
Local Structure Helps Learning Optimized Automata
in Recurrent Neural Networks

Jonathan Binas, Giacomo Indiveri, and Michael Pfeiffer
Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Email: jbinas@ini.ethz.ch

Abstract—Deterministic behavior can be modeled conveniently
in the framework of finite automata. We present a recurrent
neural network model based on biologically plausible circuit
motifs that can learn deterministic transition models from given
input sequences. Furthermore, we introduce simple structural
constraints on the connectivity that are inspired by biology.
Simulation results show that this leads to great improvements in
terms of training time, and efficient use of resources in the con-
verged system. Previous work has shown how specific instances
of finite-state machines (FSMs) can be synthesized in recurrent
neural networks by interconnecting multiple soft winner-take-all
(SWTA) circuits — small circuits that can faithfully reproduce
many computational properties of cortical networks. We extend
this framework with a reinforcement learning mechanism to learn
correct state transitions as input and reward signals are provided.
Not only does the network learn a model for the observed
sequences, and encode it in the recurrent synaptic weights, it
also finds solutions that are close-to-optimal in the number of
states required to model the target system, leading to efficient
scaling behavior as the size of the target problems increases.

I. INTRODUCTION

Finite automata, or finite-state machines (FSMs), present
one of the simplest frameworks to model deterministic sequen-
tial behavior, and are essential building blocks in theoretical
computer science [1]. FSMs can model many aspects of high
level deterministic behavior, such as production of movement
sequences, navigation, state-dependent decision making, log-
ical reasoning, or understanding and production of language.
Although many neural processes can be better modeled by
probabilistic graphical models, taking into account the inherent
environmental and neural stochasticity [2], [3], almost deter-
ministic sequences of neural activation have been observed
in brains of various species and during diverse activities.
Examples include synfire chains [4], sequences during song
production in birds [5], or location-dependent patterns during
navigation in rats [6].

It has been shown previously how FSM-like dynamics can
be realized in networks of interconnected neural populations
[7], [8], [9]. In these implementations, states are represented
as point attractors in a multistable attractor neural network.
Special gating units implement a mechanism for switching
between different states conditional on the current state and
the external input stimulus. This framework allows bottom-up
engineering of given finite automata by setting the relevant
connections in the network, i.e. the transition table of a given
automaton can directly be translated to connections between
populations. The described model is particularly appealing as
it is based solely on interconnected winner-take-all networks,

small circuits that closely match connectivity patterns found
in neuroanatomy [11], [12].

While those previous approaches have addressed the syn-
thesis of state machines with known dynamics, this article
presents a biologically plausible neural framework for learning
deterministically behaving systems in the form of neural FSMs.
We extend the work initiated in [7] by developing a rein-
forcement learning mechanism, such that an agent equipped
with our model can learn and adapt its deterministic behavior
through sparse, external reward signals. Specifically, the net-
work produces an output after receiving a sequence of inputs
and is provided feedback in terms of a reward signal that
indicates whether the output corresponds to the target behavior.
The network then adapts its internal model using a reward-
modulated Hebbian-type learning rule [13], [14] to maximize
the correspondence of its behavior with the target behavior.

For any neural system, the number of states required to
model the target behavior cannot be known in advance. It
is thus crucial that the system makes efficient use of the
available neural resources, since this can speed up learning and
improve the generalization capabilities. We find that within our
framework simple, local modulation of the network structure
leads to greatly improved solutions in terms of the optimality
of the solutions that are learned, as well as in the search
time required to find a valid solution. Here, the term optimal
refers to the minimal automaton that implements the desired
dynamics. Our structural assumptions nicely translate to real
biological systems, where nearby populations of neurons are
more likely to be connected than far away ones.

In this article, we introduce our system first as a formal
model and then map it to a network of neural populations. We
illustrate how local structure in the network connectivity leads
to solutions that are globally optimized in terms of the number
of state populations used to implement a target behavior and
dramatically improves the learning performance.

II. DEFINITION OF THE MODEL

An FSM is defined by a set of states S = {1, 2, 3, . . .}, an
alphabet of input symbols A = {a, b, c, . . .}, and a transition
table T that contains an entry T k

i = j for every state i and
input symbol k, specifying a transition to a target state j
for that particular state-input combination. Furthermore, there
is an initial state s0, and a set of one or multiple accept
states Sacc ⊆ S. The system carries out some computation
by switching between its internal states while processing a
finite string of input symbols. The outcome is binary – the
system either ends up in one of the accept states in Sacc or

not. This mechanism can be used to parse and classify given
input strings, i.e. to make a decision on the basis of a sequence
of input stimuli. An illustration of a simple FSM is shown in
fig. 1A. The system is initialized in state 1 and ends up in the
accept state 3 if a number of blue inputs is provided, followed
by a number of red inputs. Note that self-transitions are not
shown, but are assumed implicitly for all inputs for which no
transition is specified.

A. Neural Populations as Computing Elements

We illustrate the implementation of finite automata in
attractor neural networks by means of an abstract population
model, which we use to introduce the learning rule and analyze
various aspects of the plastic system.

A

1

2

3

B x1 x2 x3

y1 y2 y3

y1 y2 y3

Fig. 1. Building state machines from neural populations. A) Abstract
directed graph representation of an example state machine, consisting of three
states (1, 2, 3) and two input symbols (red, blue). Arrows indicate state
transitions, double circles indicate accepting states. B) Implementation of the
state machine from A) in a neural network of coupled WTA circuits (dashed
boxes). The units Xi in the top WTA represent the states, while the units ykj
of the lower WTA trigger transitions between them. Each unit in the lower
WTA corresponds to one particular input-state combination, indicated by color
and state index, and can activate its target state through a strong excitatory
projection.

Our implementation is based on two interconnected WTA
networks (fig. 1B), one of which serves as memory of the cur-
rent state while the other one functions as a gating mechanism,
activating exactly one transition per state-input combination.
This formalism was introduced by [7]. A WTA network
contains a number of neural populations that compete through
mutual inhibition, such that only one of them can be active at
a time. If the parameters are identical for all populations, the
active population of a WTA is the one receiving the greatest
input. If local self-excitation is added to the circuit, i.e. each
population recurrently excites itself, the populations can retain
their activity, and therefore a memory, even if no external input
is provided. However, due to the mutual inhibition only one
population is active at a time, such that one can switch from
one attractor state to another by providing a strong input to the
other population. A WTA network with recurrent excitation
is used to represent the internal states, that is, activation of
population xi indicates that the system is in state i and this
state is retained even if no input is provided.

A second WTA network without recurrent excitation im-
plements the transitions between states. This second WTA
contains exactly one population for every state-input symbol
combination, whereby each population receives input from one
input symbol and one of the state populations. Due to the
competition mechanism, only the population ykj corresponding
to the current state j and the current input symbol k will

become active. An activation threshold makes sure that the
populations become active only if they receive both input
from a state population and an input symbol and are silent
otherwise. In order to implement a transition to a target state,
the population corresponding to a particular state-input symbol
pair simply needs to provide a strong input to the population
representing the target state. Furthermore, a random, non-
empty subset of the state populations Xacc ⊆ X is defined
as the set of accepting states, while all other state populations
correspond to reject states. One state population x0 is defined
to represent the initial state.

The corresponding population-based implementation of the
FSM illustrated in fig. 1A is shown in fig. 1B. It is discussed
elsewhere [7], [9] how the neuron parameters have to be chosen
to implement such dynamics in networks of threshold-linear
units. In this study, for simplicity, we assume the activation
of a unit to be either 0 or 1 and do not consider transient
dynamics.

B. The Learning Rule

Rather than manually specifying the transitions, the idea
behind this work is to learn them based on sequential sensory
input and reinforcement signals. A neural network of the type
described above is initialized with transition weights set to
random values in (wmin, wmax) where wmin and wmax are
chosen such that the input to state populations is large enough
to switch to a different state. The training is based on a number
of trials, each of which consists of an input sequence of length
Ni and a reward signal ri. At the beginning of a trial i, the
agent is set to its initial state, i.e. the population x0 that was
specified to correspond to the initial state is activated. The
trial length Ni is then chosen from a uniform distribution
over [1, Nmax] and Ni randomly chosen input symbols are
provided at discrete times t1, . . . , tNi

for a period τ0 each. At
the end of the sequence, it is checked whether the agent is in
an accept state or not and whether this outcome corresponds
to the outcome of the target automaton if provided the same
sequence of inputs. If the outcomes are in agreement, a reward
ri = 1 is provided to the agent. If not, a negative reward signal
(or punishment) ri = −1 is provided.

As we intend to learn the right transitions, the learning rule
outlined in the following solely needs to alter the ‘transition
connections’, i.e. the connections from the gating populations
to the state populations. All other connections remain fixed,
although they could in principle also be learned with biologi-
cally plausible rules [15]. Due to the competition mechanism,
only one of the state populations will be active after an input
symbol is provided and a gating population has been activated,
namely the one receiving the greatest input from that gating
population.

We denote by wk
ij the connection from the gating popula-

tion ykj to the state population xi. While inputs are provided
and the system switches between internal states, each transition
connection wk

ij locally records the traces Γk
ij and Γ̃k

ij , which
are updated after every input presentation as follows:

Γk
ij 7→ (1− λ)Γk

ij + λykj (tn)xi(tn + τ0) , (1)

Γ̃k
ij 7→ (1− λ)Γ̃k

ij + λykj (tn) (1− xi(tn + τ0)) , (2)

where λ is a constant between 0 and 1 (in all simulations we
set λ = 1/3) that determines the speed of decay of the traces.
Without loss of generality, we can assume that the activation
of a population is either 1 (active) or 0 (silent). Thus, the
quantity Γk

ij is increased whenever the pre- and postsynaptic
populations of the corresponding connection wk

ij are co-active,
while Γ̃k

ij is increased when only the presynaptic population
ykj is active.

At the end of the trial, the reward signal r ∈ {−1, 1}
is provided and the weights are updated proportional to the
learning rate η (set to 1 in all simulations) as follows:

wk
ij 7→ wk

ij + rη
(
gr(wk

ij)Γ
k
ij − g̃r(wk

ij)Γ̃
k
ij

)
, (3)

where g̃r = g−r and

gr(wk
ij) =

{
wmax − wk

ij if r = 1,
wk

ij − wmin if r = −1. (4)

The weight dependence gr ensures that the minimum and max-
imum weight values are never exceeded. Overall, the update
can be regarded as a reward-modulated Hebbian learning rule.
This is evident when noting that either Γk

ij or Γ̃k
ij (or both)

are zero for a given connection after the trial. This is the
case because weights are not updated during the trial, so a
transition is either taken always or never. If the reward is
positive, connections whose pre- and postsynaptic populations
have been active together are strengthened. On the other hand,
connections which do not lead to activation of a postsynaptic
population are weakened. If the reward is negative, the update
is inverted, i.e. the connections corresponding to transitions
that took place are weakened, while others are strengthened.
Thus, over many trials, the connections should converge to
values that lead to the maximum reward and therefore always
fulfill the target dynamics.

C. Local Structure in the Network Topology

In a realistic scenario, the number of available state pop-
ulations will not exactly match the number of states required
for a given target automaton. Since the exact amount of states
required to implement a specific target behavior is not known a
priori, the number of state populations should be large, so they
can be recruited dynamically as the training progresses. This
will typically lead to rather large systems (large in terms of
the number of populations used) since there is no motivation
for the agent to minimize the solution, as it can just recruit
more populations if a new branch in the behavior is required.
More complex (or larger) network structures, on the other
hand, make it harder to learn the right transitions between
internal states, as the number of possible transitions scales with
the square of the number of states used. To encourage small
solutions we assume the state populations to be uniformly
distributed in some physical space, e.g. on a two-dimensional
grid or on a line. Small solutions will then be guaranteed
if only a small region of space is used to implement the
desired dynamics. To make such local solutions more likely, we
introduce local structure by modulating the maximum weight
as a function of the distance between populations,

wmax(wk
ij) = w0

max − µd(xi, xj) , (5)

where w0
max and µ are constants, and d is a function of

the coordinates of the populations. In all our simulations, we
set w0

max = 1 and µ = 0.025. Throughout this article, we
consider only the simplest case where populations are arranged
at equidistant points along a line and their indices correspond
to their coordinates. The Euclidean distance between two
populations is then given by d(xi, xj) = |j − i|. This allows
states that are represented by populations which are spatially
close to each other to achieve higher transition weights, so
these states are more likely to participate in a transition. Such
local structure is also found in biology, where short-range
connections between cells are much more likely than long-
range ones.

III. THEORETICAL CONSIDERATIONS

In the following we provide an intuition why the learn-
ing method (3) works in practice. In general it cannot be
guaranteed that for any finite set of input sequences the
algorithm finds the exact finite state machine that generated
the sequences, or that it can generalize perfectly for arbitrary
longer or unobserved sequences. Denoting by X the set of all
state populations in the network and by Xacc ⊆ X the set
of all accepting states among them, a solution is guaranteed
to exist if these sets are sufficiently large, i.e. if |X| ≥ |S|
and |Xacc| ≥ |Sacc|, where S and Sacc are the sets of
states and accepting states of the target automaton. Once the
system has converged to a valid state where it receives positive
reward after every trial, the connections wk

ij that trigger a state
transition asymptotically converge to wmax, while all wk

i′j with
i′ 6= i converge to wmin.

Although we cannot provide a full proof that the learning
rule (3) always converges to this or an equivalent correct
solution for any given training set, there are intuitive reasons
why the algorithm works in practice:

• If a network state j is repeatedly visited and positive
reward is obtained directly after the transition into
state i following the same symbol k, the corresponding
weight wk

ij will always grow, while all weights wk
i′j

with i′ 6= i will shrink. Thus, a correct final transition
will only be reinforced.

• If in the same situation the reward is always negative,
the corresponding weight wk

ij will shrink, while all
weights wi′j with i′ 6= i will grow. This will continue
until eventually a different transition becomes active
(as soon as wk

ij < wk
i′j for some i′). Even if this is

again an incorrect transition, after a finite number of
updates the algorithm will lead to a correct transition,
because weights leading to correct states can only
grow, whereas weights that lead to incorrect states will
shrink as soon as they are selected.

• If λ < 1, then all weights along the state sequence
leading to the positive or negative reward will be
updated, and either all of them will be reinforced or
punished. Weights of transitions near the end of the
sequence will receive the strongest update, similar to
reinforcement learning algorithms using exponentially
decaying eligibility traces [16]. Thus, if only the final
transition is incorrect, this is the most likely transition

to change, whereas previously learned correct transi-
tions will be reinforced by repeatedly seeing shorter
sequences, assuming that sequences are presented re-
peatedly and in random order.

• Use of traces Γk
ij and Γ̃k

ij can speed up learning, be-
cause multiple transitions are updated simultaneously
after obtaining reward.

• A potentially problematic situation can arise whenever
the algorithm has converged to a perfect solution for
all sequences seen so far, and then receives negative
reward for a longer, previously not observed sequence.
In the worst case, this might require reorganization
of all previously learned transitions. As the simplest
example consider the FSM that accepts the string
1, but not strings with 2 or more 1 symbols. If
initially only 1’s are presented, and assuming x0
is an accepting state, this might lead to a learned
network in which the weight w1

00 is the maximum
of all w1

i0, i.e. the network will accept strings with an
arbitrary number of 1’s. In this case it is necessary that
negative examples from the training set are seen often
enough and repeatedly so that the self-transition can
be unlearned. Since transitions into other accepting
states would also be positively rewarded, and weights
towards those states would grow for every incorrectly
classified sequence, such a transition will be learned
in the limit of repeated and randomly ordered pre-
sentation of sequences. Thus, eventually a different
transition from x0 for symbol 1 will be learned, which
enables learning of a correct network.

IV. SIMULATION RESULTS

The performance of our system, and particularly the effects
of the local structural modulation described in section II-C, are
evaluated for different training and model parameters. This
is done by learning a random target dynamics, generated by
defining a target FSM with a fixed number of states and
input symbols, a randomly initialized transition table, a random
initial state, and a random, non-empty set of accept states. Note
that occasionally this might lead to target FSMs for which
equivalent models can be realized with fewer states, as the
random transition tables might implement several equivalent
paths to reach a particular state, using more states than
necessary. To investigate the influence of different parameters,
the number of states of the target model, the average length
of the input strings, and the number of state populations
available to the neural network were varied. Each system was
trained according to the procedure described in section II-B by
presenting random input strings of a maximum length Nmax

and providing reward signals depending on the final state of
the model system. When the system was able to produce the
correct outcome for 1000 trials in a row we considered the
system to have learned the correct transition dynamics. All
experiments were repeated 100 times for both the simple model
and the model with local modulation of the maximum weight.
Each data point in figs. 2 to 4 thus corresponds to an average
over 100 experiments.

Figure 2 shows the number of trials required as a function
of the number of states the target model is based on. As

2 3 4 5

2

4

6

Target system complexity (states)

lo
g
(#

tr
ia
ls

re
q
u
ir
ed

)

Without structural modulation

With structural modulation

Fig. 2. Search time vs. target system complexity. Varying the number of states
of the target model, the number of trials needed to find the correct dynamics
was measured. For the experiments, the average input string length was set to
16, using 2 input symbols, and networks had 32 available state populations.
Networks with local structural modulation converged on average more than
one order of magnitude faster. Results show averages over 100 experiments
and standard deviations. The last point of the simple system data was omitted
because of excessive search time.

expected for problems of this kind, the search time scales
exponentially with the problem size. However, local modula-
tion of the transition connections improves the performance
by more than an order of magnitude. If the number of
state populations available to the system is increased, this
difference increases further (results not shown), whereby the
simple model performs worse while the performance of the
structurally modulated model remains roughly the same.

2 4 6 8

2

4

6

Mean input string length

lo
g
(#

tr
ia
ls

re
q
u
ir
ed

)

Without structural modulation

With structural modulation

Fig. 3. Search time vs. input string length. The number of trials needed
to find the correct dynamics was measured, while the average length of the
input strings was varied. For the experiments, the target models had 4 states,
using 2 input symbols, and networks had 32 state populations available. The
training time for networks with local structural modulation shows only little
increase for longer sequences. Results show averages over 100 experiments
and standard deviations.

The search time as a function of increasing target system
complexity shows a similar scaling trend for the modulated and
the simple system. However, a difference in scaling between
the two models can be observed if the average length of the
input strings is varied while keeping the number of states of
the target system fixed. For fig. 3, the number of states of the
target model was held fixed at 4, and the maximum input string
length was varied between 4 and 16. Networks with structural

modulation show only a small increase in learning time when
trained with longer sequences, while a stronger dependence on
input length for networks without modulation is observed.

V. OPTIMIZED SOLUTIONS DUE TO LOCAL STRUCTURE

As a key result of this article, fig. 4 shows the dependence
of the complexity of the learned system on the number of
state populations available. While the size of the simple
system without modulation grows approximately linearly with
the number of state populations, i.e. a constant fraction of
the available state populations tend to be used, there is no
such dependence in the system with structural modulation.
Regardless of the number of states available, the system only
uses roughly as many populations as are minimally required for
the optimal solution (the target system complexity was fixed
to 4 states in this example). Figure 5 displays the amount
of states used and the number of trials required for 100
random initializations of the simple and the locally modulated
systems, and for a fixed target dynamics (shown in fig. 7B).
The systems consisted of 32 state populations each, whereby
population 15 was specified to represent the initial state and
every third population x0, x3, x6, . . . was specified to represent
an accepting state. While most of the implementations found
by the locally modulated system used a number close to the
optimum of three states, (on average, about 6 states were used),
the non-modulated system on average used more than 20 of the
32 available states with the smallest solution using 13 states.
A typical solution found by the modulated system, and the
smallest solution found by the simple system are shown in
fig. 6. While the modulated system finds a locally confined
solution, the solution of the simple system spans the whole
range of state populations between 0 and 31.

We can conclude that simple constraints on the local
connectivity structure encourage optimal solutions in terms of
the number of states used. Globally, this modulation of the
weight update leads to spatially confined solutions, such that
the number of states used to implement the dynamics of the
agent becomes independent of the number of states available
in the system. This simplifies the learning process, because
effectively the number of possible transitions, which scales
with the number of states that can be reached, is reduced.
Other parameters, e.g. the learning rate, can be modulated in
a similar fashion and were found to lead to similar results.
For the sake of clarity, we only present the results for the
modulated maximum weight in this article.

VI. LEARNING TO SOLVE BEHAVIORAL TASKS

So far, we have considered random target dynamics for
our system to learn. In this section, it is demonstrated how
the mechanism can be applied to actual behavioral tasks.
A common type of behavioral experiment in neuroscience
is based on a rodent navigating through a maze, learning
how to use implicit (visual) cues as a navigation aid, e.g.
[6]. We generated virtual instances of such experiments by
creating random mazes, in which an agent equipped with
the learning mechanism eq. (3) had to find a target position.
Random mazes were generated on a two-dimensional grid by
defining one initial and one target position that were connected
through a sequence of consecutive T-junctions (see fig. 7A
for illustration). The agent (i.e. the virtual rat) moves along

8 16 24 32
0

10

20

States available

S
ta
te
s
u
se
d

Without structural modulation

With structural modulation

Fig. 4. System complexity vs. states available. Varying the number of
available state populations, the number of actually used network states is
measured with the target system size fixed at 4 states. For the system using
local structural modulation, the number of states used remains approximately
constant, while it increases linearly for the system without modulation.

4 12 20 28

2

3

4

States used

lo
g
(#

tr
ia
ls

re
q
u
ir
ed

)

Without structural modulation

With structural modulation

Fig. 5. Search time vs. states used. For 100 experiments, the number of
trials required to find the target dynamics is plotted vs. the number of states
the system ended up using. The lines correspond to least square fits to the
data points, fitted individually per group. Networks with structural modulation
used fewer state and needed substantially less time to converge. In both cases,
a trend can be observed that networks using more states also require more
trials to converge to the target.

the grid in discrete steps, and at each junction has to decide
whether to turn left or right. If a wrong turn is performed and
the agent runs into a dead end, the trial ends and negative
reward (punishment) is provided. On the other hand, if it
reaches the goal after a number of correct turns, a positive
reward signal is provided to the agent. As input symbols to
the system, there are colored tiles distributed across the maze,
which encode the correct direction to take at the next turn.
These inputs are provided to the agent at discrete points in
time, whenever its position coincides with the respective tile.
In order to solve the maze correctly, the agent has to learn
the meaning of the input symbols. In the example shown in
fig. 7A, two consecutive red tiles indicate that a left turn is
necessary, while the sequences blue-red and red-blue encode a
turn to the right. At each turn, the internal state (the outcome
of the computation) of the agent is checked. If in an accept
state, a turn to one direction is performed, if not, the opposite
action is carried out. Thus, in order to solve the task, the agent
has to learn how to count to two (i.e. to reset its internal

A

0 1 2 . . . 4 5 . . . 8 . . . 12 . . . 15 . . . 17 . . . 23 . . . 27 . . . 29 . . . 31

B

. . . 14 15 16 . . .

Fig. 6. A) shows the smallest system found in 100 experiments without structural modulation (cf. fig. 5) and B) shows a typical system that is found when
using structural modulation. The system in B) is the minimal system that implements the target dynamics, and is confined to a small region in state space (states
14 to 16), whereas the implementation found by the non-modulated system consumes a large number of state populations and is distributed over the whole
(linear) state space of size 32 to implement the same behavior.

state after every two inputs received) and to detect whether
blue is contained in a pair of consecutive inputs. During the
training process a new maze was generated in every trial, while
the meaning of the input sequences remained the same. One
of many example systems that successfully solves the task,
and that occasionally was found by our simulated agent, is
shown in fig. 7B. Typically, the system required on the order
of several 100 trials to learn the correct behavior. In fig. 7C the
sequence of rewards is shown (red=negative, black=positive),
and it can be seen that the agent gradually improves over time,
and receives more and more positive rewards.

VII. CONCLUSION

We have introduced a novel framework for learning de-
terministic behavior in recurrent neural networks, based on
biologically inspired WTA circuit elements [12] implement-
ing the computation of an FSM [7], and a simple weight-
update mechanism that takes the form of a reward-modulated
Hebbian learning rule. This network can learn complex be-
havior that goes beyond reactive input-output relations, which
could be viewed as pure input classification. To implement
state-dependent behavior our system crucially relies on some
form of working memory. This is realized by a recurrent
neural network forming stable attractor states with different
memories encoded as fixed points in the network dynamics.
Attractor networks have been investigated extensively and are
hypothesized to implement important dynamical elements in
biological brains [17]. Furthermore, recent results show that
stable WTA dynamics, which form the basis of the types of
attractor networks used in this work, can emerge in a self-
organized way through an interaction of biologically realistic
learning rules [15]. The simple structure of the networks allows

us to derive an update rule for the connections between neural
populations, the effects of which can be intuitively understood.
Correct state transitions are consolidated if a reward signals are
received, while a different network configuration is encouraged
if punishment is provided, similar to the operation of rein-
forcement learning approaches [16], for which several neurally
plausible candidate solutions have been suggested [13], [14].

While various models and algorithms for learning of finite
automata exist [18], [19], we investigate here a neural network
implementation that closely matches connectivity patterns
found in neuroanatomy. Interestingly, more realistic network
structures (as compared to fully connected recurrent networks)
seem to have a very beneficial effect on the performance of the
system. As a key result of our study, we introduce bio-inspired
local structure to the network connectivity that leads to glob-
ally optimized solutions. In finite automata theory, there exist
algorithms for minimizing a given automaton [20], [21]. These
are important tools as the minimal automaton ensures minimal
computational cost for tasks such as pattern recognition [1]. In
our model, this minimization comes for free, as a side-effect
of the locally modulated update rule. On the other hand, a less
complex or minimal system during training makes the training
process less costly, as the number of possible state transitions
is effectively reduced compared to the simple system based
on a flat hierarchy. It will be interesting to investigate the
effects of local structure in non-deterministic finite automata,
as in this case algorithmic minimization of a given automaton
is much more expensive than in the deterministic case [1].
Furthermore, similar state space optimization techniques might
prove to be advantageous for neural models of probabilistic
decision making [2], [3].

A

K

?

B

R L R

C

time

Fig. 7. Maze task, in which a virtual agent has to find a target position,
using visual cues. A) One of the randomly generated mazes with visual cues
in the form of colored floor tiles. Consecutive occurrence of two red tiles
indicates that the next turn should be left, while the sequences blue-red and
red-blue signal that the next turn should be a right. The initial position of the
agent is marked by an arrow, the goal (reward) by a star symbol. Punishment
(electric shock) is provided and the trial is ended if the agent makes a wrong
turn and runs into a dead end. B) Shows the minimal automaton that solves
the task, and which was occasionally learned by the system. At each turn,
the state of the system is checked and if in an accept state (L), a left turn is
performed. Otherwise, a turn to the right is carried out. C) Reward obtained
during learning: positive reward is indicated by a black line (top), and negative
rewards by red lines (bottom). As the agent improves, it receives more and
more positive rewards until it converges.

VIII. ACKNOWLEDGMENT

We thank Lorenz Müller, Hesham Mostafa Elsayed, Saray
Soldado Magraner, Timos Moraitis, Rodney Douglas, Matthew
Cook, Ueli Rutishauser, and other participants of the 2014
Capo Caccia Cognitive Computation Workshop, as well as our
colleagues at the Institute of Neuroinformatics for discussion.
The research was supported by the Swiss National Science
Foundation Grant 200021 146608.

REFERENCES

[1] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation. Pearson/Addison Wesley, 2007.

[2] D. Kappel, B. Nessler, and W. Maass, “Stdp installs in winner-take-
all circuits an online approximation to hidden markov model learning,”
PLoS computational biology, vol. 10, no. 3, p. e1003511, 2014.

[3] D. S. Corneil, E. Neftci, G. Indiveri, and M. Pfeiffer, “Learning,
inference, and replay of hidden state sequences in recurrent spiking
neural networks,” in COSYNE 2014, 2014.

[4] M. Abeles and I. Gat, “Detecting precise firing sequences in experi-
mental data,” Journal of Neuroscience Methods, vol. 107, pp. 141–154,
2001.

[5] R. H. Hahnloser, A. A. Kozhevnikov, and M. S. Fee, “An ultra-sparse
code underlies the generation of neural sequences in a songbird,”
Nature, vol. 419, no. 6902, pp. 65–70, 2002.

[6] C. Harvey, P. Coen, and D. Tank, “Choice-specific sequences in parietal
cortex during a virtual-navigation decision task,” Nature, vol. 484, pp.
62–68, 2012.

[7] U. Rutishauser and R. J. Douglas, “State-dependent computation using
coupled recurrent networks.” Neural computation, vol. 21, no. 2, pp.
478–509, Mar. 2009.

[8] U. Rutishauser, J.-J. Slotine, and R. J. Douglas, “Competition through
selective inhibitory synchrony,” Neural computation, vol. 24, no. 8, pp.
2033–2052, 2012.

[9] E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and R. J.
Douglas, “Synthesizing cognition in neuromorphic electronic systems.”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 110, no. 37, pp. E3468–76, Oct. 2013.

[10] Y. Sandamirskaya, “Dynamic neural fields as a step towards cognitive
neuromorphic architectures,” Frontiers in Neuroscience, vol. 7, no. 276,
2014.

[11] R. J. Douglas and K. A. C. Martin, “Neuronal circuits of the neocortex.”
Annual review of neuroscience, vol. 27, no. 1, pp. 419–451, 2004.

[12] ——, “Recurrent neuronal circuits in the neocortex,” in Current Biology,
Jul. 2007, vol. 17, no. 13, pp. R496–500.

[13] M. Pfeiffer, B. Nessler, R. J. Douglas, and W. Maass, “Reward-
modulated hebbian learning of decision making,” Neural Computation,
vol. 22, no. 6, pp. 1399–1444, 2010.

[14] J. Friedrich, R. Urbanczik, and W. Senn, “Spatio-temporal credit assign-
ment in neuronal population learning,” PLoS computational biology,
vol. 7, no. 6, p. e1002092, 2011.

[15] J. Binas, U. Rutishauser, G. Indiveri, and M. Pfeiffer, “Learning and
stabilization of winner-take-all dynamics through interacting excitatory
and inhibitory plasticity,” Frontiers in Computational Neuroscience,
vol. 8, 2014.

[16] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

[17] D. Amit, Modeling Brain Function: The World of Attractor Neural
Networks. Cambridge University Press, 1992.

[18] M. Thathachar and P. S. Sastry, “Varieties of learning automata: an
overview,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 32, no. 6, pp. 711–722, 2002.

[19] H. Jacobsson, “Rule extraction from recurrent neural networks: Ataxon-
omy and review,” Neural Computation, vol. 17, no. 6, pp. 1223–1263,
2005.

[20] E. F. Moore, “Gedanken-experiments on sequential machines,” in Au-
tomata studies, ser. Annals of mathematics studies, no. 34. Princeton
University Press, Princeton, N. J., 1956, pp. 129–153.

[21] J. Hopcroft, “An n log n algorithm for minimizing states in a finite
automaton,” in Theory of machines and computations (Proc. Internat.
Sympos., Technion, Haifa, 1971). Academic Press, New York, 1971,
pp. 189–196.

