of 
the object. To reduce the number of convolutions and thus the 
computational cost of each frame, we use regions of interest 
(ROIs) generated by the DVS event output of the DAVIS 
camera. The detected ROIs are fed to a particle filter which 
improves the tracking accuracy due to misclassification by the 
CNN. 

 The main contributions of this paper are as follows: 

combined event- and frame- based detection and an efficient 

way of combining a CNN and particle filtering to solve a 

complicated tracking task. The tracking system could be 

applied to robotics, unmanned aerial vehicles, search and 

rescue, etc. The rest of this paper is organized as follows. 

Sec. II describes the tracking method and dataset used; Sec. III 

presents the experimental results; and Sec. IV presents 

concluding remarks.  

  DATASET AND TRACKING METHOD 

A. Dataset 

 This work is based on a robot predator and prey dataset 
which was recorded at University of Ulster’s Intelligent 
Systems Research Centre (“Ulster dataset”). The DAVIS 
sensor was mounted on the top of a Pioneer four-wheeled 
robotic platform (the predator robot) and followed a second 
Pioneer robot (the prey robot) (Fig. 1). The prey robot, which 
is manually controlled with a joystick, was mounted with 
visual targets, similar to QR codes, suitable for tracking using 
available OpenCV toolboxes. By using OpenCV for tracking 
the tags, the predator robot could autonomously follow the 
prey (or go into a search rotation when the prey was lost) while 
recordings with the DAVIS sensor were made with the on-
board computer running jAER [15], the software to process 
DAVIS data. (No QR tag search algorithm was used by our 
tracking algorithm)  

 
Fig. 1. A: The data collection arena in Ulster with the predator on the right 

and prey on the left. B: An example of the recorded data showing frames and 

AEs. Green and red pixels correspond to ON and OFF DVS events. The  

exposure time is about 20ms. The DVS event rate varied from 10k events 
per second (eps) to 300keps with a mean of about 100keps. The APS frame 

rate was about 8.1Hz. The DAVIS sensor had 240x180 18.5um x 18.5um 

pixels and the lens had a focal length of 2.1mm. 
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 The Ulster dataset consists of 20 minutes of data with 9k 
APS frames and 160 million DVS events. From this recording, 
the ground truth about the position of the prey robot at a time 
resolution of about 5ms was hand-labelled by capturing the 
cursor position in jAER while following the prey with the 
mouse. These locations at the various timestamps, together 
with the APS frames and DVS events constitute the database 
on which the following experiments were performed. 

B. System architecture 

0 

Fig. 2. Tracking architecture. 

 Fig. 2 shows the architecture of the tracking system. It 
includes an event-based cluster tracker 
(RectangularClusterTracker [6]) to generate a maximum of 3 
ROIs based on local spatio-temporal coherence of the events, 
i.e. clusters tend to follow high-contrast compact features that 
generate correlated event streams. The frame-based sliding 
window convolution performs classification-based detection 
in the ROIs. A fourth ROI is generated around the estimated 
location of the robot in the previous frame. The sliding 
window convolution generates a confidence map (“heatmap”) 
based on the classification result. The most likely location of 
the updated confidence map is later fed into the particle filter 
that gives the final estimation of the location of the prey robot. 

C. Generating ROIs based on event clusters 

Fig. 3.  Regions of interest generated by the cluster tracker for two different 

frames. 

Fig. 3 shows the output of the cluster tracker ([6] and 

[13]) at two times (green boxes). The cluster tracker is only 

based on events. It assigns incoming events to the nearest 

existing cluster or creates a new cluster for this event if no 

cluster is present in its neighborhood. The clusters die out 

when there is no new event to support them within a threshold 

time interval. A cluster is visible only when it receives a 

certain number of events. The event-based cluster tracker is a 

good approach for tracking isolated compact objects in a case 

without ego motion. Because too many events are generated 

by the cluttered background in our tracking scenario, we only 

use the tracker to generate ROIs that indicate possible 

locations of the object. For example, in the Fig. 3 left image 

the prey robot is captured by one of the regions, however, in 

the Fig. 3 right image, due to slow relative movement 

between the predator and prey robots compared to the 

background movement, too few events are generated by the 

prey. Therefore, it is not detected by the cluster tracker.  

Therefore we added another ROI centered at the prey location 

of the previous frame to decrease the detection failure rate.  

D. CNN-based  classification and detection 

 

 
Fig. 4.  CNN classification to generate likelihood scores. 

Fig. 4 shows the architecture of the CNN used in this 

work [16]. It has two convolutional layers with 6 and 12 

feature maps, both with kernel size 5x5, and two 2x2 

subsampling layers that do average pooling. The input image 

size is 36x36 pixels with examples in Fig. 5. The network is 

trained with 373 positive and 1500 negative samples from 

DAVIS APS images (training set). The positive samples are 

36x36 pixel cropped pixel patches centered at the ground 

truth target locations. The negative samples are cropped pixel 

patches of equal size randomly sampled from the rest of the 

image frame. The classification error is 2% on test frames 

(different from training set) in the recorded video while the 

chance error rate is 20% which is given by the ratio of 

positive test samples and total test samples.  

 

 
Fig. 5. CNN classification results on example gray level input patches. The 

likelihood that the image patch contains the robot is given above each frame.  

Fig. 5 shows examples of the classification results from 

the CNN. The target likelihood scores above each frame are 

used to generate a confidence heatmap over the frame (Fig. 

6). In the first frame, the classification is done over the entire 

frame with a defined stride size to generate the initial map. If 

the maximum score of the frame is below a certain threshold, 

it usually means that the robot is out of view, and then we 

perform a full frame convolution on the next frame until we 



         

get a high peak of the confidence map. We then do 

convolution only over the ROIs for subsequent frames. Fig. 

6 shows the smoothed confidence map generated from a 

sliding window CNN for a sample frame. The first peak 

indicates the most likely position of the robot whereas the 

second peak in this frame is generated by a part of the 

background which has similar features.  

 

 
Fig. 6. Smoothed confidence map over the tested frame. The color code 

from red to blue means confidence from high to low (0.97 to 0). 

E. Particle filter tracking 

The tracking algorithm is based on particle filtering [17]. 

We define 𝑍𝑡 = {𝑧1, … , 𝑧𝑡} as the observation inputs of the 

particle filter up to frame 𝑡 , where 𝑧𝑡 = (𝑥𝑡
𝑚, 𝑦𝑡

𝑚 , 𝑥𝑡
𝑚 −

𝑥𝑡−1
𝑚 , 𝑦𝑡

𝑚 − 𝑦𝑡−1
𝑚 )   and (𝑥𝑡

𝑚, 𝑦𝑡
𝑚)  are maximum heatmap 

location of the frame 𝑡; i.e. each observation consists of a 

position and a position shift (velocity) from the previous 

frame. We then determine the posterior probability by 

recursively applying the Bayes’ theorem as in (1): 

1 1 1 1(s | ) ( | ) ( | ) ( | )t t t tt t t t tp Z p z s p s s p s Z ds        (1) 

where  𝑠𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝑥𝑡̇ , 𝑦𝑡̇ )T is the target state with location 

(𝑥𝑡 , 𝑦𝑡 )  and velocity (𝑥𝑡 ,̇  𝑦𝑡̇) . 𝑝(𝑧𝑡| 𝑠𝑡)  is the observation 

model that estimates the likelihood of observing 𝑧𝑡  in the 

state 𝑠𝑡 . The variances of the location and the velocity are 

given by 𝑄𝑡 = (𝜎𝑥, 𝜎𝑦 , 𝜎𝑥̇ , 𝜎𝑦̇) . The parameters of 𝑄𝑡  are 

estimated from the training frames. The observation zt is the 

location and shift from the previous frame of the peak over 

all the ROI confidence maps for frame 𝑡. Given particle 𝑖, the 

predicted state of each particle is updated according to the 

dynamic model with noise 𝑄𝑡  resulting in particles ˆi

ts . Next 

the observation noise Rt is added to each particle to get the 

predicated observations ˆ i

tz . The weights of the particles are 

computed from (2) where 𝑤𝑡
𝑖  is the weight for particle 𝑖 at 

time 𝑡, and 𝑝𝑒 is the Gaussian distribution with variances 𝑅𝑡. 

Thus particles that are closer to the newest measurement are 

more heavily weighted. 

1 1
ˆ( | ) ( ),   1,2,...i i i i i

t t t t t e t tw w p z s w p z z i N       (2) 

Particles are resampled when the number of effective 

particles is less than a threshold number eff thN N . 

The final estimate of the target position and velocity is the 

weighted mean of all the particles (1000 for this work). A 

snapshot of the particle filter state is shown in Fig. 7. 

 
Fig. 7. A: Estimated location of the target in one frame (red plus). 

B: Locations of the 1000 particles.  

 RESULTS  

The tracking algorithm was implemented in Matlab and 

tested on the Ulster dataset.  

 

 
Fig. 8. Trajectory of the prey robot over 200 frames indicated by the ground 

truth position (green circle), the frame and event-ROI method without  

particle filtering (blue plus) and the particle filter method (red diamond). 

Fig. 8 shows the estimated target location over 200 frames 

in 24.7s. The green circles are the ground truth. The particle 

filtered tracking result (red diamond), achieves higher 

accuracy than the one without particle filtering (blue plus).  

 

 
Fig. 9. Tracking accuracy vs the allowed distance error in pixels for 

methods A to F in Table 1. 



         

Fig. 9 shows the tracking accuracy versus the allowed 

error distance. We use this precision plot [18] to measure the 

performance of our algorithm. It shows the percentage of 

frames whose estimated target location is within a given 

threshold distance (the precision) of the ground truth. The 

highest-accuracy method (method A in Table 1) is achieved 

by full frame convolution with particle filtering (PF) using 

1000 particles. The method that does convolution only in the 

ROIs (method B) achieves slightly lower accuracy than the 

method that does full frame convolutions (method A). When 

we replace the event-generated ROIs by additional area 

around the previous target location estimate (C) the accuracy 

is lower than using event- and frame- generated ROIs(B). 

Using the particle filter (method B) clearly improves on just 

using ROIs (methods D, E and F). 

TABLE 1. COMPUTATION TIME AND TRACKING ACCURACY FOR 

DIFFERENT METHODS. DISTANCE THRESHOLD IS SET TO 20 PIXELS FOR 

THE ACCURACY MEASUREMENT. PF IS PARTICLE FILTERING. 

 

Tracking Methods  Computation 

Time/Frame 

Accuracy 

A: Full Frame Classification 

with PF 

1.45s 93% 

B: Event- and frame-based 

ROIs with PF  

0.020s 90% 

C: Frame-based ROIs with 

PF 

0.018s 85% 

D: Full Frame Classification 

without PF 

1.25s 85% 

E: Event- and frame-based 

ROIs without PF 

0.016s 82% 

F: Frame-based ROIs without 

PF 

0.015s 75% 

 

Table. 1 compares the computational cost and accuracy of the 

four methods using a threshold error of 20 pixels. With ROIs, 

the speed is boosted by 70X comparing to that of doing 

sliding window convolution over the whole image with a 

stride of 5 pixels, although the accuracy slightly drops from 

85% to 82%. With particle filtering, the accuracy is improved 

from 82% to 90%. The algorithm was implemented on a 

Quad core Intel 3.5Ghz PC consuming 15% CPU and 30% of 

the 8G RAM while the full frame convolution method 

consumes 30% CPU and 55% of the RAM, though the 

implementation is not yet optimized. 

IV .  CONCLUSION 

This paper proposes a more efficient detection and 

tracking algorithm based on a CNN combined with DVS 

event-based candidate ROI selection. It was designed to 

combine the advantages of both the frame and event outputs 

of the DAVIS sensor. The tracking framework combines a 

conventional CNN based tracker with ROIs from a cluster-

based DVS tracker. The system is tested on the Ulster dataset 

to solve the task of tracking the prey in a cluttered 

background with ego motion. The result shows a 90% 

tracking accuracy with 20 pixel precision for the Ulster 

dataset. The tracking cost of 20ms/frame provides a speedup 

of 70X compared with a full-frame CNN-based tracking. 
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