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Abstract

The computational task of continuous-time state estimation, nonlinear filtering
and identification, i.e. parameter learning, poses a class of interesting problems,
which mathematicians have been working on for over 50 years and which has
received increasing attention in both machine-learning and neuroscience commu-
nities. Moreover, the question how Bayesian inference in general and nonlinear
filtering in particular can be implemented in neuronal tissue might be a step to-
wards understanding information processing in the brain. Yet possible answers
to this question remain debated. Starting from the mathematical formalism of
nonlinear filtering theory, we propose a stochastic rate-based network in terms of
a stochastic differential equation whose activity samples the posterior dynamics.
The underlying mathematical framework is flexible enough to additionally allow
extensions to other tasks such as parameter learning. We show that the numerical
performance of the model is adequate to account for both nonlinear filtering and
identification problems. Our network may be implemented as a recurrent neuronal
network in a biologically plausible manner and thus offers a concrete proposition
of how neural sampling might be implemented in the brain.

1 Introduction

One of the most fascinating properties of the brain is its ability to continuously gather and process
information about its environment based on noisy and hence unreliable input. There exists ample
experimental evidence, e.g. in perception [3] and in decision making [2], that uncertainty is an in-
trinsic part of these computational processes in the brain. In general, uncertainty is represented in
terms of probability distributions and there is accumulating evidence that the brain is constantly per-
forming inference [22, 7]. However, it remains controversial how uncertainty might be represented
by neuronal populations. On the one hand, it has been suggested that probability distributions are
expressed as probabilistic population codes [18], in which each neuron represents a state of the en-
coded random variable and their activities are proportional to the probability of the corresponding
state. As the name suggests, the information about a single random variable is distributed across a
population of neurons. On the other hand, the neural sampling hypothesis [7] proposes an inference
scheme where the activity of each neuron represents the full distribution by presenting samples from
it over time.
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From the mathematical point of view, the algorithmic task of continuous-time inference, commonly
referred to as nonlinear filtering, is challenging even without the imperative of biological plausibil-
ity. Apart from a few exceptions for a restricted set of problems [4, 13], the Kushner equation [17]
as the formal solution to the general filtering problem is infinite-dimensional and thus needs an ap-
proximation scheme. The problem becomes even more challenging if underlying model parameters
have to be estimated in addition to a hidden state. Approaches based on sampling have proven to be
a powerful tool to solve these tasks numerically. In principle they enable any posterior distribution to
be represented with an accuracy that depends on the number of samples. On the one hand, so called
particle methods (see for instance [6, 14]), generally rely on importance sampling. On the other
hand, Langevin sampling techniques [23, 19] perform a noisy gradient ascent on the log likelihood
or the log posterior. In particular the latter methods provide a promising ground for a biologically
plausible implementation of neural or synaptic sampling [20, 15].

Here, we propose a framework of how the brain could perform core computations such as state
estimation from noisy sensory stimuli by considering three distinct levels: the computational, the
algorithmic and the implementation level. On the first level, the computational task of performing
inference is set in the context of continuous-time continuous-state nonlinear filtering theory. More
precisely, the underlying objects or features, which give rise to the sensory stimuli, are thought to
correspond to hidden variables that have to be inferred, or filtered, based on noisy stimuli. Secondly,
choosing to represent stimuli and filtered states as continuous stochastic variables, we derive an algo-
rithm that performs the filtering task by evolving these variables according to a stochastic differential
equation (SDE). This SDE is thought to sample from the full posterior at each time step, and its first
moment corresponds to the continuously varying hidden state that is to be inferred. This framework
is extended to learn underlying model parameters by a gradient ascent on the log-likelihood. The
performance of this algorithm is assessed numerically. On the implementation level, we propose a
recurrent neuronal network whose dynamics is governed by the posterior SDE and that solves the
filtering task in a sampling-based manner.

2 The generative model

Let us first formalize the filtering task. The vector of unobserved states1 xt ∈ Rn at time t is to be
inferred based on a time series of noisy observations Yt, where the set Yt = {ys ∈ Rm, s ∈ [0, t]}
comprises all the observations up to time t. A visual representation of this generative model is given
in Figure 1a.

In our model, the hidden states xt follow an Ito diffusion with any, in general nonlinear, drift term.
Further, we assume that the dynamics of our observations yt follows from the hidden states via a
generative function g(xt). It is common in the filtering literature (cf. [1]) to formulate this generative
model in terms of a continuous-time dynamical system that is described by the two coupled Ito
stochastic differential equations (SDE):

hidden : dxt = f(xt) dt+ Σ1/2
x dwt, (1)

observation : dyt = g(xt) dt+ Σ1/2
y dvt, (2)

where wt ∈ Rn and vt ∈ Rm are uncorrelated vector Brownian motion processes with
〈dwtdw

T
s 〉 = In×nδtsdt and 〈dvtdvTs 〉 = Im×mδtsdt, respectively, where I denotes the unit matrix

in the corresponding dimension and δts = 1 if t = s and δts = 0 otherwise, respectively. The func-
tions f(xt) : Rn → Rn and g(xt) : Rn → Rm are vector-valued functions of the hidden variable.
We further consider the noise covariances Σx and Σy to be diagonal matrices such that the noise in
each dimension of the stochastic processes xt and yt is independent.

The processes in Eqs. (1) and (2) define probability distributions p(x, t) = p(xt), which corresponds
to the prior, and p(y, t|xt) = p(yt|xt) over the hidden variables and observations at each time t. In
general, the evolution of the probability distribution p(xt) is given by [8]

dp(xt) = L [p(xt)] dt, with (3)

L [p(xt)] = −
n∑

i=1

∂

∂xi
[fi(xt)p(xt)] +

1

2

n∑

i,j=1

∂2

∂xi∂xj
[Σx,ijp(xt)] . (4)

1For consistency, vectors will be printed in bold face, i.e. v = (v1, v2, . . . ).
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where L denotes the Fokker-Planck operator.2

3 Approximate Inference with a Neural Filter

In this section we want to derive a nonlinear filter that is able to approximate the posterior state
density p(xt|Yt) and thus to infer the hidden states based on the observations Yt. Starting from
a general framework known from the filtering literature (cf. for instance [10]), an Ito SDE for a
random variable x̂t is formulated that samples an approximate posterior density. In a second step
the SDE is rewritten such that it can be implemented in a recurrent neuronal network and hence
meets biological constraints.

3.1 General, nonlinear filtering in continuous time

A formal solution of the filtering problem in Eqs. (1) and (2) is given by the Kushner equation [17],
a stochastic partial differential equation for the posterior probability distribution over the inferred
hidden variables, conditioned on the observations Yt:3

dp(xt|Yt) = L
(
p(xt|Yt)

)
dt+ p(xt|Yt) ·

(
dyt − 〈g(xt)〉

)T
Σ−1y

(
g(xt)− 〈g(xt)〉

)
, (5)

where the Fokker-Planck operator L(p) was defined in Eq. (4) and follows from the hidden dynam-
ics. From the Kushner equation, it is possible to derive SDEs for posterior expectations 〈φ(xt)〉:4

d〈φ〉 = 〈L† (φ)〉dt+ cov(φ,g(xt)
T)Σ−1y

(
dyt − 〈g(xt)〉dt

)
, with (6)

L† (φ(x)) =
∑

i

fi(x)
∂

∂xi
φ(x) +

1

2

∑

i,j

Σx,ij
∂2

∂xi∂xj
φ(x), (7)

where φ(xt) is a twice-differentiable, scalar-valued function and L† is the formal adjoint of the
Fokker-Planck operator (see Supplementary Information) for the hidden dynamics (Eq. 1). Note
that in order to derive the evolution of the mean µt = 〈xt〉 one has to compute Eq. (6) with φ = xi,t
for the components of the vector xt, which gives

dµt = 〈f(xt)〉dt+ cov
(
xt,g(xt)

T
)
Σ−1y

(
dyt − 〈g(xt)〉dt

)
. (8)

Hence, the mean µt evolves first according to the drift term of the hidden dynamics and second
according to the so-called innovations process dnt = dyt − 〈g(xt)〉dt, i.e. the difference between
expected and observed change in observations, multiplied by a gain factor. In general, the gain factor
cov
(
xt,g(xt)

T
)

depends on higher-order moments 〈xnt 〉 with n > 1 for a non-constant function
g(x). To further illustrate the problem, consider for instance a linear function g(x) = x . In this
case, the gain factor depends on the second moment, i.e. cov

(
xt,x

T
t

)
= 〈xtx

T
t 〉 − µtµ

T
t . In turn,

attempting to solve for the second moment employing Eq. (6) with a function φ quadratic in the
hidden states x will result in an expression depending on the third moment and so on. This induces
a closure problem that makes the solutions of the Kushner equation in general infinite dimensional
and hence analytically intractable. Finding finite-dimensional approximations to these solutions is
thus the starting point for many filtering algorithms (cf. [1, 10]).

3.2 A stochastic differential equation for the posterior

Motivated by the Kushner equation as a formal solution, we now aim at finding an approximation
on the posterior distribution. For this, we consider N i.i.d. stochastic processes x̂(k)

t , k = 1, . . . , N ,
conditioned on the observations Yt, whose trajectories are supposed to sample the posterior distri-
bution, i.e. p(xt|Yt) ≈ p̃(xt|Yt) = 1

N

∑N
k=1 δ(xt − x̂

(k)
t ). As an ansatz for the evolution of the

x̂
(k)
t ∼ p̃(x̂t|Yt), we propose the following SDE:

dx̂t = f(x̂t)dt+W (dyt − g(x̂t)dt) + Σ1/2
x dŵt, (9)

2See Supplementary Information for a more elaborate summary on how to compute the evolution of mo-
ments and underlying probability distributions from SDEs.

3Unless stated explicitly otherwise, triangle brackets 〈·〉 denote expectations with respect to the posterior
distribution p(xt|Yt).

4For the sake of readability we dropped the arguments in φ(xt) and f(xt).
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where ŵt ∈ Rn is an uncorrelated vector Brownian motion process with 〈dŵtdŵ
T
s 〉 = In×nδtsdt

and W is a - possibly time-dependent - gain matrix. We consider this SDE a reasonable ansatz
because firstly its drift term and thus the evolution of its first moment matches Eq. (8) if the gain
factor cov

(
xt,g(xt)

T
)

is replaced by W and if the ”frozen noise” assumption holds, i.e rather than
a random process, we assume the set of observations YT to be a given set of externally fixed values
for all times up to a final time T . The drift term contains the dynamics of the prior as well as the
innovation term dn̂t = dyt − g(x̂t)dt. Second, the noise covariance of Eq. (9) in our ansatz was
chosen such that the adjoint Fokker-Planck operator L̃† of Eq. (9) matches Eq. (6) as closely as
possible (see also Supplementary Information), i.e.

d〈φ〉 ≈ 〈L̃† (φ)〉dt, with (10)

L̃† (φ(x)) =
∑

i

(
fi(x) + [W

(dyt
dt
− g(x)

)
]i
) ∂

∂xi
φ(x) +

1

2

∑

i,j

Σx,ij
∂2

∂xi∂xj
φ(x). (11)

Consequently, in the limit of no observations the prior dynamics of the hidden variables is retrieved.

3.3 Interpretation as a recurrent neuronal network

By introducing the matrix W we are actually taking one step back from Eq. (8) to account for fur-
ther constraints on the implementation level. Since we want to implement this filter as a neuronal
network in a biologically plausible way, we will now consider different choices of W that signifi-
cantly influence possible interpretations and implementations. Though the underlying mathematical
framework is general, in the following we consider a linear observation model, that is a linear gen-
erative function g(x) = Jx with a generative weight matrix J , a choice which allows for a more
straightforward neuronal implementation.

Let us first consider the choice of W being an arbitrary, possibly time dependent matrix. In this
case, Eq. (9) may be interpreted as a neuronal filter where the x̂

(k)
t correspond to a population

of filter neurons whose internal dynamics is governed by the nonlinear function f(x) and whose
neuronal activities represent samples of the posterior. These filter neurons are recurrently connected
to populations of novelty neurons n̂

(k)
t , which evolve according to the innovation term. In this

interpretation, W corresponds to the matrix of synaptic weights that connects novelty neurons n̂(k)
t

to filter neurons x̂(k)
t . Alternatively, the same synaptic input can be implemented in a single recurrent

network of neurons that directly receive feedforward input from a set of sensory neurons yt through
synaptic weights W and inhibitory recurrent input from the other filter neurons through the weights
WJ . At this point, the weight matrix may be assumed to be a fixed matrix or it may be plastic,
i.e. changing according to some learning rule based on the network activity. We will derive a possible
learning rule for W in section 4.

By contrast, consider W = ΣtJ
TΣ−1y , a choice consistent with Eq. (8) for a linear generative func-

tion. Since we do not know the posterior variance Σt, we consider it to correspond to the empirical
variance computed from the random trajectories of x̂t at each time step instead. An explicit de-
pendence on Σ−1y ensures Eq. (9) to be governed mainly by the prior dynamics in the case of large
observation noise. In the limit of small observation noise, the innovation term dominates the dynam-
ics and the trajectories from Eq. (9) will evolve to states that perfectly account for the observations,
i.e. 0 = dn

(k)
t = dyt−J x̂(k)

t dt. What is more, thinking in terms of the computational task, which is
to estimate a hidden trajectory xt based on the observations, it makes sense to feed back an estimate
about the uncertainty given by the empirical variance Σt into the trajectories: The more uncertain
the state estimate, the more the innovation term should be accounted for and thus incorporated into
the instantaneous dynamics. We will see in section 5 numerically that using the empirical variance
in W leads indeed to a satisfactory filtering performance. However, using the empirical variance
may add some difficulties when implementing this architecture on a neuronal network. Thinking of
W in terms of a weight matrix, the empirical variance Σt = 〈x̂x̂T 〉 − µtµ

T
t is the only source of

plasticity. Obviously, this plasticity rule is non local, implying that each filter neuron x̂(k)i has to
know about the state of every other filter neuron at each time. Clearly, another layer of computation
would have to be added to the network in order to perform this cross computation within a neuronal
network and feed it into the weight matrix.

4



4 Learning with diffusive processes

As mentioned in the previous section, we can think of W in Eq. (9) as a weight matrix that can be
learned by an explicit learning rule. In the following we will focus on deriving such a learning rule
for W by performing a gradient ascent on the likelihood for the set of observations Yt. For this,
we first have to formalize the notion of a likelihood function in the context of nonlinear filtering in
continuous time, which will then be maximized with respect to W in order to end up with a suitable
online learning rule. Since the likelihood function is general, this concept can easily be applied to
determine any of the other model parameters. In the context of nonlinear filtering, the estimation of
model parameters is usually referred to as identification problem.

4.1 The likelihood function for diffusive processes

Consider being given a sequence of observations Yt that may have been generated by two different
diffusion processes, which, in turn, induce two different probability measures P and Q. In order
to decide which of these processes is more likely to have generated the sequence, a likelihood ra-
tio between these models can be computed, which corresponds to the so-called Radon-Nikodym
derivative between the induced probability measures [16, p. 282]:

Λ(Yt) =
dQ(Yt)
dP(Yt)

. (12)

Loosely speaking, a large value of Λ(Yt) provides evidence for the diffusion model inducing Q and
vice versa. Here, we make use of the innovation process nt to write an SDE for yt (cf. [21]):

dyt = 〈gθ(xt)〉Pθ(xt|Yt)dt+ dnt. (13)

Under the measure Qθ, which corresponds to the original measure (or rather to a family of measures
parametrized by θ) induced by Eqs. (1) and (2) when setting Σy = I, nt is a Yt-adapted Brownian
motion process [1, p. 33]. Therefore, a marginalization over the hidden variables xt leaves us with
a measure over the observations Qθ(Yt). In order to determine how likely the observations were
generated from the model in Eq. (13), we compute the Radon-Nikodym derivative of Qθ with respect
to the Wiener measure P, a measure under which yt is a Brownian motion process independent
of hidden variables as well as parameters.5 The corresponding Radon-Nikodym derivative can be
computed by applying Girsanov’s theorem [1, cf. Eq. 3.18 on p. 52]:

Λθ(Yt) =
dQθ(Yt)
dP(Yt) = exp

(∫ t

0

〈gθ(xs)〉T dys −
1

2
〈gθ(xs)〉T 〈gθ(xs)〉ds

)
. (14)

The objective is now to maximize this likelihood ratio, or equivalently its logarithm, for our gener-
ative model with respect to the model parameters θ. Thus, the log-likelihood function Lt(θ) for our
model with linear observations6 reads:

Lt(θ) =

∫ t

0

(
µTs J

TΣ−1y dys −
1

2
µTs J

TΣ−1y Jµsds

)
. (15)

4.2 An online maximum likelihood estimate for the filter weight matrix

In order to maximize the likelihood for the set of observations Yt we perform a gradient ascent on
Eq. 15 with respect to the components of the weight matrix Wij (for detailed computation steps, see
Supplementary Information)

∆Wij = ηW∂Wij
Lt(Wij)

= ηW

∫ t

0

(
∂Wijµs

)T
JTΣ−1y (dys − Jµsds), (16)

5Actually, it is completely arbitrary which measure we choose as the reference measure P because we
are trying to maximize a likelihood ratio (cf. [5]). Here, the Wiener measure as a choice of reference is
advantageous because the Radon-Nikodym derivative is straightforward to compute.

6Note that we had to rescale Eq. (2) such that it has unit variance. Hence in Eq. (14) we have to set
gθ(xt)→ Σ−1

y Jxt and dyt → Σ−1
y dyt

5



where ηW denotes the learning rate. Equation 16 gives rise to the following online learning rule

dWij = ηW (∂Wij
µt)

TJTΣ−1y (dyt − Jµtdt), (17)

where we introduced the filter derivative ∂Wij
µt through which the filter explicitly enters the learn-

ing rule. For the neural filter defined in Eq. (9), we may use the empirical mean of N samples to
estimate the filter derivative:

∂Wij
µt =

1

N

N∑

k=1

∂Wij
x̂
(k)
t =

1

N

N∑

k=1

αkij , (18)

with dynamics of the tensor αkij determined by the neural filter equation (9)

dαkij := ∂Wij

(
dx̂

(k)
t

)
=
(
F (x̂

(k)
t )−WJ

)
αkijdt+ [dyt − Jx(k)

t dt]jei, (19)

where Fij = ∂fi
∂xj

denotes the Jacobian of the nonlinear hidden dynamics and ei denotes the unit
vector in the i-th direction.

Taken together, when we assume W to be a plastic weight matrix that is learned as observations
become available, at least three equations are needed to infer the hidden state at each timestep: First,
Eq. (9) to evolve the states of the neurons, and second, Eqs. (17) and (19) to update the weights in
the filter equation.

4.3 An online maximum likelihood estimate for the generative weight matrix

Of course, we can proceed analogously to compute any of the model parameters. As an example, we
consider learning the generative weight matrix J . By again performing a gradient ascent on Eq. (15)
with respect to its components Jij , a suitable online learning rule for J is derived as:

dJij = ηJ(∂Jijµt)
TJTΣ−1y (dyt − Jµtdt) + ηJ [Σ−1y (dyt − Jµtdt)µTt ]ij , (20)

where we again introduced a filter derivative for J , given by ∂Jijµt = 1
N

∑N
k=1 ∂Jij x̂

(k)
t =

1
N

∑N
k=1 βkij with dynamics

dβkij := ∂Jij x̂
(k)
t =

(
F (x̂

(k)
t )−WJ

)
βkijdt− x̂(k)t,jWeidt. (21)

Unfortunately, neither the learning rule for W nor the one for J is local, implying that the weights
can only be computed when knowing the state of each filter neuron at each time. In order to learn the
weights in this framework, another layer of computation for the weights would have to be introduced.

5 Numerical validation on a nonlinear system

Our approach is now validated using a one-dimensional example with a nonlinear hidden dynamics
given by f(x) = 4x(1− x2). Figure 1b shows three sample trajectories and the bimodal stationary
distribution resulting from this process. As mentioned earlier, unlike in the case of a linear hidden
dynamics where the solution is given by the Kalman-Bucy filter [13], a closed-form solution of the
posterior does not exist in this case. Therefore, as a benchmark for this system, we use a standard
particle filter (PF), which we assume to sample the posterior distribution at each time step. In addi-
tion, we compare our neural filter (NF) to the extended Kalman filter (EKF), a filter that parametrizes
the posterior by mean and variance only and relies on a local linearization of the nonlinear function.
In the following, we consider the three different choices forW , which were introduced in subsection
3.3 and which will be referred to as Wlearned, Wemp and Wconst, respectively.

Comparing the posterior distribution to that of the PF, we see that it is indeed well captured. For
instance, for the simulation in Figure 1c with Σy = 0.1, Σx = 0.1, J = 1, ηW = 0.1 andN = 1000
it is shown that the neural filter with Wlearned (cf. section 4) is able to capture the features of the
posterior distribution. It is slightly skewed from its mean, taking into account the bimodal shape of
the prior, as becomes also apparent in the simulations done with the PF. Generally, the neural filter
tends to somewhat underestimate the posterior variance, but comparing the evolution of NF posterior
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variance to that estimated by the PF in time, they overall agree reasonably well, while that estimated
by the EKF differs substantially. Empirically estimated higher-order moments are consistent to a
sufficient extent with that of the PF. That the NF is able to estimate the hidden state very well
becomes apparent when looking at the MSE E = 1/T

∑
t(xhidden,t−µt)2 for the nonlinear system

(Figure 1d). Though the performance of the PF as the baseline solution is always best, each of the
neural filter variants perform nearly as well over the range of observation noise Σy that was tested.
Note that for large observation noise, the variance of the filter is identical to the prior variance,
implying that in this limit the filter trajectories follow the prior dynamics. By contrast, the EKF
does by definition not capture higher order moments of the posterior and thus fails to reproduce its
features as shown in Figure 1c. For larger observation noise, matters become even worse because the
state estimate of the EKF evolves to one of the fixed points of f(x) and remains there, irrespective
of the real hidden state. This explains why its predictive performance is fairly poor compared to that
of any of the NF variations tested.

On the next level of complication, we performed simulations where the generative weight J had to
be learned following Eqs. (20) and (21) in addition to finding the hidden state. This identification
problem could be solved efficiently by both the NF with Wlearned and the NF with Wemp (Figure
1e, simulation with parameters as before, a true generative weight J = 1 and ηJ = 0.005). Note
that for the NF variant with Wlearned, actually two parameters have to be learned simultaneously,
which we expect not to be independent of each other by the way the model is set up (cf. Eq. 8
with Eq. 9). Nevertheless, the model is able to learn the generative weight parameter J . Values of
J resulting from the learning are slightly biased towards values below the ground truth generative
weight, whereas J values learned with the empirical NF variant tend to be slightly biased towards
larger values, and always fluctuate within a 10% range of the true value. Additionally, upon getting
closer to the true underlying parameters7 the error is reduced and thus filter performance improves.

6 Discussion

In this paper, we formulated the computational task of inference as a generative model where the
continuous-valued hidden variables and the observations evolve continuously in time. Based on
the theory of nonlinear filtering, we proposed an Ito SDE for the posterior process and derived
a learning rule for the parameters of this filter itself as well as for the generative weights of the
underlying generative model. We then introduced a recurrent dynamical network governed by the
dynamics of the posterior SDE, which may serve as a possible sampling-based implementation of
Bayesian inference.

Indeed, the sampling-based framework is a central result of our proposed neural filter. Unlike the
various extensions of the Kalman filter [12], which are applied to nonlinear systems, such as the
EKF or the unscented Kalman filter [11], the neural filter is not restricted to approximate the poste-
rior by a Gaussian parametrized by its first and second moment. Rather, due to its nonlinearity the
network dynamics may represent any probability distribution at any given time step. We numerically
validated that this distribution approximated the real posterior distribution with a numerical perfor-
mance close to the standard PF. In addition, the neural filter is well in accordance with existing,
sample-based filtering approaches. On the one hand it may be seen as a PF itself where all particles
carry the same weight and that, therefore, avoids numerical pitfalls such as weight degeneracy. On
the other hand, it is also structurally consistent with Langevin sampling, as proposed for instance
in [9]. Moreover, it even generalized the Langevin-sampling approach that assumes a Gaussian
prior, i.e. a linear hidden dynamics, by including nonlinear hidden dynamics and, in principle, may
incorporate a nonlinear observation model.

In future work, the biological plausibility of the recurrent network model will be further addressed.
First, observing that the learning rules we derived in section 4 do not fulfill the requirement of
locality, which is needed for a biologically plausible learning rule (e.g. a Hebbian learning rule), the
model could be enhanced such that individual neurons obey different rather than identical dynamics,
depending on their own state and on interactions with all the other neurons in the network. Second,
by including the theory of filtering and identification of point processes, it may be extended such
that spike-based representation may be accounted for.

7Of course, we have only access to the ground truth of the generative weight J but not to the filter weight
W .
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Figure 1: (a) The generative model. Here, we consider continuous time, hence δt → 0. (b) Three
sample trajectories of the prior drawn from Eq. (1) with f(x) = −4x(1 − x2) and Σx = 1. The
histogram of 1000 sample trajectories at t = 10 reflects the stationary distribution (thick line). (c)
Comparison of estimated posterior trajectories. The underlying hidden trajectory is represented by
the black line. Magenta, blue and yellow lines correspond to the state estimation µt and shaded
regions to the standard deviation estimated by the neural filter (NF) with Wlearned, particle filter
(PF) and extended Kalman filter (EKF), respectively. Histograms depict the states of N = 1000
sample trajectories at t = 10 and are thought to correspond to the posterior density p(xt=10|Yt=10).
(d) Mean squared error E = 1/T

∑
t(xhidden,t − µt)2 as a function of observation noise Σy . Here,

we also compared the error of NF with constant filter weights Wconst (red) and of NF with filter
weights Wemp (cyan). (e) Parameter values of J and W as well as the MSE for both NF with
Wemp and NF with Wlearned. Black line denotes true generative weight. Inset: Histogram reflecting
distribution of values of learned generative weights over the last 200 time steps.
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1 Stochastic differential equations in a nutshell

For readers who are not too familiar with the concepts of Ito stochastic differential equations (SDE),
we want to give a very brief overview about how to describe diffusion processes, compute underlying
probability distributions and moments from an SDE, and the common discretization scheme that we
used to simulate the trajectories.

1.1 Stochastic differential equations, moments and probability distributions

Consider a vector-valued random variable Xt ∈ Rn that evolves according to an Ito diffusion, i.e. it
can be described by the Ito SDE

dxt = a(xt, t) dt+B(xt, t)dwt. (S1)

Here, wt ∈ Rn is a vector Brownian motion process with 〈dwtdw
T
s 〉 = In×nδtsdt, where I denotes

the unit matrix in the corresponding dimension and further δts = 1 if t = s and δts = 0 otherwise.
The deterministic part of Eq. (S1) is determined by the drift term a(xt, t)dt with a vector-valued
function a(xt, t), whereas the stochastic part is determined by the diffusion term B(xt, t)dwt with
the matrix-valued noise covariance B(xt, t).

The process in Eq. (S1) defines a probability distribution p(Xt = x, t) = p(xt) over the random
variable at each time t. In general, the evolution of the probability distribution p(xt) is given by the
Fokker-Planck equation1:

dp(xt) = L [p(xt)] dt, with (S2)

L [p(xt)] = −
n∑

i=1

∂

∂xi
[ai(xt)p(xt)] +

1

2

n∑

i,j=1

∂2

∂xi∂xj
[Bij(xt)p(xt)] . (S3)

where L is called Fokker-Planck operator [1].

For certain drift and diffusion terms, there exists an analytical solution of Eq. (S2) for the probability
distribution p(xt). As an example, let us consider a stochastic process xt with drift ai(x) = ai(xi)

1For the sake of readability, we dropped the explicit t-dependence in the arguments. This, however, does
not affect the generality of Eq. (S2) and (S3).
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Figure S1: Three sample trajectories of the prior drawn from Eq. (S1) with f(x) = −x and Σx = 1.
The histogram of 1000 sample trajectories at t = 10 reflects the stationary distribution (thick line).

and noise covariance B(xt) = diag(bi(xi)). For this process, the dimensions of the stochastic pro-
cess are decoupled and the stationary distribution with dp(xt) = 0 can be computed from Eq. (S2):

p(xt) =
n∏

i=1

p(xt,i) =
n∏

i=1

1

Zi
exp

(∫ xi

−∞

ai − 1
2

∂
∂x′′ bi(x

′′)|x′

1
2bi(x

′)
dx′
)
, (S4)

where Zi denotes the normalization constant in dimension i.2

From the Fokker-Planck equation, it is possible to derive the evolution of the expectation of an
arbitrary scalar-valued function φ(x):

d〈φ(xt)〉 =

∫
dxtφ(xt) (dp(xt))

=

(∫
dxtφ(xt)L [p(xt)]

)
dt

= 〈
∑

i

ai(xt)
∂

∂xt,i
φ(xi) +

1

2

∑

i,j

Bi,j(xt)
∂2

∂xt,i∂xt,j
φ(xt)〉dt

=: 〈L† (φ(xt))〉dt, (S5)

where L† is the adjoint Fokker-Planck operator. Note that Eq. (S2) and Eq. (S5) are contained in
Eq. (5) and Eq. (6) (Kushner equation) and that the Kushner equations incorporate an additional term
due to the observations. To sum up, with a given Ito SDE it is possible to set up equations for the
evolution of its underlying probability distribution and for any scalar-valued function by determining
the Fokker-Planck operator and its adjoint.

1.2 Numerical Implementation

For numerical simulation of the SDE in Eq. (S1) a time-discretization scheme, the so-called the
Euler-Maruyama approximation, can be employed [3] to integrate an Ito SDE for small time steps
∆t = tn+1 − tn:

xn+1 = xn + a(xn, tn)∆t+B(xn, tn)∆wn, (S6)

where the increment of the Brownian motion process can be sampled from a Gaussian with zero
mean and unit variance, i.e. ∆wn ∼ N (0, I∆t). In the paper, this scheme was employed to numer-
ically integrate Eq. (9).

As an example, let us consider one-dimensional stochastic processes governed by the SDE in
Eq. (S1) with a(x) = −x and b(x) = 13. The resulting stationary distribution following from
Eq. (S4) is a Gaussian distribution with zero mean and variance σ2 = 1

2 . In Figure S1 we show 3
sample trajectories from the SDE and the histogram resulting from 1000 sample trajectories at time
t = 10. This histogram nicely reflects the stationary distribution obtained analytically (thick line).

2Note that depending on a(x) Eq. (S4) could for instance be non-normalizable, implying that no stationary
distribution exists for this process.

3More precisely, this SDE describes an Ornstein-Uhlenbeck process.
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2 Derivation of online learning rules

Here, we want to give the full calculations leading to Eqs. (17), (19), (20) and (21) in the paper. The
log-likelihood function for the linear observation model reads:

Lt(θ) =

∫ t

0

(
µT

s J
T Σ−1

y dys −
1

2
µT

s J
T Σ−1

y Jµsds

)
. (S7)

In order to maximize the likelihood for the set of observations Yt we perform a gradient ascent on
Eq. (S7) with respect to the components of the weight matrix Wij :

∆W offline
ij = ηW∂Wij

Lt(Wij)

= ηW

∫ t

0

((
∂Wij

µT
s

)
JT Σ−1

y dys −
(
∂Wij

µT
s

)
JT Σ−1

y Jµsds
)
,

= ηW

∫ t

0

(
∂Wij

µs

)T
JT Σ−1

y (dys − Jµsds), (S8)

⇒ dW online
ij = ηW

(
∂Wij

µt

)T
JT Σ−1

y (dyt − Jµtdt), (S9)

where in Eq. (18) we defined the filter derivative ∂Wij
µt = 1

N

∑N
k=1 ∂Wij

x̂
(k)
t = 1

N

∑N
k=1 αkij ,

with dynamics of the tensor αkij determined by the neural filter equation (9) with linear observation
dynamics g(x):

dαkij := ∂Wij

(
dx̂

(k)
t

)

= ∂Wij

(
df(x̂

(k)
t )dt+W

(
dyt − J x̂(k)

t dt
)

+ Σ1/2
x dŵt,

)

= F (x̂
(k)
t )∂Wij

x̂
(k)
t dt+

[
dyt − J x̂(k)

t dt
]
j
ei −WJ∂Wij

x̂
(k)
t dt

=
(
F (x̂

(k)
t )−WJ

)
αkijdt+ [dyt − Jx(k)

t dt]jei, (S10)

where Fij = ∂fi
∂xj

denotes the Jacobian of the nonlinear hidden dynamics and ei denotes the unit
vector in the i-th direction.

Similarly, we can perform a gradient ascent on Eq. (S7) with respect to the generative weights J .
Note, that in this case, the likelihood function explicitly depends on J , in addition to an implicit
dependence via the filter derivative:

∆Joffline
ij = ηJ∂JijLt(Jij)

= ηJ

∫ t

0

(
∂Jijµs

)T
JT Σ−1

y (dys − Jµsds)

+ηJ

∫ t

0

([
Σ−1

y dysµ
T
s

]
ij
−
[
Σ−1

y Jµsµ
T
s

]
ij
ds
)

= ηJ

∫ t

0

(∂Jij
µs)

TJT Σ−1
y (dys − Jµtds)

+ηJ

∫ t

0

[Σ−1
y (dys − Jµtds)µ

T
s ]ij , (S11)

⇒ dJij(t)
online = ηJ(∂Jijµt)

TJT Σ−1
y (dyt − Jµtdt)

+ηJ [Σ−1
y (dyt − Jµtdt)µ

T
t ]ij , (S12)

where we again introduced a filter derivative for J , given by ∂Jijµt = 1
N

∑N
k=1 ∂Jij x̂

(k)
t =

1
N

∑N
k=1 βkij with dynamics

dβkij := ∂Jij
x̂

(k)
t

= ∂Jij

(
df(x̂

(k)
t )dt+W

(
dyt − J x̂(k)

t dt
)

+ Σ1/2
x dŵt,

)

= F (x̂
(k)
t )∂Wij

x̂
(k)
t dt− x̂(k)

t,jWeidt−WJ∂Wij
x̂

(k)
t dt

=
(
F (x̂

(k)
t )−WJ

)
βkijdt− x̂(k)

t,jWeidt. (S13)
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3 Additional results

3.1 Numerical validation on a linear system

In addition to the nonlinear system we considered in the paper, we can also study the performance
on a system with a linear hidden dynamics f(x) = −x, i.e. the hidden process is given by an
Ornstein Uhlenbeck process. In this case the posterior density can be accessed analytically and the
optimal filter for the continuous-time system is given by the Kalman-Bucy filter (KBF) [2], i.e. at
every moment in time the posterior distribution p(xt|Yt) is a Gaussian distribution and thus fully
parametrized by its mean and variance.

Comparing the neural filter (NF) to the KBF, we oberserve that the neural filter is able to well
approximate the posterior distribution. In Figure S2a we show sample trajectories as well as the
empirical posterior distribution, which result from the neural filter in Eq. (9) with aW that is learned
according to Eqs. (17) and (19) and with a W that is computed using the empirical variance. In this
simulation, Σy = 0.03, Σx = 0.1, J = 1, ηW = 1 and N = 1000. The tendency of the neural
to slightly underestimate the true posterior variance given by the KBF is due to an additional term
showing up when computing the variance from Eq. (9) analytically. Empirically estimated higher
order moments (up to n = 4 was tested) are very close to zero as expected for a Gaussian posterior
- note that due to the finite number of particles, they are of course not exactly zero.

Most importantly, despite an underestimation of the posterior variance, the neural filter is able to
estimate the hidden state, given by its first moment µt, i.e. the computational task it was set out to
fulfill. To assess its ability to infer the hidden state, we compute the MSE E = 1/T

∑
t(xhidden,t−

µt)
2 as a function of observation noise Σy . Our findings in Figure S2b suggest that for a linear

system, the neural filter in its varieties that were described in section 3 in the paper are all able to
perform the inference task with a performance that is indistinguishable from the KBF.

In simulations where - in addition to the hidden state - the generative weight parameter J had to
be learned from the observations, the neural filter with a linear hidden dynamics did not perform
as well as the NF with a non-linear hidden dynamics. In principle, the model with Wlearned was
able to learn the underlying parameter (cf. Figure S2c, simulation with parameters as before, a true
generative weight J = 1 and ηJ = 0.008), but this depended strongly on the choice of initial
conditions and the NF was likely to be stuck in what we assume to be a local minimum of the
likelihood function upon ”bad” initialization. The situation becomes slightly worse for the NF with
Wemp because it tends to overestimate the generative weight J by 20%. This overestimation may
be accounted for by the underestimation of the posterior variance, both of which contribute to the
computation of the filter weight.

3.2 Comparison to particle filter and extended Kalman filter

To better illustrate how our model differs from conventional filtering methods such as particle filter-
ing and the (extended) Kalman filter, we present a brief summary in Table 1.
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Figure S2: (a) Comparison of estimated posterior trajectories. The underlying hidden trajectory is
represented by the black line. Magenta, blue and yellow lines correspond to the state estimation
µt and shaded regions to the standard deviation estimated by the neural filter (NF) with Wlearned,
particle filter (PF) and extended Kalman filter (EKF), respectively. Histograms depict the states of
N = 1000 sample trajectories at t = 10 and are thought to correspond to the posterior density
p(xt=10|Yt=10). (b) Mean squared error E = 1/T

∑
t(xhidden,t−µt)

2 as a function of observation
noise Σy . Here, we also compared the error of NF with constant filter weights Wconst (red) and of
NF with filter weights Wemp (cyan). Note that since the filter performance is comparable in any of
the filters, the plot lines are indistinguishable. (c) Parameter values of J and W as well as the MSE
for both NF with Wemp and NF with Wlearned. Black line denotes true generative weight. Inset:
Histogram reflecting distribution of values of learned generative weights over the last 200 time steps.
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EKF Particle Filter Neural Filter

Representation
parametric
p(xt|Yt) =
N (µt,Σt)

weighted samples
p(xt|Yt) =∑
i wiδ(xt − xi

t)

samples
p(xt|Yt) =

1
N

∑
i δ(xt − x̂i

t)

Posterior
moments

only first and second
moment not restricted

first moment matched,
higher order moments

approximated
Parameter
learning well-suited well-suited well-suited

Limitations
for Accuracy

linearization of
f(xt, t)

finite number of particles finite number of particles,

Biological
plausibility unknown

unclear how to justify
importance weights and

resampling

neuronal activity
corresponds to variables

Table 1: Comparison of the neural filter to the (extended) Kalman filter (EKF) and a standard particle
filter.
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