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ABSTRACT

Recent advances have allowed Deep Spiking Neural Net-
works (SNNs) to perform at the same accuracy levels as Ar-
tificial Neural Networks (ANNs), but have also highlighted
a unique property of SNNs: whereas in ANNs, every neu-
ron needs to update once before an output can be created,
the computational effort in an SNN depends on the number
of spikes created in the network. While higher spike rates
and longer computing times typically improve classification
performance, very good results can already be achieved ear-
lier. Here we investigate how Deep SNNs can be optimized
to reach desired high accuracy levels as quickly as possible.
Different approaches are compared which either minimize
the number of spikes created, or aim at rapid classification
by enforcing the learning of feature detectors that respond
to few input spikes. A variety of networks with different op-
timization approaches are trained on the MNIST benchmark
to perform at an accuracy level of at least 98%, while mon-
itoring the average number of input spikes and spikes cre-
ated within the network to reach this level of accuracy. The
majority of SNNs required significantly fewer computations
than frame-based ANN approaches. The most efficient SNN
achieves an answer in less than 42% of the computational
steps necessary for the ANN, and the fastest SNN requires
only 25% of the original number of input spikes to achieve
equal classification accuracy. Our results suggest that SNNs
can be optimized to dramatically decrease the latency as
well as the computation requirements for Deep Neural Net-
works, making them particularly attractive for applications
like robotics, where real-time restrictions to produce outputs
and low energy budgets are common.
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1. INTRODUCTION

Deep neural network architectures [10] have recently achieved
remarkable success in a variety of domains, including image
classification [23, 20], speech recognition [7, 6], or more re-
cently even game playing [14]. Despite their success, the
substantial cost of training and executing these networks
has resulted in a resurgence of interest in novel algorith-
mic and hardware methods to speed up the computation of
deep networks. Inspired by brain-like computation, Spiking
Neural Networks (SNNs) have been suggested as one such
alternative [4, 18, 16]. Because they perform neuron up-
dates in an event-driven and input-triggered manner, they
can exhibit greater efficiency, since not all neurons need
to be updated every time step, and the latency of classi-
fication is very fast. They have been criticized for their
inability to match the performance of traditional machine
learning on typical benchmarks, but recent work such as [2]
and [3] have shown that with proper learning algorithms
and tuning, SNNs can achieve equivalent accuracy on ma-
chine learning benchmarks as traditional Artificial Neural
Networks (ANNs). This is particularly promising for imple-
mentations of SNNs on the extraordinarily low-power and
efficient computing platforms that the field of neuromorphic
engineering has produced [13, 5, 9, 15], and their use to-
gether with neuromorphic sensors such as silicon retinas [1]
and silicon cochleas [12], which can drive Deep SNNs in real-
time [22, 16] with frame-free streams of events.

Whereas in frame-based ANNs the amount of computing
steps to compute an output is constant, no matter what the
input, it is a unique property of SNNs to provide several
ways to control the amount of computation during classifi-
cation. For example, the firing rate of input neurons can be
varied, and weights and thresholds within the SNN can be
adapted to produce higher or lower spike rates. However,
as was shown in [3], the classification accuracy depends on
these parameters , and high rates and long integration times
might be required to match the performance of a traditional
ANN with a SNN.

Traditional machine learning focuses more or less exclusively
on the question of improving the accuracy of a classifier, be-
cause run times of a fixed architecture can be assumed to



be constant. However, there are many applications where
fast and efficient inference is equally important, which mo-
tivates our approach to train SNNs in such a way that good
classification accuracy, defined by a fixed performance level,
is reached as fast and with as little computation as possi-
ble. We evaluate a variety of different approaches to take
execution latency and computational cost into account dur-
ing training, allowing the network to best balance accuracy
against computational effort. Networks can be encouraged
to compute more efficiently either by punishing high firing
rates and redundant representations, or by training feature
detectors that react early after having seen only a small num-
ber of spikes from their respective inputs. Here we show
that all tested approaches can yield Deep SNNs that per-
form at the desired level of accuracy of 98% on the MNIST
benchmark, while dramatically reducing the latency and the
number of compute steps compared to an ANN of identical
size. This suggests that Deep SNNs are ideally suited to
solve difficult classification tasks in real-time and at limited
power budgets.

2. METHODOLOGY
2.1 Network Architecture and Dataset

For all experiments in this work, the network architecture
was a 784-1200-1200-10 fully-connected feed-forward neural
network, which was suggested in [8]. Networks were ini-
tially trained as ANNs composed of rectified linear units
(ReLUs), using a learning rate « of 0.01, momentum of 0.1,
and weights initialized uniformly between [—0.1,0.1]; this
is referred to as “default” training in the remainder of this
work. Unless otherwise specified, dropout was set to 0.5. A
total of 522 networks were trained on the MNIST benchmark
for handwritten digit classification [11], using a training set
of 60,000 and a test set of 10,000 28x28 gray-level images.

2.2 SNN Conversion and Normalization

The goal of this work is to achieve efficient classification with
SNNs, while maintaining parity of accuracy with traditional
ANNs. Following the approach introduced in [3], a standard
(here, also referred to as rate-based) ANN is trained first as
described above, and then converted into a SNN, where spike
rates approximate activations within the ANN. This is done
by using the weights of the ReLLU network directly as the
connection weights of an equivalent SNN composed of (non-
leaky) Integrate-and-Fire neurons. In all experiments, the
neurons are trained without bias, in order to save compu-
tation. The approaches for increasing the efficiency of the
network described below are either applied directly during
the training, or, in some cases when the efficiency algorithm
showed a tendency to decrease the accuracy in the process
of decreasing computation, the network was fine-tuned after
normal training.

Weight normalization for SNNs, previously introduced for
convolutional and fully connected networks in [3], produces
spiking networks that achieve equal classification performance
to their rate-based equivalents. Here, we investigate its use
for reducing the amount of computation. The normalization
process starts from a previously trained ANN, which is con-
verted into an SNN as described above. Finally, the weights

of each layer are rescaled by a constant factor, determined
by the data-normalization method of [3]. This constant fac-
tor is estimated from the training set so that a maximally-
activated neuron will spike exactly once per timestep. Before
this constant factor is applied, the original networks could
sometimes have neurons momentarily activated beyond their
spiking threshold with sufficiently high weights. This leads
to inaccuracies, as each neuron is only able to communi-
cate a single spike per timestep, regardless of how much
the activation exceeds the threshold; this results in the loss
of the extra activation due to the discretization of a single
spike. Alternatively, in other networks one might find that
the maximum activation in response to standard input is far
less than the spiking threshold, and the neuron thus requires
an unnecessarily high number of spikes to begin producing
events that can be picked up by downstream neurons.

A more detailed description of this data-based normaliza-
tion can be found in [3]. For all networks and optimization
techniques presented here, we evaluated how much data-
normalization contributes to the efficiency of computation.

2.3 Evaluation Criteria

An SNN classifier was considered successful when the classi-
fication accuracy on the test set reached 98%, a level which
can nowadays be reached by most deep ANNs, within the
number of operations required by a frame-based ANN. Since
performance typically improves as evidence accumulates, we
computed the minimum number of input spikes per digit
(which are converted into spike trains as in [3]) such that
the overall accuracy on the test set reaches 98%. This cor-
responds to input latency. Furthermore, we calculated the
amount of computation as the total number of operations
per digit to reach this performance level. In spiking net-
works an operation is defined as the addition of a synaptic
weight to its neuron’s membrane potential.

2.4 Methods for Reducing Firing Rates

The first class of algorithms to train efficient networks are
those that aim to decrease the number of spikes within a
network. Reducing the number of spikes needed for the net-
work decreases computation because each spike triggers fur-
ther computation in the downstream neurons, in particular
in fully-connected networks. Networks that generate fewer
spikes will therefore have large savings in the overall com-
putation.

2.4.1 Sparse Coding

Sparse coding aims to represent the data using a small sub-
set of the available basis functions at a given time. Thus,
lower-compute spiking networks can make use of sparsity to
achieve an encoding of inputs with fewer active neurons and
therefore lower overall firing rates. Sparsity can be enforced
by adding a regularization term Lgparse to the overall cost
function, which penalizes deviations from a target firing rate
Starg in order to encourage learning of a sparse weight ma-
trix [19]. We used the implementation from [17], in which
the penalty term is computed from the vector y of neuron
activations, and the deviations from s:4.g are calculated per



component with cost factor scost:

Lsparse = Scost * Hy — Starg * 1” (1)

Three networks for each combination of sparsity constraints
were trained, using sparsity costs scost € {0.1,0.01,0.001,0.0001}
and target rates s¢arg € {0.2,0.05,0.01}. The networks were
initially trained without sparsity for 20 epochs, after which
training enforcing sparsity was continued for ez secondary
training epochs, where ez € {5, 50,50}.

2.4.2 L2 Cost on Activation

Another method of decreasing the number of spikes is to add
a cost function that directly takes into account the predicted
number of spikes. When using the conversion technique, the
activation of a ReLU neuron in the ANN directly represents
the expected firing rate of the neuron in the SNN. A cost
function which penalizes high activations therefore decreases
the expected number of spikes in the network. In this work,
we use a modified L2-norm of the following form:

Lact(y) = Cact - Y 1(yi > cmin) - U7 (2)
K3
Three networks at each combination of activation penalty
Cact € {0.1,0.01,0.001,0.0001} and ¢men € {0.5,1.0,1.5,2.0}
were trained for epochs e € {5,20,50} after 2 epochs of pre-
training to initialize weights to an approximately correct
regime.

2.5 Methods for Rapid Classification

The second category of algorithms are those that produce
accurate classifications more quickly. Since the Integrate-
and-Fire neurons of the SNN approximate the continuous
activation of a ReLU neuron by their firing rate, the goal
of the following approaches is to make neurons, especially
in higher layers, reach their steady-state firing rates more
quickly. A shorter runtime implies fewer spikes, and thus
less computation.

2.5.1 Dropout

Dropout [21] has been used very successfully as a regular-
ization technique for large ANNs. In brief, the dropout
algorithm sets each neuron’s activation to zero with prob-
ability p during the forward computation. At very high
dropout rates, the network is forced to pattern-complete
from a minimal amount of input. For example, if p = 0.9,
each subsequent layer is forced to classify correctly with
only 10% of normal inputs. We transfer this concept to
SNNs, where at any given point in time many neurons will
not be active. Dropout in SNNs thus means that the net-
work is encouraged to classify after very few input spikes.
Here we train five networks for dropout probabilities p €
{0.0,0.4,0.5,0.6,0.7,0.8}.

2.5.2 Dropout Learning Schedule

Because extremely high dropout could make training more
difficult and cause a loss of accuracy, we propose an al-
ternative strategy: after training the network normally for
50 epochs, training is continued over ez epochs while the
dropout rate p is gradually increased to pfine;. The train-
ing schedule of an example input (digit “2”) can be seen
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Figure 1: Diagram of an example dropout learning
schedule with 160 epochs. The first 80 epochs use
zero dropout, but the rate of dropout is gradually
increased from 0% to 80% over the last 80 epochs.

in Fig. 1, where the entire digit is presented throughout
the first phase, then parts of the image are dropped with a
gradually increasing rate in the second phase. While Fig. 1
shows the dropout of the input, all layers of the network
similarly have the same dropout level. Three networks for
each combination of pfina € {0.4,0.5,0.6,0.7,0.8,0.9} and
additional training epochs ez € {20, 50,80} were trained.

Since this technique can be performed on an already-trained
network, it can be effectively used in combination with ex-
isting networks.

2.5.3 Stacked Auto-Encoder with Zero Masking

Similar in motivation to the variants of dropout introduced
above, a stacked auto-encoder (SAE) trained with high zero-
masking, i.e. replacing input pixels with zero, will learn ef-
fective ways to restore a signal even given very little input.
Since SAEs are trained with a cost function that measures
how well each layer can restore its own input, a high zero-
masking rate of e.g. p = 0.9 requires the network to learn
to reconstruct the input signal from only 10% of the in-
put signal. While the standard approach for ANNs is to
use an SAE to extract the signal from corrupt or noisy in-
puts, in the domain of SNNs this amounts to generating
predictions of the external representation. From the first
input spike, the SAE attempts to “undo” the zero-masking
caused by the inputs that have not yet arrived. For each
additional input spike, the challenge gets easier as the effec-
tive zero-masking of time is gradually undone and a more
complete signal is provided. SAEs that have been trained
with high zero-masking may restore the signal with very lit-
tle information, which allows them to begin producing out-
puts very quickly. Here we initially train networks as SAE,
followed by a discriminative training with classification la-
bels for e epochs. Three networks for every combination of
zero-masking rate p € {0.1,0.3,0.5,0.8,0.85,0.95,0.99} and
training epochs e € {20, 50,80} were trained.

3. RESULTS

As described in Sec. 2.3, we evaluate different approaches by
quantifying the number of input spikes and the amount of
computation necessary to reach 98% accuracy on MNIST.
Fig. 2 summarizes the computational cost of running a net-
work trained according to these approaches. Ideally, net-
works should be located to the left, which would imply that
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Figure 2: Boxplot indicating amount of computation
for SNNs using different optimization approaches.
This boxplot indicates minimum, first quartile, me-
dian (red line), third quartile, and maximum, with
outliers shown as red stars. The majority of the op-
timization methods lie to the left of the black ver-
tical line, indicating they require less computation
than a frame-based ANN to achieve the same 98%
classification accuracy. The best result shown here
achieves the target accuracy in less than 42% of the
computational operations required for an ANN.

98% classification accuracy can be achieved with only a few
operations within the network. The black line in Fig. 2
shows the number of operations necessary to arrive at an
answer for the frame-based ANN, and nearly all of the ex-
amined SNNs require fewer operations. Furthermore, by
comparing to the baseline results (labeled “Default,”), we
can see that nearly all optimization algorithms offer a sub-
stantial improvement. Networks that do not achieve 98%
accuracy are not shown; certain parameter configurations
such as extremely high dropout or unbalanced cost on the
activation prevented these networks from achieving the tar-
get accuracy.

It can also be observed that weight normalization decreases
computation for most networks. In Fig. 2, normalized net-
works from the same optimization algorithm had a tendency
to shift the results to the left, implying a decrease of the to-
tal amount of computation in the networks. In general, the
normalized networks were both faster (lower latency) and
more efficient (fewer operations) than their unnormalized
counterparts (see Table 1), with the exception of the SAEs.
These networks had weights so large that normalization had
a tendency to decrease the weights, thus requiring further
latency to achieve the same activation.

Figure 3 shows the accuracy of all 522 tested networks over
time, i.e. either as a function of the number of input spikes
(top), or the number of total operations (bottom). Since ev-
idence is accumulating over time, these curves are typically
monotonically increasing. The thin light gray curves indi-
cate networks that did not achieve 98% accuracy within the
compute constraint, which is indicated as a black vertical
line. For those networks that did achieve 98% accuracy, a
colored vertical line on the horizontal axis indicates the point
at which the network crossed 98%, and the corresponding ac-
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Figure 3: Dependency of accuracy on the number of
input spikes and total operations for trained SNNs
using different optimization approaches. The top
figure depicts the accuracy versus latency while the
bottom shows accuracy versus computation. Each
line shows the accuracy curve for one of the 522
networks. Curves for networks that achieve 98%
accuracy within the compute constraint are plotted
in different (but arbitrary) colors, and the remaining
networks are plotted in light gray. In both plots,
a colored vertical tick mark on the horizontal axis
is drawn to indicate the point at which a network
passes 98% accuracy. In the bottom figure, the black
vertical line indicates the amount of computation
required for a frame-based ANN.

curacy curve is plotted in color. One can see that the most
efficient networks achieved classification with 0.997 MOps,
compared to the fixed computation costs of the frame-based
ANN requiring 2.39 MOps. This amounts to a reduction of
operations by more than 58%.

Out of all the different networks, the network with the short-
est latency to reach 98% accuracy is the SAE, which reaches
the desired performance after only 445 input spikes. As
mentioned above, the unnormalized SAE networks outper-
formed the normalized SAE networks. This is because the
weights were so large that they were decreased by the nor-
malization process, rather than increased, requiring more
spikes to achieve the same level of accuracy. The fastest
networks, which are the leftmost curves in Fig. 3, corre-
spond to the networks trained with extremely high dropout
rates of p = 0.70 and p = 0.80. However, they were not able
to achieve greater than 98% accuracy and so are shown in
grey. In fact, even rate-based ANNs before conversion were
not able to achieve accuracies above 98.10% with such high
dropout rates, so they were excluded from further analysis.

In order to compare the influence of different parameter
settings for one approach, we plotted a set of performance
curves for a given algorithm, in this case the dropout learn-
ing schedule (Sec. 2.5.2) in Fig. 4. Highlighted in bright
colors are the curves corresponding to all curves for all net-
works that use this approach and achieved greater than
98% accuracy in fewer computes than a frame-based ANN.
These are 46 of the 54 parameter combinations tested, and
the networks have been weight-normalized. Their perfor-
mance is tightly aligned, despite the large variations in the
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Figure 4: Same as Fig. 3, but highlighting only the
results for the 54 SNNs trained with a Dropout
Learning Schedule in color, with the remaining
SNNs in light gray. One can see the remarkable
similarity of learning results for different parameter
settings.
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Figure 5: Examples of features learned in the first
hidden layer with different optimization approaches.
10 features were selected randomly, and are dis-
played with normalized gray levels. Note that, simi-
lar to previous studies, Gabor-like and stroke-like
features of the MNIST digits appear for all ap-
proaches.

tested parameters, indicating robustness to the parameters
of the dropout learning schedule. Moreover, these networks
achieved the overall lowest compute cost of 0.997 MOps,
while simultaneously having among the lowest latency, pro-
ducing accurate classification after only 602 input spikes.

A summary of the performance results for the different opti-
mization methods, together with suggested parameter ranges
for each method can be found in Table 1. It shows that
in general all methods outperform the default case of an
unprocessed SNN by a wide margin. The best methods re-
duce computation by 70% of Ops, and the latency by almost
75%. Among the methods tested, we see an advantage for
networks trained with dropout learning schedule in the nor-
malized case, and SAE in the unnormalized case. With the
exception of SAE, in general weight-normalization is advan-
tageous for all methods.

In order to analyze qualitative differences in the features
learned by different learning approaches, each row in Fig. 5
shows ten randomly-selected features (i.e. weight vectors)
learned by the first hidden layer connecting to the input

layer. As expected, the first layer learns Gabor-like and
stroke-like filters in all cases, thus showing no major differ-
ences between the weights learned by different approaches.

4. DISCUSSION

The purpose of this work is to demonstrate the power and
efficiency of spiking neural networks. These networks were
able to achieve equivalent classification performance as their
rate-based equivalents, and often did so in far fewer opera-
tions and with a shorter latency. Due to the efficiency of a
spike-based implementation, the input can be correctly clas-
sified before a frame-based approach could even read in all
the necessary pixels to compute.

Here we examined different methods for incorporating effi-
ciency already into the training process of neural networks,
thereby allowing networks to learn to be efficient. Overall,
nearly all methods and parameter sets yielded much im-
proved results in terms of efficiency, while maintaining clas-
sification accuracy. Even more encouraging, several different
training methods converge to approximately the same fun-
damental minima of computation as well as latency (around
1.5 MOps, in Fig. 2), which is a phenomena that warrants
further study.

The fastest accurate classification was achieved using unnor-
malized SAEs, which reached 98% accuracy after only 420
spikes. A network without any optimization required on av-
erage 1753 spikes, which results in a latency more than four
times as long. The most efficient network in terms of opera-
tions, a normalized network trained with a dropout learning
schedule, needs only 1.04 MOps compared to the standard
default training of 3.43 MOps, amounting to almost 70%
reduction.

While no algorithm clearly wins, and further research can
demonstrate how these results extend to other tasks, the
newly introduced dropout learning schedule algorithm is per-
haps the best to use in practice. It is compatible with ex-
isting learned architectures, straightforward to implement,
and yields extremely low-compute and low-latency networks.
Moreover, when used with existing networks, the overall ac-
curacy can be monitored during the learning schedule and
training can be terminated early or late, depending on how
much accuracy loss is acceptable.

Importantly, the presented SNNs communicate all necessary
values with a single binary event, and thus do not rely on
a costly multiplier implementation in hardware. Thus, if
hardware costs are considered, optimized SNNs might be
even more advantageous, since they can be implemented us-
ing simple adders, and are thus very amenable to a simple,
and low-power optimized hardware implementation.
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