

Combined frame- and event-based detection and tracking

Hongjie Liu1, Diederik Paul Moeys1, Gautham Das2, Daniel Neil1, Shih-Chii Liu1, Tobi Delbrück1
1Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland

2Intelligent Systems Research Center, University of Ulster, Ireland

Abstract— This paper reports an object tracking algorithm

for a moving platform using the dynamic and active-pixel vision

sensor (DAVIS). It takes advantage of both the active pixel

sensor (APS) frame and dynamic vision sensor (DVS) event

outputs from the DAVIS. The tracking is performed in a three

step-manner: regions of interest (ROIs) are generated by a

cluster-based tracking using the DVS output, likely target

locations are detected by using a convolutional neural network

(CNN) on the APS output to classify the ROIs as foreground and

background, and finally a particle filter infers the target

location from the ROIs. Doing convolution only in the ROIs

boosts the speed by a factor of 70 compared with full-frame

convolutions for the 240x180 frame input from the DAVIS. The

tracking accuracy on a predator and prey robot database

reaches 90% with a cost of less than 20ms/frame in Matlab on a

normal PC without using a GPU.

Keywords— event-based tracking and detection, DVS,

DAVIS, particle filtering, Convolutional Neural Network.

 INTRODUCTION

The DAVIS [1] is a neuromorphic camera that outputs
static active pixel sensor (APS) image frames concurrently
with dynamic vision sensor (DVS) temporal contrast
events [2]. DVS address-events (AEs) asynchronously signal
changes of brightness in the scene. The application of
Convolutional Neural Networks (CNNs) to tracking have
become widespread and there are a large number of tools
available for application of this technology. Our aim in this
study was to develop an object tracking system that uses DVS
events to guide efficient application of CNN technology to
DAVIS sensors and to demonstrate benefits from such a
system.

 Object tracking has been studied for many years. Speed

versus accuracy are traded off in conventional frame-based

visual tracking. Reported CNN based trackers (CNT) (e.g.

[3], [4]) are usually either too slow or too expensive for real-

time applications. Increasing attention has been on tracking

using event-based vision sensors [5]–[13]. These event-based

tracking systems can achieve relatively high accuracy and

high speed due to the low-latency and sparse data output from

the DVS. However, these DVS trackers usually do not deal

with the scenario of tracking a moving object on a moving

background, because the distinction between the events

generated by object and ego movement is a hard task. Citation

[14] proposes an algorithm for separating the two kinds of

events, however their algorithm has only been tested with

simple simulated environments and realistic scenarios are as

yet unproven.

 This work aimed to develop a tracker that can perform
tracking in an ego-motion scenario where both the observer
and the object move around a cluttered environment. We used

a sliding window CNN which labels the input image with a
likelihood score to perform classification-based detection of
the object. To reduce the number of convolutions and thus the
computational cost of each frame, we use regions of interest
(ROIs) generated by the DVS event output of the DAVIS
camera. The detected ROIs are fed to a particle filter which
improves the tracking accuracy due to misclassification by the
CNN.

 The main contributions of this paper are as follows:

combined event- and frame- based detection and an efficient

way of combining a CNN and particle filtering to solve a

complicated tracking task. The tracking system could be

applied to robotics, unmanned aerial vehicles, search and

rescue, etc. The rest of this paper is organized as follows.

Sec. II describes the tracking method and dataset used; Sec. III

presents the experimental results; and Sec. IV presents

concluding remarks.

 DATASET AND TRACKING METHOD

A. Dataset

 This work is based on a robot predator and prey dataset
which was recorded at University of Ulster’s Intelligent
Systems Research Centre (“Ulster dataset”). The DAVIS
sensor was mounted on the top of a Pioneer four-wheeled
robotic platform (the predator robot) and followed a second
Pioneer robot (the prey robot) (Fig. 1). The prey robot, which
is manually controlled with a joystick, was mounted with
visual targets, similar to QR codes, suitable for tracking using
available OpenCV toolboxes. By using OpenCV for tracking
the tags, the predator robot could autonomously follow the
prey (or go into a search rotation when the prey was lost) while
recordings with the DAVIS sensor were made with the on-
board computer running jAER [15], the software to process
DAVIS data. (No QR tag search algorithm was used by our
tracking algorithm)

Fig. 1. A: The data collection arena in Ulster with the predator on the right

and prey on the left. B: An example of the recorded data showing frames and

AEs. Green and red pixels correspond to ON and OFF DVS events. The

exposure time is about 20ms. The DVS event rate varied from 10k events
per second (eps) to 300keps with a mean of about 100keps. The APS frame

rate was about 8.1Hz. The DAVIS sensor had 240x180 18.5um x 18.5um

pixels and the lens had a focal length of 2.1mm.

This work is supported by the European Union funded project

SEEBETTER (FP7-ICT-2009-6), VISUALISE (FP7-ICT-2011.9.11), the

Swiss National Science Foundation through the NCCR Robotics, ETH

Zurich, and the University of Zurich.

A B

 The Ulster dataset consists of 20 minutes of data with 9k
APS frames and 160 million DVS events. From this recording,
the ground truth about the position of the prey robot at a time
resolution of about 5ms was hand-labelled by capturing the
cursor position in jAER while following the prey with the
mouse. These locations at the various timestamps, together
with the APS frames and DVS events constitute the database
on which the following experiments were performed.

B. System architecture

0

Fig. 2. Tracking architecture.

 Fig. 2 shows the architecture of the tracking system. It
includes an event-based cluster tracker
(RectangularClusterTracker [6]) to generate a maximum of 3
ROIs based on local spatio-temporal coherence of the events,
i.e. clusters tend to follow high-contrast compact features that
generate correlated event streams. The frame-based sliding
window convolution performs classification-based detection
in the ROIs. A fourth ROI is generated around the estimated
location of the robot in the previous frame. The sliding
window convolution generates a confidence map (“heatmap”)
based on the classification result. The most likely location of
the updated confidence map is later fed into the particle filter
that gives the final estimation of the location of the prey robot.

C. Generating ROIs based on event clusters

Fig. 3. Regions of interest generated by the cluster tracker for two different

frames.

Fig. 3 shows the output of the cluster tracker ([6] and

[13]) at two times (green boxes). The cluster tracker is only

based on events. It assigns incoming events to the nearest

existing cluster or creates a new cluster for this event if no

cluster is present in its neighborhood. The clusters die out

when there is no new event to support them within a threshold

time interval. A cluster is visible only when it receives a

certain number of events. The event-based cluster tracker is a

good approach for tracking isolated compact objects in a case

without ego motion. Because too many events are generated

by the cluttered background in our tracking scenario, we only

use the tracker to generate ROIs that indicate possible

locations of the object. For example, in the Fig. 3 left image

the prey robot is captured by one of the regions, however, in

the Fig. 3 right image, due to slow relative movement

between the predator and prey robots compared to the

background movement, too few events are generated by the

prey. Therefore, it is not detected by the cluster tracker.

Therefore we added another ROI centered at the prey location

of the previous frame to decrease the detection failure rate.

D. CNN-based classification and detection

Fig. 4. CNN classification to generate likelihood scores.

Fig. 4 shows the architecture of the CNN used in this

work [16]. It has two convolutional layers with 6 and 12

feature maps, both with kernel size 5x5, and two 2x2

subsampling layers that do average pooling. The input image

size is 36x36 pixels with examples in Fig. 5. The network is

trained with 373 positive and 1500 negative samples from

DAVIS APS images (training set). The positive samples are

36x36 pixel cropped pixel patches centered at the ground

truth target locations. The negative samples are cropped pixel

patches of equal size randomly sampled from the rest of the

image frame. The classification error is 2% on test frames

(different from training set) in the recorded video while the

chance error rate is 20% which is given by the ratio of

positive test samples and total test samples.

Fig. 5. CNN classification results on example gray level input patches. The

likelihood that the image patch contains the robot is given above each frame.

Fig. 5 shows examples of the classification results from

the CNN. The target likelihood scores above each frame are

used to generate a confidence heatmap over the frame (Fig.

6). In the first frame, the classification is done over the entire

frame with a defined stride size to generate the initial map. If

the maximum score of the frame is below a certain threshold,

it usually means that the robot is out of view, and then we

perform a full frame convolution on the next frame until we

get a high peak of the confidence map. We then do

convolution only over the ROIs for subsequent frames. Fig.

6 shows the smoothed confidence map generated from a

sliding window CNN for a sample frame. The first peak

indicates the most likely position of the robot whereas the

second peak in this frame is generated by a part of the

background which has similar features.

Fig. 6. Smoothed confidence map over the tested frame. The color code

from red to blue means confidence from high to low (0.97 to 0).

E. Particle filter tracking

The tracking algorithm is based on particle filtering [17].

We define 𝑍𝑡 = {𝑧1, … , 𝑧𝑡} as the observation inputs of the

particle filter up to frame 𝑡 , where 𝑧𝑡 = (𝑥𝑡
𝑚, 𝑦𝑡

𝑚 , 𝑥𝑡
𝑚 −

𝑥𝑡−1
𝑚 , 𝑦𝑡

𝑚 − 𝑦𝑡−1
𝑚) and (𝑥𝑡

𝑚, 𝑦𝑡
𝑚) are maximum heatmap

location of the frame 𝑡; i.e. each observation consists of a

position and a position shift (velocity) from the previous

frame. We then determine the posterior probability by

recursively applying the Bayes’ theorem as in (1):

1 1 1 1(s |) (|) (|) (|)t t t tt t t t tp Z p z s p s s p s Z ds     (1)

where 𝑠𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝑥𝑡̇ , 𝑦𝑡̇)T is the target state with location

(𝑥𝑡 , 𝑦𝑡) and velocity (𝑥𝑡 ,̇ 𝑦𝑡̇) . 𝑝(𝑧𝑡| 𝑠𝑡) is the observation

model that estimates the likelihood of observing 𝑧𝑡 in the

state 𝑠𝑡 . The variances of the location and the velocity are

given by 𝑄𝑡 = (𝜎𝑥, 𝜎𝑦 , 𝜎𝑥̇ , 𝜎𝑦̇) . The parameters of 𝑄𝑡 are

estimated from the training frames. The observation zt is the

location and shift from the previous frame of the peak over

all the ROI confidence maps for frame 𝑡. Given particle 𝑖, the

predicted state of each particle is updated according to the

dynamic model with noise 𝑄𝑡 resulting in particles ˆi

ts . Next

the observation noise Rt is added to each particle to get the

predicated observations ˆ i

tz . The weights of the particles are

computed from (2) where 𝑤𝑡
𝑖 is the weight for particle 𝑖 at

time 𝑡, and 𝑝𝑒 is the Gaussian distribution with variances 𝑅𝑡.

Thus particles that are closer to the newest measurement are

more heavily weighted.

1 1
ˆ(|) (), 1,2,...i i i i i

t t t t t e t tw w p z s w p z z i N     (2)

Particles are resampled when the number of effective

particles is less than a threshold number eff thN N .

The final estimate of the target position and velocity is the

weighted mean of all the particles (1000 for this work). A

snapshot of the particle filter state is shown in Fig. 7.

Fig. 7. A: Estimated location of the target in one frame (red plus).

B: Locations of the 1000 particles.

 RESULTS

The tracking algorithm was implemented in Matlab and

tested on the Ulster dataset.

Fig. 8. Trajectory of the prey robot over 200 frames indicated by the ground

truth position (green circle), the frame and event-ROI method without

particle filtering (blue plus) and the particle filter method (red diamond).

Fig. 8 shows the estimated target location over 200 frames

in 24.7s. The green circles are the ground truth. The particle

filtered tracking result (red diamond), achieves higher

accuracy than the one without particle filtering (blue plus).

Fig. 9. Tracking accuracy vs the allowed distance error in pixels for

methods A to F in Table 1.

Fig. 9 shows the tracking accuracy versus the allowed

error distance. We use this precision plot [18] to measure the

performance of our algorithm. It shows the percentage of

frames whose estimated target location is within a given

threshold distance (the precision) of the ground truth. The

highest-accuracy method (method A in Table 1) is achieved

by full frame convolution with particle filtering (PF) using

1000 particles. The method that does convolution only in the

ROIs (method B) achieves slightly lower accuracy than the

method that does full frame convolutions (method A). When

we replace the event-generated ROIs by additional area

around the previous target location estimate (C) the accuracy

is lower than using event- and frame- generated ROIs(B).

Using the particle filter (method B) clearly improves on just

using ROIs (methods D, E and F).

TABLE 1. COMPUTATION TIME AND TRACKING ACCURACY FOR

DIFFERENT METHODS. DISTANCE THRESHOLD IS SET TO 20 PIXELS FOR

THE ACCURACY MEASUREMENT. PF IS PARTICLE FILTERING.

Tracking Methods Computation

Time/Frame

Accuracy

A: Full Frame Classification

with PF

1.45s 93%

B: Event- and frame-based

ROIs with PF

0.020s 90%

C: Frame-based ROIs with

PF

0.018s 85%

D: Full Frame Classification

without PF

1.25s 85%

E: Event- and frame-based

ROIs without PF

0.016s 82%

F: Frame-based ROIs without

PF

0.015s 75%

Table. 1 compares the computational cost and accuracy of the

four methods using a threshold error of 20 pixels. With ROIs,

the speed is boosted by 70X comparing to that of doing

sliding window convolution over the whole image with a

stride of 5 pixels, although the accuracy slightly drops from

85% to 82%. With particle filtering, the accuracy is improved

from 82% to 90%. The algorithm was implemented on a

Quad core Intel 3.5Ghz PC consuming 15% CPU and 30% of

the 8G RAM while the full frame convolution method

consumes 30% CPU and 55% of the RAM, though the

implementation is not yet optimized.

IV . CONCLUSION

This paper proposes a more efficient detection and

tracking algorithm based on a CNN combined with DVS

event-based candidate ROI selection. It was designed to

combine the advantages of both the frame and event outputs

of the DAVIS sensor. The tracking framework combines a

conventional CNN based tracker with ROIs from a cluster-

based DVS tracker. The system is tested on the Ulster dataset

to solve the task of tracking the prey in a cluttered

background with ego motion. The result shows a 90%

tracking accuracy with 20 pixel precision for the Ulster

dataset. The tracking cost of 20ms/frame provides a speedup

of 70X compared with a full-frame CNN-based tracking.

ACKNOWLEDGMENT

The authors thank Christian Brandli and Ilya Kiselev for
discussions.

REFERENCES

[1] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x180

130 dB 3 us Latency Global Shutter Spatiotemporal Vision Sensor,”

IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, Oct. 2014.
[2] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128 x 128 120dB 15us

Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[3] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang, “Robust Visual Tracking via

Convolutional Networks,” ArXiv150104505 Cs, Jan. 2015.
[4] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human Tracking Using

Convolutional Neural Networks,” IEEE Trans. Neural Netw., vol. 21, no.

10, pp. 1610–1623, Oct. 2010.
[5] M. Litzenberger, C. Posch, D. Bauer, A. N. Belbachir, P. Schon, B. Kohn,

and H. Garn, “Embedded Vision System for Real-Time Object Tracking

using an Asynchronous Transient Vision Sensor,” in Digital Signal
Processing Workshop, 12th - Signal Processing Education Workshop,

4th, 2006, pp. 173–178.

[6] T. Delbruck, “Frame-free dynamic digital vision,” in Proceedings of Intl.
Symp. on Secure-Life Electronics, Tokyo, Japan, 2008, vol. 1, pp. 21–26.

[7] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen,

“Toward real-time particle tracking using an event-based dynamic vision
sensor,” Exp. Fluids, vol. 51, no. 5, pp. 1465–1469, Nov. 2011.

[8] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T.

Delbruck, “A Pencil Balancing Robot Using a Pair of AER Dynamic
Vision Sensors,” in IEEE International Symposium on Circuits and

Systems (ISCAS) 2009, Taipei, 2009, pp. 781–784.

[9] D. R. Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and R.
Benosman, “An Asynchronous Neuromorphic Event-Driven Visual Part-

Based Shape Tracking,” IEEE Trans. Neural Netw. Learn. Syst., vol. PP,

no. 99, pp. 1–1, 2015.
[10] T. Delbruck, M. Pfeiffer, R. Juston, G. Orchard, E. Muggler, A. Linares-

Barranco, and M. W. Tilden, “Human vs. computer slot car racing using

an event and frame-based DAVIS vision sensor,” in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), 2015, pp.

2409–2412.

[11] D. J. Borer, “4D Flow Visualization with Dynamic Vision Sensors,” PhD
Thesis, ETH Zurich, Zurich, Switzerland, 2014.

[12] Z. Ni, C. Pacoret, R. Benosman, S. Ieng, and S. RéGnier, “Asynchronous

Event-Based High Speed Vision for Microparticle Tracking,” J.
Microsc., vol. 245, no. 3, pp. 236–244, Mar. 2012.

[13] T. Delbruck and M. Lang, “Robotic Goalie with 3ms Reaction Time at

4% CPU Load Using Event-Based Dynamic Vision Sensor,” Front.
Neurosci., vol. 7, p. 223, Nov. 2013.

[14] Z. Ni, S.-H. Ieng, C. Posch, S. Régnier, and R. Benosman, “Visual

Tracking Using Neuromorphic Asynchronous Event-Based Cameras,”
Neural Comput., vol. 27, no. 4, pp. 925–953, Feb. 2015.

[15] “jAER Open Source Project,” jAER Open Source Project. [Online].

Available: http://jaerproject.org. [Accessed: 17-Sep-2013].
[16] “rasmusbergpalm/DeepLearnToolbox,” GitHub. [Online]. Available:

https://github.com/rasmusbergpalm/DeepLearnToolbox. [Accessed: 15-

Mar-2015].
[17] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R.

Karlsson, and P.-J. Nordlund, “Particle filters for positioning, navigation,

and tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425–437,
Feb. 2002.

[18] Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A

Benchmark,” presented at the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 2411–2418.

