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Abstract

Temporal spike codes play a crucial role in neural information processing. In par-
ticular, there is strong experimental evidence that interspike intervals (ISIs) are used
for stimulus representation in neural systems. However, there are very few algorithmic
principles that exploit the benefits of such temporal codes for probabilistic inference of
stimuli or decisions. Here, we describe and rigorously prove the functional properties
of a spike-based processor that uses ISI distributions to perform probabilistic inference.
The abstract processor architecture serves as a building block for more concrete, neu-
ral implementations of the Belief-Propagation (BP) algorithm in arbitrary graphical
models (e.g. Bayesian Networks and Factor Graphs). The distributed nature of graph-
ical models matches well with the architectural and functional constraints imposed by
biology. In our model, ISI distributions represent the BP-messages exchanged between
factor nodes, leading to the interpretation of a single spike as a random sample that
follows such a distribution. We verify the abstract processor model by numerical simu-
lation in full graphs, and demonstrate that it can be applied even in presence of analog
variables. As a particular example, we also show results of a concrete, neural imple-
mentation of the processor, although in principle our approach is more flexible and
allows for different neurobiological interpretations. Furthermore, electrophysiological
data from area LIP during behavioral experiments is assessed in the light of ISI coding,
leading to concrete testable, quantitative predictions and a more accurate description
of these data compared to hitherto existing models.

∗Author copy of the article ’A. Steimer & R. Douglas. Spike-Based Probabilistic Inference in Analog
Graphical Models Using Interspike-Interval Coding, Neural Computation, 25:2303-2354, 2013’,
http://www.mitpressjournals.org/toc/neco/25/9, c© 2013 MIT Press
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1 Introduction

Rapid and unambiguous interpretation of the environment is a necessary condition for sur-
vival. These properties are granted already at the neuronal level, since the interspike inter-
val (ISI) distribution distinctly encodes a stimulus and the coding process converges within
∼ 8 − 12 spikes after the stimulus has changed (Fairhall, Lewen, Bialek, & de Ruyter van
Steveninck, 2001; Lundstrom & Fairhall, 2006). Furthermore, the amount of information
about a stimulus that is carried by a spike depends strongly on the spikes preceding ISI
(Reich, Mechler, Purpura, & Victor, 2000; Fairhall et al., 2001; Lundstrom & Fairhall, 2006;
Shih, Atencio, & Schreiner, 2011). These properties are true across both species and sensory
modalities, and are due to synergetic effects between spikes, that cannot be explained by
rate modulations alone (Shih et al., 2011).
Taken together these studies raise the question of how stimulus information contained in
the ISIs of low-level sensory areas are used by subsequent processing stages to (a) infer the
stimulus with higher precision by combining different sensory modalities (cue combination),
and (b) induce higher level information processing, leading to e.g. the appropriate selection
of motor actions in response to the thus inferred stimulus (decision making). Both of these
tasks are crucial to neural systems and are typical examples of probabilistic inference.
In this paper we provide an abstract, mathematical description of a spike-based processor
that can perform such inference in very general settings. By combining information process-
ing based on ISIs with message passing schemes in graphical models (Bishop, 2006; MacKay,
2003; Kschischang, Frey, & Löliger, 2001; Löliger, 2004), we are able to implement the Belief
Propagation (BP) algorithm (Kschischang et al., 2001; Löliger, 2004; Bishop, 2006), which
permits the marginal probabilities of variables to be inferred (e.g. the stimulus or motor
commands).
Graphical models such as Factor Graphs (FGs), Bayesian Networks (BNs) or Markov Ran-
dom Fields (MRFs) constitute a canonical framework for solving probabilistic inference prob-
lems. This high level of generality makes this framework very attractive for brain modeling
(Deneve, 2007; Rao, 2004; Ott & Stoop, 2006; Steimer, Maass, & Douglas, 2009; Ma, Beck,
Latham, & Pouget, 2006). Here we focus exclusively on ’Forney Factor Graphs (FFGs)’
(Forney, 2001; Löliger, 2004), which, together with ordinary FGs, allow for sparser graph-
topologies compared to BNs/MRFs for the same represented probability distribution (this
aspect will be defined more clearly in section 1.1).
Graph-based representations of inference problems give rise to message-passing algorithms
such as BP, that allow inference to be performed in a biologically plausible way by purely
local computations. That is, information exchange through messages occurs exclusively
between neighboring nodes of the graph, thereby dispensing with the need for any global
observer. Moreover, when formulated in FFGs, BP leads to a single, stereotyped update rule
for computing outgoing messages from incoming ones. This property suggests a canonical
strategy that is likely to be utilized by the brain, e.g. in cortex’ canonical microcircuitry
(Douglas & Martin, 2004).
In the machine learning domain, the messages employed by BP are regarded as probability
distributions and so provide an elegant computational meaning for distributions of ISIs in
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neural systems. In this view spiking behavior is an ongoing sampling process. That is, a
single spike is interpreted as a random sample whose numerical value is determined by its
preceding ISI. Since ISIs are analog quantities, our method allows BP even to be applied
to graphical models that contain analog variables. This feature is notoriously difficult to
achieve in traditional software implementations of BP (Sudderth, Ihler, Freeman, & Will-
sky, 2003) and hence provides a clear-cut example of the benefits derived from biologically
inspired information processing.
Sampling methods can also be used directly for solving inference problems, e.g. in decision
making tasks. Most prominently, Markov Chain Monte Carlo(MCMC) methods (MacKay,
2003; Bishop, 2006) such as Gibbs sampling (Geman & Geman, 1984) provide a set of sam-
ples from the joint probability distribution, which renders marginalization a simple matter
of coordinate projection. Such approaches are complementary to BP since, on the one hand,
they generally suffer from both, the curse of dimensionality and poor convergence (MacKay,
2003). On the other hand however these methods can still be applied in cases where BP
performs badly, for example in certain graphs with loopy topology.
Furthermore, literal application of the ’Sum Product Rule (SPR)’ (Löliger, 2004) (the mes-
sage update rule used by BP), often leads to intractable integrals in the analog case (Löliger,
2004; Sudderth et al., 2003; Dauwels, Korl, & Löliger, 2006; Isard, 2003). By contrast, the
method presented here naturally avoids the explicit computation of these integrals by com-
bining a sample-based MCMC-like message update scheme with the SPR (Dauwels et al.,
2006).
Instead of solving a particular cognitive task, we demonstrate our method’s high level of
generality by statistical analyses that verify the functionality of the processor. Firstly, we
show results of literal software implementations of the processor that, apart from being spike-
based, disregard the use of neural elements for the underlying computations. The verification
is made for two different graph topologies and for various random parameterizations of the
nodes (factors) that constitute the FFG in both cases. Consequently we then show how a
concrete implementation of the processor based on neural elements can be obtained. The
latter implementation however is still abstract enough to be consistent with at least two
different neuroanatomical interpretations.

The paper is organized as follows: In the remainder of the introduction we provide some
general background information about FFGs and BP. We then lay out in the results section
2.1 the mathematical description of an abstract processor, whose literal implementation in
software performs BP in analog FFGs. The abstract processor lends itself also to a neural
architecture for its concrete implementation (section 2.2). In both cases statistical analyses
evaluate performance by comparing our method to ordinary, discretized BP. Subsequently,
ISI coding is applied for the qualitative and quantitative modeling of electrophysiological
data, leading to concrete predictions in the respective experimental setup (section 2.3). In
the discussion (section 3), this we continue on that issue by presenting experimental evidence
for ISI coding in neural systems, along with biophysical mechanisms that are relevant for the
functioning of the concrete processor. The Materials and Methods (section 4) then contains
some mathematical derivations, whose results are needed in sections 2.1&2.2, along with
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more detailed descriptions of the various methods used in the paper.

1.1 Basics of Forney Factor Graphs and Belief-Propagation

Like other graphical models, a FFG is a graph based representation of a factorized joint
probability distribution/density of a set of variables. In a FFG, the nodes of the graph
correspond to the individual factors of that factorization and the edges to variables. The
factor nodes are defined by nonnegative functions of the variables (edges) these nodes are
attached to (figure 1). The seemingly severe restriction that variables are represented by
edges, and as such may be connected to at most two factor nodes, can be easily circumvented
by including ’equality constraint’ factor nodes (Löliger, 2004). That is, the factorization is
expanded to include additional, deterministic factors, which enforce equality among the
variables they are attached to. We will apply our methods to such a factor in section 2.1.2).

Using the structure of a graphical model, the goal of inference by means of BP is to
simultaneously compute the marginal probability densities P (xi) of all n variables Xi in the
graph:

P (xi) =

∫
Dn−1

P (x1, ..., xn) dvi (1)

where D is the domain of each variable (which for simplicity is assumed to be the same
for all variables); Dn−1 is the cartesian product of the domains of all variables j 6= i and
dvi :=

∏
j 6=i dxj. In general, computing these integrals analytically is not possible. Also,

approximations using finite sums are computationally prohibitive due to the combinatorial
nature of the problem. BP however avoids at least this combinatorial aspect by solving
equation 1 through the distribution of messages between neighboring nodes in the graph
representing P (x1, ..., xn) (see figure 1):
Suppose for the moment that all variables were discrete with finite domain and the integrals
in equation 1 were replaced by corresponding sums. In a FFG, a message mf1→f2(x) sent
from a node f1 to a node f2 along the variable X provides a biased estimate about the states
of X by summarizing the subgraph G1 ’behind’ (with respect to the direction of the message)
f1. This means that in a marginalization task mf1→f2(x) contains all sums associated with
variables in G1(Löliger, 2004). Since (in a tree-structured graph) these summations do not
depend on the variables in G2, the subgraph ’in front of’ f2, they need not be repeated for
each (joint) state of the variables in G2. This property is a consequence of the distributive
law (Aji & McEliece, 2000), and the reason for the much greater efficiency of BP compared
to marginalization by direct summation (equation 1).
In general, BP messages following the Sum Product Rule (SPR) in a FFG based on analog
variables are computed as follows (in case of discrete variables the integrals have to be
replaced by corresponding sums, which has motivated the term ’Sum Product Rule’):
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umfi→fj(xij) :=

∫
Dn−1

fi(xN (i))
∏

k∈N (i)/j

mk→i(xik) dvN (i)/j (2)

Nfi→fj :=

∫
D

umfi→fj(xij) dxij (3)

mfi→fj(xij) :=
umfi→fj(xij)

Nfi→fj
(4)

where fi is the function associated with factor node i; xij ∈ D is a value of Xij , the variable
connecting nodes i and j; N (i)/j indicates the set of neighbors of node i (excluding neighbor
j); n the cardinality of N (i) (= branching degree of i); xN (i) ∈ Dn is the vector of values of
variables in N (i); dvN (i)/j :=

∏
k∈N (i)/j dxik ; mfi→fj(xij) is the value the normalized message

passed from node fi to node fj provides for value xij of variable Xij and umfi→fj(xij) is the
corresponding unnormalized message; Nfi→fj is the corresponding normalization constant.
Normalization of messages umfi→fj(xij) is typically needed to avoid exploding and/or di-
minishing message values, a fact that further justifies their representation as probability
distributions.
Using the messages based on equation 4, estimates B(xij) of the marginals P (xij) (equation
1) can be computed in the following way:

B(xij) :=
mfi→fj(xij)mfj→fi(xij)∫

D

mfi→fj(xij)mfj→fi(xij) dxij

(5)

For all tree structured FFGs it is guaranteed that B(xij) = P (xij). Loopy graphs in contrast
generally yield B(xij)s that are just approximations to the P (xij)s. However even in the
loopy case these approximations are sometimes surprisingly exact (Yedidia, Freeman, &
Weiss, 2005). B(xij) is typically referred to as the belief of variable xij .

Unlike BNs or MRFs, FFGs belong to the sparsest types of graphical models. That is,
all other graphical models can be easily converted to the FG/FFG formulation, without the
need to increase the maximum branching degree of the associated nodes (see (Kschischang
et al., 2001) for examples). In case of BNs or MRFs however, there are instances of graphs
of either type which cannot be translated into the corresponding other one, without the
introduction of additional edges (Koller & Friedman, 2009). These edges may not only lead
to higher dimensions of the factor functions, which are more difficult to represent neurally,
moreover, they may render a tree-shaped graph loopy. Also, the specific version of BP
in MRFs is constraint to the representationally restricted case of maximal cliques size 2
(pairwise MRFs), which, in the FFG formulation, corresponds to the case of factor nodes
of maximum branching degree 2. In higher-order MRFs however, the BP formulation of
FGs/FFGs has to be used anyway. Although in BNs there is no such order restriction for
BP, the message updates analogous to 2 and 5 are considerably more complex in this case
(Kschischang et al., 2001).
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mf4→f3
( x5 )

Figure 1: Forney Factor Graphs and Belief-Propagation
Example illustration of BP in a Forney Factor Graph(Löliger, 2004)(nodes represent factors
f1, ..., f4 and edges the variablesX1, ...X7). Each factor fi gives rise to a nonnegative function,
that only depends on the variables fi is attached to. The product
P (x1, ...x7) ∝ f1(x2, x3) · f2(x1, x2, x6) · f3(x5, x6, x7) · f4(x3, x4, x5)
then provides a factorized representation of the joint probability distribution P (x1, ...x7).
The BP messages exchanged between neighboring nodes are indicated by arrows along the
edge (variable) connecting the two nodes. These messages are functions of the variable they
are passed along, e.g. mf4→f3(x5).

2 Results

2.1 Abstract Spike-Based Model of Belief-Propagation

In this section, we firstly present the abstract, mathematical description of a spike based
processor, whose output spike statistics approximate the SPR. Secondly we show results of
direct, literal implementations of that processor in software, disregarding the use of neural
elements for the associated computations. We will refer to this version as the black-box
implementation of the processor. For the sake of simplicity of exposition, we present the
processor description for output message computations of a factor node attached to three
variable edges. However the proposed methods can be straightforwardly generalized to fac-
tors attached to an arbitrary number of variables.
In the case of a 3-way factor node f attached to variables X, Y, Z (see figure 2b,left), equa-

6



tions 2-4 for an output message along Z become:

uSPR(z) :=

∫
D

∫
D

f(x, y, z) ·mX(x) ·mY (y) dx dy (6)

N :=

∫
D

uSPR(z) dz (7)

SPR(z) :=
uSPR(z)

N
(8)

where we have replaced um(z) and m(z) by uSPR(z) and SPR(z) respectively for reasons
which will become clear below.

2.1.1 Description of an Abstract Fading Memory Processor Computing the
Sum Product Rule in a Spike-Based Way

At its core, the proposed processor is based on quantities that approximate scaled versions of
uSPR(z) and N in equations 6&7 respectively. Hence we first show how these quantities can
be obtained by a simple Monte Carlo method. They are subsequently used to manipulate
the firing statistics of an abstract spike-generation mechanism, which conveys SPR(z) to a
neighboring factor node.
In the proposed model, BP messages are represented by distributions of ISIs. Hence, the
model employs a dedicated spike-generator whose firing statistics are controlled in a manner
such that its ISI probability density function follows SPR(z). Therefore, without loss of
generality, we here assume all variables in the FFG to have a positive domain D ⊆ R+, such
that ISI distributions can correspond to BP messages. However the presented approach is
amendable to the case where the FFG variables are defined on the (potentially negative)
codomain C of some invertible function g : D → C; ISI → g(ISI) (in section 2.3.1 this is
laid out in more detail for the concrete example g(ISI) = log(ISI)).

We denote by letter m the spike-based BP messages produced by the processor and the
corresponding mathematically exact normalized and unnormalized messages by SPR and
uSPR respectively (which fulfill equations 8&6 respectively). The value mX(x) message
mX assigns to value x of the analog variable X along which mX is passed is therefore given
by the spike-generators probability density of firing two successive spikes with a temporal
distance of x. This may be regarded as a firing of labelled spikes, where the analog label
attached to each spike is given by the spikes preceding ISI (see figure 2a). In other words,
spikes are interpreted as random samples from their underlying ISI distribution. This sample-
based representation of BP messages offers the possibility of automatically computing those
messages according to equation 8, by means of a simple Monte-Carlo method (see figure 2b,
right):
Starting from some position (x0, y0) on the (X, Y )-plane, each input spike from either mX(x)
or mY (y) updates that position according to the label it carries. For example, if the processor
receives a spike from mX(x) labelled by ISI value ’3’, then the position is updated from
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(x0, y0) to (3, y0). Updates along the Y -axis are done in the same manner by spikes from
mY (y). Assuming Z = z to be fixed for the moment, at each such sampled position (x, y) the
factor function fz(x, y) := f(x, y, z) is evaluated. Therefore one can associate a second kind
of label with each spike, which is given by the result of such a function evaluation. In the
following, this second label will be referred to as a ’function spike’. Evaluating all function
spikes happening within a temporal sliding window [t − W, t] –at any time t during the
message passing dynamics– and taking the sum across all of them yields a stochastic process
S(z, t) approximately proportional to uSPR(z) in equation 6 (see Materials and Methods
section 4.1 for proof). Replacement of fz with the function F (x, y) :=

∫
D
f(x, y, z) dz leads

to a third spike label termed an ’integral function spike’. Summing all integral function
spikes within W as before, one obtains a second stochastic process SF (t) approximately
proportional to N in equation 7 (section 4.1). S(z, t) and SF (t) are computed in parallel.
Because of the finite window size W both quantities have fading memory. With them all
quantities necessary for computing SPR(z) in equation 8 are in place.
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Figure 2: Basic principles of the proposed model
a) Spike encoding of BP messages: Each spike of a train representing a BP message is
provided with an analog label, whose value corresponds to the length of the ISI preceding
the spike, i.e. to the difference in spike times between the considered spike and its predecessor
(see numbers above the spikes in arbitrary units). These analog values are therefore samples
of the ISI distribution p(x) underlying the spike train. A BP message mX(x) along variable
X is then defined by mX(x) := p(x)
b,left) 3-way factor node connected to analog variables X, Y, Z and defined by some function
f(x, y, z). For all z, output message mout(z) is computed out of input messages mX(x) and
mY (y).
b,right) Schematic illustration of the sampling process needed by the abstract processor
computing mout(z) on the left by using spike-encoded inputs mX(x) and mY (y) as in a. The
shown function fz(x, y) is given, for fixed z, by fz(x, y) := f(x, y, z). See text for details.

Technically (but not algorithmically) the proposed sampling scheme bears some similari-
ties to Gibbs Sampling (Geman & Geman, 1984; MacKay, 2003). Its mathematical structure
renders the SPR excellently suited for being computed by such a simple Monte Carlo method,
which only involves function evaluations of fz and F . This elegantly avoids all of the issues
involved in trying to efficiently implement the tricky SPR components: Products, sums con-
taining many summands or integrals. When analog variables, and hence integrals, are used,
in general it might be even impossible to directly compute the SPR. By employing Monte
Carlo methods however, the required computation happens automatically, in a similar way
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as the dynamics of systems in nature might be considered to be the result of complex com-
putations on natures’ mathematically formulated laws.
We show now how S(z, t) and SF (t), the summed function and integral function spikes
respectively, can be used to construct a stochastic spike-generator whose ISI distribution
mout(z) is given by mout(z) ≈ SPR(z). This step is important for a complete description
of the abstract processor, because in general its output mout(z) is used as spike input for
a subsequent processor stage formed by a neighboring factor node. The spike-generator
constitutes a nonstationary renewal system, i.e. at any time t subsequent spikes are fired
randomly with a stochastic intensity, called hazard (Cox & Lewis, 1966; Gerstner & Kistler,
2002), that only depends on t and ∆t := t − t0, the time elapsed since the time of the last
spike t0. Using S(z, t) and SF (t) the hazard needs to be computed appropriately, such that
the ISI distribution of the spike-generator is guaranteed to follow equation 8. It is because
of the finite size W of the sliding summation window that S and SF depend on t and hence
the renewal system is rendered nonstationary. A standard result of renewal theory in the
nonstationary case relates the hazard h(t) to the ISI distribution p(∆t, t) (Cox & Lewis,
1966; Gerstner & Kistler, 2002):

h(t) =
p(t− t0, t)

1−
∫ t

t0

p(t′ − t0, t′) dt′
(9)

If we associate value z of variable Z with ∆t, i.e. set z = ∆t, and want to have p(∆t, t) to
follow the SPR, we have to set

p(∆t, t) :=
S(∆t, , t)

SF (t)
≈ rtot ·W · uSPR(∆t)

rtot ·W ·N
= SPR(∆t) (10)

where rtot is a constant explained in the Materials and Methods section 4.1 together with the
approximation and why the latter steadily improves with increasing W . Plugging 10 into 9
yields a closed system for computing spiking BP-messages (see figure 3 for a block diagram
of the complete abstract processor).
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Figure 3: Block diagram of the abstract spiking BP processor
The following operations are executed at any time t during execution of the processor:

1.) Positional Sampler: By means of a sliding summation window of length W , the positional sampler keeps

track of a list of nW (t) samples on the (X,Y )-plane. These samples are caused by input spikes from mX

and mY in [t−W, t] and form the basis for computing both, function and integral function spikes.

2.) Integral Function Spike Labeler: The integral function spike labels only depend on X and Y . Hence

they are computed only once, as soon as their respective causing (X,Y )-sample comes in.

3.) Function Spike Labeler: In addition to the (X,Y )-samples, the function spike labels also depend on Z.

If the spike-generator fires at time t0 (see (6)), the function spike labeler is ’reset’, i.e. the function spikes

are labeled according to fz=0. Measuring ∆t = t− t0, the time passed since the last fired spike, these labels

continuously change their values according to fz=∆t.

4.) Σ: The quantities S(∆t, t) and SF (t) are computed by summing all (integral) function spikes in W

respectively, leading to

5.) ISI probability density p and cumulative distribution
∫ t

t0
p(t′−t0, t′)dt′: Using S(∆t, t) and SF (t), p(∆t, t)

is computed from equation 10 and accumulated by the integrator node (
∫

). This integrator must be set to

zero after each spike of the spike-generator.

6.) Hazard h: Both p(∆t, t) and
∫ t

t0
p(t′)dt′ are substituted into eq.9 to update h(t).

7.) Spike Generator: Output spikes are drawn randomly at each time t according to h(t). Because of

equation 9 it is assured that the resulting ISI distribution indeed satisfies the SPR (equation 10). To reset

the function spike labeler and integrator, feedback of the fired spike is enabled.

11



2.1.2 Performance Analysis of Black-Box Implementations of the Abstract Pro-
cessor

In this section we show the performance of direct software implementations of the processing
steps described in figure 3, disregarding the use of neural elements. For that, we first eval-
uated the computational results of a single, isolated factor node attached to three variable
edges. Each of the corresponding three output messages was computed by a separate, in-
dependent processor, in response to three different, arbitrary ISI distributions representing
the input messages. The approximation quality of these messages with respect to results
obtained by ordinary, discrete BP has been determined. The processors were necessarily
advanced in discrete time steps during each of which spikes were fired randomly according
to the actual hazard (see section 2.1.1). All times were measured as multiples of time steps.
The input ISI distributions contained probability mass only within the (0, 100] step interval.
W was set to 750 steps.

The factor function f(x, y, z) ≈ f=(x, y, z) := δ(x− y) · δ(y − z) represented an equality
constraint factor as described in (Löliger, 2004) –an important type of factor function that
provides FFGs with the full representational power of ordinary FGs (see section 1.1). On
the other hand, the factor’s neurobiological relevance stems from the fact that it can also be
used to perform statistically optimal cue combination, since its output messages correspond
to the product of its input messages (see below). Interestingly, psychophysical experiments
have revealed human subjects to combine sensory information (e.g. visual and haptic cues
about the height of an object) in a way that is indeed very close to the statistically optimal
estimate (Ernst & Banks, 2002).

Because the support of f= is infinitesimally ’slim’ around the line x = y = z (and hence
cannot be hit by a sample with nonzero probability), for f we have increased its ’thick-
ness’ in our simulations, using a Gaussian whose first principal component was set parallel
to that line with infinite standard deviation. The standard deviations of the second and
third principal component were set to 2 steps each. Figure 4a shows f together with all
involved messages. Application of the SPR to f leads to SPR(x) ≈ min,Y (x) · min,Z(x),
SPR(y) ≈ min,X(y) ·min,Z(y), SPR(z) ≈ min,X(z) ·min,Y (z). These quantities were com-
puted as control by ordinary, discrete BP (see section 1.1), i.e. as a reference for determining
the approximation quality. For that, f was discretized and stored in a 3-dimensional tensor
of size 100× 100× 100, representing all combinations of the first 100 values (time steps) of
variables X, Y, Z. Note that this version of BP is very costly: For each of the 100 values
of SPR(z), z ∈ (0, 100] a sum over 100 × 100 products has to be computed. Additionally,
a tensor having 106 entries has to be stored, whereas in our model just two function de-
scriptions for computing the (integral) function spikes are needed. Figure 4b shows the ideal
ISI distributions SPR(·) and their approximating mout,(·). A close match between these two
quantities can be observed.
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Figure 4: Performance of computing output messages of a single factor node
a) The approximate equality constraint factor f(x, y, z) ≈ f=(x, y, z) := δ(x − y) · δ(y − z)
depending on variables X, Y, Z. The ideal ISI histograms of the input messages min,X(x) ∝
|x− 50|,min,Y (y) ∝ sin

(
2π 8

100
· y
)

+ 1,min,Z(z) ∝ e−
z
25 are shown together with those of the

corresponding ideal output messages SPR(x) ≈ min,Y (x) · min,Z(x), SPR(y) ≈ min,X(y) ·
min,Z(y), SPR(z) ≈ min,X(z) · min,Y (z), as computed by brute-force, discrete BP. The
actual output messages mout,X ,mout,Y ,mout,Z are computed by three processors following
the dynamics described in section 2.1.1.
b) Top row: Magnified ideal output messages SPR(·) as in a.
Bottom row: Actual ISI histograms of the three processors computing the output messages
mout,(·). For each such histogram 3000 spike samples have been collected.
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We next considered how well a whole FFG based on black-box processors can perform
inference, i.e. can compute the beliefs given by equation 5. For that we investigated the
two tree structures shown in figures 5a and 6a. In both cases, 30 trials with random in-
stantiations of each involved factor function were conducted, i.e. during any such trial each
factor function f(x) =

∑
iwiGi(x |µi,Σi) was given by an unnormalized mixture of Gaus-

sians whose mixture components Gi had random weights wi, mean vectors µi and covariance
matrices Σi(see Materials and Methods section 4.4 for parameters). Therefore, each trial
represented an arbitrary inference problem modeled as FFG. Variables of the FFG could
take on integer step values in (0, 130]. After having collected 3000 spike-samples for each
message in each of the 30 inference runs, we computed the beliefs B(xij) for some variables
xij using the message ISI histograms and equation 5 (with the integral replaced by a sum
across discrete time steps). Again, as a control, the true marginals P (xij) were computed
by ordinary, discrete BP. Note that in figure 6 we had to coarsen the time resolution from 1
to 4 steps to keep the task tractable for the ordinary BP method. Otherwise tensors of size
1304 ≈ 2.86 · 108 would have had to be stored and 130 sums over 1303 products processed.
In contrast, the black-box processors were still run at a resolution of 1 step, but to keep
comparability their ISIs were also binned using the coarser time grid.
To determine the approximation quality, the ordinary(D(B‖P )) and a

normalized
(
Dnorm(B‖P ) := D(B‖P )

H(B,P )

)
Kullback-Leibler (KL) divergence between B(xij) and

P (xij) were calculated -H(B,P ) denotes the cross-entropyH(B,P ) :=
∑

xij
B(xij)·log(P (xij))

between B and P . Hence Dnorm(B‖P ) is the fraction of additional (wasted) bits used by
a code of length H(B,P ) constructed from P (x), compared to the minimum code length
H(B). Figures 5b,c and 6b,c show the corresponding results. It can be seen that the fraction
of wasted bits is at most around 5% and below 1% in most cases, that is, typically very small.
To evaluate chance level, in figures 5c and 6c we have compared the values of D(B‖P ) to their
3σ-range, when B(xij) is replaced by a distribution B∗(xij) that is drawn from a uniform dis-
tribution of distributions of xij . The 3σ-range is given by those values of D(B∗‖P ) that are
within three standard deviations σ [D(B∗‖P )] around the expected value E [D(B∗‖P )] (see
Materials and Methods section 4.2 for how E [D(B∗‖P )] and σ [D(B∗‖P )] are calculated).
It is apparent from these figures that the performance of B(xij) as found by the processors
is far better than the average performance of randomly drawn distributions B∗(xij). Due to
the coarser time resolution and the corresponding smaller number of states n per variables
(see section 4.2), the 3σ-ranges in figure 6c are somewhat larger than in figure 5c. In some
cases these ranges almost include D(B∗‖P ) = 0, which leads to long error bars in log-plots.
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Figure 5: Computing marginals in a randomly parameterized FFG I
a) FFG tree structure used as starting point for 30 inference trials with factor functions A1-
E2 randomly defined by gaussian mixtures (see text for details). The maximum branching
degree of a factor node is 3.
b) Top: Raw data of the belief of variable X connecting factor nodes C1 and C2 for trial
number 2 as found by the black-box implementation of the abstract processor.
Bottom: Exact marginal distribution P (x) of variable X (blue bars). This is the result of
ordinary, discrete BP. The red curve shows the moving averaged version B(x) of the belief
in the top row, averaging window size was 5 points.
c) x-axis: Trial number, y-axis: Values of D(B‖P ) (black dots, in bits) and Dnorm(B‖P ) (red
dots) for representative variables. Blue bars indicate the 3σ-range of D(B∗‖P ) if instead of
B(xij) a random distribution B∗(xij) is taken (see Results and Materials and Methods for
details).
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Figure 6: Computing marginals in a randomly parameterized FFG II
a) FFG tree structure used as starting point for 30 inference trials with factor functions A1-
D2 randomly defined by gaussian mixtures (see text for details). The maximum branching
degree of a factor node is 4.
b) Top: Raw data of the belief of X as found by the black-box processing method.
Bottom: Exact marginal distribution P (x) of variable X connecting factor nodes B1 and
C for trial number 9 (blue bars). This is the result of ordinary, discrete BP. The red curve
shows the moving averaged version B(x) of the belief in the top row, averaging window size
was 3 points.
c) x-axis: trial number, y-axis: Values of D(B‖P ) (black dots, in bits) and Dnorm(B‖P ) (red
dots) for representative variables in each trial. Blue bars indicate the 3σ-range of D(B∗‖P )
if instead of B(xij) a random distribution B∗(xij) is taken (see Results and Materials and
Methods for details).
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2.2 Concrete Spike-Based Model of Belief-Propagation Using Neu-
ral Elements

Although the abstract, functional description of the BP processor presented in section 2.1.1
is spike-based, it is not obvious, (a) what principal computational system/learning machine
using which learning algorithm can be used to emulate that processor, and (b) what biophys-
ical, neural mechanisms could possibly be exploited to concretely implement that machinery
in neural systems. Here we provide a general answer to (a), which is still flexible enough to
be consistent with at least two different answers to question (b), as discussed in detail in the
discussion (section 3.1).
In the spirit of the previous section we then investigate the performance of such an emula-
tion for the computation of a single output message. Consequently, by simulating a Hidden
Markov Model-like chain topology of factor nodes, it is also verified that the proposed model
enables inference in larger graphs. In general, the results presented in this chapter are in-
tended to show that our abstract BP processor is not just a mere mathematical abstraction,
rather it can be emulated by a concrete computational system. At this point however, we
have to emphasize again that the former is by no means confined to an emulation by the
latter.

2.2.1 General Neural Architecture Implementing the Abstract BP processor

Figure 7 shows a general computational system answering question (a). It is conceptu-
ally divided into two parts. In the first part the incoming spike trains representing the
BP-messages (mX ,mY ) are decoded to time-series of analog ISI values. Using these latter
sequences, the second part then performs the actual computations needed by the abstract BP
processor (section 2.1.1, figure 3). Building on our previous results in (Steimer et al., 2009),
both parts are based on Liquid/Echo-State-Machines (ESNs/LSMs) (Maass, Natschläger, &
Markram, 2002; Jäger, 2001). This framework (which is also called ’reservoir computing’)
utilizes recurrent networks of spiking neurons/sigmoidal neurons respectively (’Liquid pools’,
illustrated as grey ’L’ circles in figure 7), which provide input to distinct ’readout’ neurons
(indicated by Σ). Only those synaptic weights which correspond to connections from the
liquid to the readout neurons are altered during a (usually supervised) training procedure
and, depending on the task, the readouts may or may not feed back to the liquid pools. In
the absence of such feedback, ESNs/LSMs have been proven capable of approximating any
time-invariant filter with fading memory (Maass et al., 2002). Employing feedback however
allows these systems to drastically prolong their memorized time span, even in the presence
of noise (Maass, Joshi, & Sontag, 2007). In fact, nonfading memory is potentially needed by
the ISI decoder readouts (RX , RY ), whose task is to put out the analog ISI label associated
with the last received spike and to hold that value until the next spike arrives.
For the simulations presented in the next section, we have used sigmoidal neurons for the
readout units RX , RY and the liquid pools LX , LY and Lout, so technically we are positioned
in the framework of Echo-State machines. The readout Rout however must necessarily be
based on some spiking neuron model, since its output must represent the ISI-endcoded SPR.
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Therefore, we have used a leaky-integrate-and-fire neuron with escape noise (Gerstner &
Kistler, 2002), whose membrane voltage Vm is given by the weighted sum of activations of the
sigmoidal neurons in Lout. Subject to escape noise the neuron may fire spikes at any time t,

with a firing hazard h(t) that depends exponentially on Vm(t): h(t) = h(Vm(t)) = hΘe
Vm(t)−Vθ

σh

(with hΘ denoting the hazard at the (soft) threshold value Vθ and σh determining the ’soft-
ness’ of the threshold). This type of hazard activation function for spike firing is often used in
the neuroscientific literature (Pfister, Toyoizumi, Barber, & Gerstner, 2006; Pfister, Dayan,
& Lengyel, 2010; Rao, 2005; Eggert & van Hemmen, 2001).
In our model, a thus fired spike is fed back into the recurrent network Lout. According to the
processor description of section 2.1.1 this feedback is necessary to signal the circuit when the
function spike labels have to be reset. Spike input to the sigmoidal neurons of LX , LY and
Lout is provided by low-pass filtering the spikes to mimic postsynaptic potentials. Empiri-
cally we have found the approach not to work when the ISI decoder readouts are removed
and the low-pass filtered spikes of mX and mY are fed directly into Lout.
Training of the weights of RX and RY has been done by ordinary linear regression, i.e. by
computing the pseudoinverse. For Rout however, we have minimized the summed KL diver-
gences between target and actual ISI distributions using the BFGS quasi-Newton method
(Bertsekas, 1999). Alternatively, it is also possible to make use of a Spike Time Dependent
Plasticity (STDP)-like learning scheme (Pfister et al., 2006), which amounts to a stochastic
gradient descent procedure (Bottou, 1998) applied to the negative log-likelihood of observed
spike samples. Interestingly, under rather loose and biologically plausible conditions imposed
on h(Vm), this second cost-function is convex (Paninski, 2004). See Materials and Methods
section 4.3 for a detailed account of both costs.
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Figure 7: Computational system for a concrete implementation of the abstract BP processor
(see main text for details).

2.2.2 Performance Analysis of the Neural BP processor

In the spirit of section 2.1.2 we have conducted a series of simulations evaluating the perfor-
mance of an ESN based processor as shown in figure 7. For that the ESN software toolbox
of Jäger et al. was used (publicly available at http://www.reservoir-computing.org/)
and customized where needed. Settings of the various reservoir parameters are listed in the
appendix (section 4.5).

The processor has been trained to approximate a BP message emitted by a factor node
f1 that consisted of an unnormalized gaussian mixture (four components with equal weight
0.5; random mean vectors whose components were drawn independently and uniformly from
[15, 60]; circular covariance matrices, σ = 7). After training, the ESN network was stim-
ulated by a series of spike input messages which were represented by various different ISI
distributions. These distributions were also created by random gaussian mixtures, having 1
to 3 mixture components (figure 8). Since only a single, isolated factor node was simulated
we could not compute the target belief of the output variable according to equation 5. There-
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fore, the normalized output message mout based on equation 4 played the corresponding role.
As in section 2.1.2 the approximation quality is apparent.

We have also verified whether a number of serially connected ESN processor stages can
compute the correct, final BP output message at the end of the series. This test was manda-
tory to see if the system of figure 7 allows for a modular composition of larger FFGs, by
enabling the desired communication between adjacent factor nodes. Therefore, we have first
trained a second ESN processor to approximate an output message of some factor f2, and
then used the output of the f1 ESN-stage as input to the subsequent f2 ESN-stage. This way,
we have created an alternating sequence of ten f1/f2-stages reminiscent of a Markov Chain
with external input (figure 9a). To verify proper intercommunication even between factor
nodes belonging to different families of functions, factor f2 was parameterized in a slightly
more general way than f1. For f2 also the covariance matrices of its four Gaussians were
randomized, by drawing random principal component directions whose associated standard
deviations were independently and uniformly taken from [3, 10].

The result of such serial assembly of factors can be seen in figure 9b: The whole chain
was simulated for ten independent trials, with the external input messages given by single,
random gaussians. Although after ESN training the output messages of all stages are subject
to unavoidable errors, there are no visible signs of error propagation for later stages of the
chain (see also 9d). Average performance stays constant and is comparable to the single-ESN
case. The sole exception is stage 8, where a sudden decrease in performance occurs for trial
no. 2, 5 and 8. We have carefully verified that this decrease is indeed coincidental and not
caused by some artifact. In trial no. 8 we can even see an instance of performance recovery,
as performance at stage 8 is worse than chance level, only to regain baseline at stage 10
(figure 9c).

The results indicate that the ESN-based BP processor allows for an assembly of single
factor nodes into larger FFGs. However, we do not know to what extent these results depend
on the specific identity of the factor functions f1/f2, combined with random gaussian input
messages. It cannot be ruled out that there exist combinations of factor functions, graph
topologies and input messages for which error propagation takes place. In principle, for
a given such combination, the methods of (Ihler, Fisher, & Willsky, 2005) can be used to
determine the error of the final, steady state messages. Unfortunately however these methods
itself are based on a specific form of message-passing, hence, for a given graph the severity
of error propagation is hard to determine in advance.
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Figure 8: Performance results of a single ESN based BP processor as shown in figure 7
Top row: Approximation quality of the BP output message mout when input messages mX

and mY were both created by random gaussian mixtures consisting of (a) 1, (b) 2 and (c) 3
mixture components. x-axis: Trial number, y-axis: Values of D(mout ‖m out,

target
) (black dots, in

bits) and Dnorm(mout ‖m out,
target

) (red dots). Blue bars indicate the expected value and 3 times

the standard deviation of D(mout ‖m out,
target

) when mout is replaced by a random distribution.

In (a) and (b) all mixture components had equal weight, in (c) weight proportions were
drawn randomly from [0.2, 1]. The mean of each component was chosen randomly from
[10, 50], the components’ widths were a) σ = 1.5, b) σ = 2.5 and c) σ = 1.5
Bottom row: Example ISI histograms of mout for individual trials in each of the three cases
(blue bars). Red curves show m out,

target
.
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Figure 9: Performance results of serially connected ESN-based BP processors
a) Processor stages are connected in a serial, Markov Chain-like manner. The identity of
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stages is provided by the messages mY,1,mX1,,mX,2, ...,mX,10.
b) Performance of the output messages of each of the ten stages during ten independent
trials (see figure 8 for definitions). In each trial, external input messages were given by
single gaussians of constant width σ = 1.5, with means taken uniformly from [5, 50] (for f1)
and [5, 40] (for f2).
c) Target (red) and spike-based (blue) output messages of trial no. 8 for the last three stages.
d) Target (red) and spike-based (blue) output messages of trial no. 10 for all stages.
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2.3 Interpretation of Experimental Spike-Data in the Light of In-
formation Encoding with ISIs

In this section the ISI-based neural code used by our model is compared to spike data from
various experiments. We first show how the general shapes of ISI distributions measured
in cortex can be matched to the output of a slightly redefined version of our BP processor.
Subsequently, spike data assessed in area LIP during a behavioral task is reinterpreted in the
light of the model, leading to a concrete, quantitative prediction for ISI distributions during
execution of this task.

2.3.1 Matching the Shape of Experimental ISI distributions

ISI distributions recorded from neural substrates typically show far less variability than those
produced by the BP processor architecture of figure 3. For example, such highly structured
distributions containing multiple prominent modes as in sections 2.1&2.2 cannot, to our
knowledge, be observed in real spike trains. Indeed, a substantial number of studies have
reported ISIs in the nervous system to belong to a rather restricted class of distributions,
such as quasi-exponential, gamma and log-normal distributions (Noda & Adey, 1970; Burns
& Webb, 1976; Softky & Koch, 1993; Bair, Koch, Newsome, & Britten, 1994; Compte et al.,
2003). This however stands in contrast to studies which report log-ISI rather than ordinary
ISI distributions (Reich et al., 2000; Shih et al., 2011). In this case, histograms are produced
by dividing the log-time domain into bins of constant size, a procedure that makes apparent
features of the distribution that are barely visible in linearly scaled histograms (Shih et al.,
2011).

Our BP processor can accommodate for these findings by slightly changing the sampling
process of figure 2. If positional updates are done based on the log(ISI)-label of a spike
rather than its ISI-label, the resulting sampling dynamics then correspond to a factor node
defined over a set of transformed variables, each of which is the logarithm of one of the
original variables. Additionally in equation 10, p(∆t, t) ≈ SPR(∆t) has to be replaced

by p(∆t, t) ≈ SPR(log(∆t))
∆t

to end up with a spiking system that represents BP messages as
log(ISI)-distributions. Note however that the same type of analysis can be performed for
any invertible ISI transformation function g(∆t), not just the logarithm.

Figure 10 shows simulation results analogous to the single factor results of figure 4, when
such a message encoding scheme was used. It is obvious from the figure that a remarkable
degree of structure in the log(ISI)-distributions is hidden behind some rather ’boring’ look-
ing ISI distributions (e.g. compare min,X∗(x

∗) to min,X(x) in (b) and mout,Z∗(z
∗) to mout,Z(z)

in (c)). This is also a feature of some of the experimental data ((Reich et al., 2000), fig-
ures 1&2). Qualitatively, the resulting ISI distributions in 10 look quasi-exponential, by
consistently displaying a prominent peak at small ISI values.
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Figure 10: Performance of computing output messages of a single factor node with log(ISI)
encoded messages.
a) The approximate equality constraint factor f(x∗, y∗, z∗) ≈ δ(x∗ − y∗)δ(y∗ − z∗) de-
pending on the transformed variables X∗ := g(X), Y ∗ := g(Y ), Z∗ := g(Z), where

g(∆t) := log(∆t)
b

, b := log(151) is the ISI transformation function used for spike labeling. The
distribution of these labels is called the log(ISI) distribution. Shown are the ideal log(ISI)
distributions of the input messages INX∗(x

∗) =
∣∣x∗ − 1

2
(b− a)

∣∣ , INY ∗(y
∗) = sin

(
2π 8

b−a · y
∗)

and INZ∗(z
∗) = exp

[
−
(
z∗− 1

2
(b−a)

1
4

(b−a)

)2
]
, with a := log(10). The corresponding ideal out-

put messages are SPR(x∗) ≈ INY ∗(x
∗) · INZ∗(x

∗), SPR(y∗) ≈ INX∗(y
∗) · INZ∗(y

∗),
SPR(z∗) ≈ INX∗(z

∗) · INY ∗(z
∗) and were computed by brute-force, discrete BP. As be-

fore, m denotes actual messages based on spike data.
b) Left column: Magnified histograms of the ideal input messages IN(·)(·) as in (a). Middle
column: log(ISI) histograms of the actual input messages. Right column: ISI histograms
of the actual input messages. The log(ISI) and ISI histograms are both based on the same
input spike trains.
c) The same as in (b) for the corresponding output messages computed by abstract proces-
sors.
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2.3.2 Reinterpreting Firing Rates in Area LIP in the Light of ISI Encoding

In this section we show how the firing rates measured in area LIP in rhesus monkeys during
a behavioral experiment can be reconciled with our proposed ISI encoding scheme. From
this then follows a reinterpretation of the supposed neural code that underlies these results,
along with a quantitative prediction for ISI distributions in LIP during execution of the
experiment.

(Yang & Shadlen, 2007) have performed a two-alternative forced-choice task, where dif-
ferent visual stimuli (shapes) shown to the monkey were associated with different evidence of
reward administration. Four such shapes were randomly drawn and presented in sequence,
one during each part (epoch) of the decision period. The summed evidences provided by the
shapes gave the log-odds of reward administration at a red-colored saccade target. At the
end of the last epoch, the monkey had to signal its guess of reward-location, by making a
saccade to either the red or a green target. During the whole experiment, spiking activity
in area LIP was recorded and compared to the probabilistic information the monkey had
received so far.

Yang and Shadlen found a quasi-linear relationship between the (shape dependent) mo-
mentary reward log-odds l and firing rate r (figure 11a). Likewise, other experimental
studies have found LIP firing rates during decision periods to follow linear functions of time.
(Shadlen & Newsome, 1996, 2001; Roitman & Shadlen, 2002). Such rate signals have been
hypothesized to reflect the accumulated evidence in favor of -or against a particular scene in-
terpretation (left- or rightward dot motion), by representing the log-odds of decision variables
(Gold & Shadlen, 2001; Roitman & Shadlen, 2002; Rao, 2004; Beck et al., 2008; Pfeiffer,
Nessler, Douglas, & Maass, 2010). This hypothesis is based on the drift-diffusion behavior
of the log-odds when, on average, the evidence favors one particular scene interpretation, a
fact that poses the defining property of some hallmark models of decision making (Carpenter
& Williams, 1995; Gold & Shadlen, 2007).

As we will show in the following, our proposed ISI coding scheme is in accordance
with such an interpretation of firing rate and, furthermore, may reproduce the particular
shapes of ISI distributions that are observed in LIP in vivo (Maimon & Assad, 2009). The
model can also account for the slight deviation from linearity in the Yang&Shadlen data.
We first define a binary, ISI-based decision variable d ∈ {0, 1}, assuming state ’1’ when
a given ISI, ∆t, is below some fixed threshold value θ and assuming state ’0’ otherwise,
i.e. d(∆t) := {1, if ∆t < θ; 0 otherwise}. In Yang&Shadlen’s case for example, state d = 1
stands for reward administration at the red target1. It follows that for increasing/decreasing
the probability mass Pd(d = 1), in general one has to decrease/increase the expected value
E [∆t] and therefore to increase/decrease the rate r = 1

E[∆t]
. This way, rate changes are purely

epiphenomenal, reflecting redistributions of ISI probability mass, rather than representing
changing probabilistic quantities per se.

1This is not correct in a strict sense: d = 1 stands for reward administration at the target inside the
receptive field of a recorded neuron. However, for the sake of simplicity of exposition Yang&Shadlen explained
parts of their model using the above definition, to which the exact same concepts apply (see (Yang & Shadlen,
2007), appendix A)
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More formally, let Pd (d = 1 | r) = 1
1+exp[−l(r)] be the probability of reward at the red

target, conditioned on rate r through the empirical log-odds-rate relationship l(r) (figure
11a). By assuming l(r) to be monotonic, this implicitly defines a density for r by pr(r) :=
d
dr
Pd (d = 1 | r) (we denote probabilities by capitals and densities by lower case letters). We

refer to the latter as the ’empirical rate density’.
For deriving the proper conditional ISI distribution p∆t(∆t | r) which, according to our

hypothesis, gives rise to the experimental data of Yang and Shadlen, we make the assumption
that the function class of p∆t(∆t | r) is not affected by changes of r and does not depend on
epoch number. That is, different r only result in differently scaled (’time-warped’) versions
of some invariant, template ISI distribution. We have chosen this option, because it leads
to rate-independent coefficients of variation (CV), a feature that is also observed for ISI
distributions in LIP (Maimon & Assad, 2009). In this context, we define the class template
density p∆t∗(∆t

∗), with ∆t∗ := ∆t
E[∆t]

= r · ∆t. It follows E [∆t∗] = 1 and for any r we can

obtain p∆t(∆t | r) by time warping the template p∆t∗(∆t
∗). Based on these definitions and

given the above threshold model, the following statements must hold true:

Pd (d = 1 | r) = P∆t(∆t < θ | r) = P∆t∗(∆t
∗ < rθ)

⇒ pr(r) = θ · p∆t∗ (rθ)

⇒ 1

θ
· pr
(
θ∗

θ

)
= p∆t∗ (θ∗) (11)

which means that the desired template ISI density is a time-warped version of the empirical
rate density. Note that this result is unaffected by the assumed ISI transformation function
g(∆t) (see section 2.3.1). The same analysis can be applied to a threshold model on any
such g, resulting in the same equation 11. Moreover, we can deduce the numerical value of
θ: Since by construction E [∆t∗] = 1, it must hold true that θ = 1

E[r]
. Applying the time

warp to expression 11, the desired ISI density amounts to

p∆t (∆t | r) =
r

θ
· pr
(
r∆t

θ

)
(12)

Therefore, we are left with the determination of pr(r) and consequently the log-odds-rate
relationship l(r) from the experimental data. From the data of figure 11a Yang and Shadlen
have inferred this relationship to be approximately linear and common to all four epochs
(black, dashed lines). In the linear case, the definition of pr(r) implies the empirical rate
density (and consequently the ISI density) to follow a logistic distribution

pr(r) =
m exp−(mr+c)

(1 + exp−(mr+c))
2 (13)

where m, c are the slope and intercept values of l(r) = mr + c, determined by inverting the
fitted r(l)-relationship. Visual inspection of the data indeed suggests a linear model for values
around l = 0. However, for more extreme values of l, r(l) seems to be of sigmoidal nature
and on the extreme positive end, moreover, to be dependent on epoch number. Therefore,
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we have also looked at the case when the extreme positive end is neglected and analysis is
restricted to the region where a common, epoch-independent r(l)-model can be assumed2.
Using a crossvalidation-like procedure, we determined this region’s extent on the positive
l-axis (see Materials and Methods section 4.6 for details). In accordance with our subjective
impression, the region’s positive extents turn out to be 1.11 for the population and 1.16 for
the single neuron data. Linear fits to such region-restricted data sets are shown as black, solid
lines. Apart from the logistic case, we have also modeled the data by assuming pr(r) to follow
a gamma distribution. Gamma distributions are frequently used for describing recorded ISI
histograms in experiments (Maimon & Assad, 2009) and hence are good candidates to be
used in equation 12. The fits on the region-restricted data sets in the gamma case are shown
as red, solid curves.

Figure 11b suggests that the assumption of a common model is indeed rather justified
for the region-restricted than for the complete data sets. In both of these cases, we fitted the
data points of each epoch individually and evaluated the training and testing error. Training
error was evaluated on the single epoch data that was used for fitting, while testing error
was evaluated on all three other epochs. This way, a low testing error indicates a good
capability to generalize from one epoch to another. For the single neuron data, the testing
error in case of region-restricted data is indeed markedly lower compared to the full data
case. This is particularly true for the gamma distribution, which confirms the visibly better
fits in (a). The linear model in contrast is unable to account for the sigmoidal curvature
at the extreme negative end of l. In case of the population data, there is an apparent
discrepancy between the generalization performance of epoch 1 and epochs 2-4. While the
former becomes worse during transition from ’linear, complete’ to ’gamma, restricted’, the
opposite holds true for the latter. Most likely, this can be attributed to the necessarily smaller
extent of the epoch1-data along the l-axis and its apparent higher residual training error.
Collectively, both effects lead to an impaired generalization ability of any model. To verify
that the generalization-performance-pattern in the three cases is not tied to the specific,
epoch-based choice of training and testing sets, we performed crossvalidation with repeated
random subsampling. That is, in each of 900 independent trials we used 10 random and
epoch-independent data points for training and the remaining points for testing. The means
across trials of the training and testing errors are respectively shown as dashed, horizontal
lines. Pairwise differences between those means in the three examined cases were all highly
significant (p << 0.01, rank-sum test) and show even more clearly that the assumption of a
common model is justified rather for the region-restricted than the complete data sets. These
differences also imply a r(l)-relationship based on gamma pr(r) to be a better descriptor of
the data than a linear r(l).

2This is justified because (a) in late epochs, r becomes also dependent on the monkeys choice of eye
movement (Yang & Shadlen, 2007), an effect which gains importance for responses at the extreme ends of
l, when the animal is more likely to have committed to a choice. (b) there is an asymmetry between choice
influence at the extreme positive and the extreme negative end, i.e. when a movement in- or outside the
response field of a recorded neuron is more likely1 (Platt & Glimcher, 1997; Yang & Shadlen, 2007). More
specifically, fig. S7 in (Yang & Shadlen, 2007) suggests choice influence as cause of the positive sigmoid, but
fails to explain the negative sigmoid, for which we provide an alternative hypothesis in the following.
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Figure 11c shows the p∆t (∆t | r) corresponding to the various r(l)-relationships in (a). A
histogram of measured ISIs from a LIP neuron is also shown for comparison. Its unimodal
but non-exponential shape is a distinctive feature of LIP/area 5 neurons, compared to visual
areas lower in the cortical hierarchy (Maimon & Assad, 2009) and bears similarities to our
model distributions. The slightly positive skew of the histogram cannot be reproduced in the
(symmetric) logistic case, but can be accounted for by the gamma distribution. As mentioned
before, the gamma distribution also leads to better descriptions of the r(l)-data. Based on
these model distributions we can make concrete and experimentally testable predictions
regarding two numerical quantities: a) Following eq.12, for a single measured neuron the
CV of the ISI density should match the CV of the empirical rate density. (b) Since θ = 1

E[r]
,

the threshold parameter θ can also be extracted from the empirical rate density. In the
discussion we will elaborate more on how the thus obtained θ could be crosschecked on other
neural measurements. Tables 1&2 give the numerical values of both, CV and θ for the various
assessments of empirical rate densities in figure 11. In case of prediction (a), the CV values
of the ISI distributions should be readily obtainable from the same raw spike data of Yang
and Shadlen that has also been used to compute the firing rates.

Linear Complete Linear Restricted Gamma Restricted
CV 0.11 0.12 0.14
θ [ms] 54 53 53

Table 1: Numerical values of CV and threshold parameter θ, extracted from the empirical
rate densities of the population data

Linear Complete Linear Restricted Gamma Restricted
CV 0.20 0.27 0.34
θ [ms] 43 41 39

Table 2: Numerical values of CV and threshold parameter θ, extracted from the empirical
rate densities of the single neuron data
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Figure 11: Reinterpretation of the Yang&Shadlen data in the light of ISI coding
Columns: Results with respect to Yang&Shadlen’s pooled population and single neuron data.

Rows: a) Raw data (markers) of the r(l) dependency during each epoch (data taken with permission from

(Yang & Shadlen, 2007), figures 3b and 2c therein. Here l is based on the natural logarithm). Dashed

lines are least-squares regression lines applied to complete data sets, solid lines are such fits when l is region-

restricted (see main text). Red/black curves show the case when pr(r) is assumed to follow a gamma/logistic

distribution respectively. Collectively these fits are termed the ’empirical log-odds-rate relationship’.

b) Training and testing error of regression lines fitted exclusively to data points from individual epochs

(measured as the root-mean-square error (RMSE)). For the training error, each marker displays the RMSE

on the corresponding data from the single epoch that was used for fitting. For the testing error, the same

marker shows the RMSE evaluated on the data points from all three other epochs. Marker conventions as

in (a), solid horizontal bars denote the average across all markers. Dashed horizontal bars show the mean

after crossvalidation (see main text).

c) ISI distributions corresponding to the fitted curves in (a). The blue bars in the right plot form an ISI

histogram of a single neuron in LIP (CV = 0.42, reproduced with permission from (Maimon & Assad, 2009),

supplementary material). The rates of the fitted distribution were set to 21.8 Hz, the rate of the histogram

data.
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3 Discussion

We have presented the functional description of a spike-based processor that allows Belief-
Propagation to be performed in general (Forney) Factor Graphs, even in presence of analog
variables. At its core, the processor is based on a simple Markov Chain Monte Carlo-like
sampling method that is able to approximate the otherwise intractable integrals associated
with Belief-Propagations Sum-Product-Rule. To achieve this, discrete spike events gener-
ated by neurons are interpreted as random samples from their underlying interspike interval
distribution, which is directly associated with a BP-message.

The results of direct (black-box) software implementations of the processor were in ex-
cellent agreement with those of a discrete approximation by ordinary BP. This has been
shown for a single factor node and two different topologies of whole graphs –under random
parameterization of the functions defining the involved factors. Despite the highly structured
messages produced by BP in general, our ISI coding scheme can be qualitatively reconciled
with the comparably restricted class of ISI distributions measured in central neurons. Beyond
rate coding, this scheme also offers an alternative explanation for the observed firing rate
dynamics in area LIP during behavioral tasks and allows for concrete numerical predictions.

Furthermore, by using the framework of reservoir computing, we have also realized the
processor in a network of neural elements. This network is capable of approximating single
output messages and it has been verified that an ensemble of such networks allows for infer-
ence in Hidden Markov Model-like graph-topologies. By being a functional model however,
our abstract BP processor is not confined to a specific implementation strategy. That is, other
approaches besides reservoir computing can be considered in this context, e.g. structured
approaches that associate specific biophysical mechanisms with the individual functional
modules of the processor. In the following section we sketch out some corresponding ideas
for future research.

3.1 Mechanistic, Neurobiological Interpretation of the Concrete
BP-Processor

The reservoir-based implementation of the abstract BP processor (section 2.2) has a straight-
forward, if cumbersome, neurobiological interpretation as a network of spiking neurons: Two
sets of reservoir networks with dedicated readout neurons serve the purpose of ISI decoding
and approximating the Sum-Product Rule respectively. The ISI decoder readouts provide
local feedback connections to their respective reservoirs to prolong the memory capacity of
the ISI decoder stage. The readout approximating the SPR provides this feedback to inform
the reservoir about the time of the last fired spike, as required by the abstract processor
description (figure 3). This interpretation is cumbersome, because the whole arrangement
consisting of several specifically interconnected networks of neurons has to be realized twice
–for forward and backward passing of messages– for each unobserved variable of the un-
derlying FFG. Furthermore, large reservoir networks of neurons have to be ’wasted’ just to
perform ISI detection.
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By abstracting both network tasks (ISI decoding and SPR approximation) however, our
processor can be placed on a more general level that offers an additional interpretation: Non-
linear synaptic dynamics and linear summation of dendritic subunit outputs work together to
realize the complete BP processor inside the dendritic tree of a single neuron. The resulting
voltage trace conveyed to the soma then leads to the appropriate hazard of firing. Using the
backpropagating action potential, the soma in turn informs the dendritic tree about the time
of the last fired spike. Indeed, by modeling the detailed biophysics of pyramidal neurons,
(Poirazi, Brannon, & Mel, 2003a) have suggested terminal dendrites to act as classical quasi-
independent sigmoidal units, the workhorse of ANN modeling which has also been used in
the present study. The same authors have also extended this model to a two layer network of
sigmoidal units describing the global input/output behavior of a pyramidal neuron (Poirazi,
Brannon, & Mel, 2003b). In this case, when the synaptic activity vector is replaced by
the vector of dendritic subunit outputs, the methods of section 4.3 can still be applied for
learning the weights of the output layer. Although in the study of (Poirazi et al., 2003b) the
neurons firing rate was taken as the relevant variable, the idea of abstracting single neuron
processing to multilayer ANNs has also been examined using the temporal distance between
spikes belonging to different inputs (Wang & Liu, 2010). However, the model in (Wang &
Liu, 2010) may principally be formulated also in terms of temporal distances between spikes
of the same input, leading to ISI decoder units. Therefore, the approach of (Wang & Liu,
2010) opens the possibility for both, ISI decoding and ’dendritic reservoirs’, so that our spike-
based BP-processor can presumably be realized within that framework. ISI decoding might
also be realized, or at least supported, by short term synaptic plasticity mechanisms such as
facilitation and depression (Usrey, Reppas, & Reid, 1998; Usrey, Alonso, & Reid, 2000; Reich
et al., 2000), features that are present at most central synapses (Usrey et al., 1998). In this
context, one may also speculate about a possible role played by spike-frequency adaptation.
(Nesse, Maler, & Longtin, 2010) have shown that statistically independent amplitudes of an
adaptation current may arise in conjunction with weakly correlated ISIs in spike trains. As
an alternative to the renewal ISIs we have considered in this work, such amplitudes could
be used to realize the positional sampling process of figure 2, that uses independent updates
of each coordinate. However, for this approach to work, a way must be found to convey
as input message the information contained in the presynaptic adaptation current to some
postsynaptic neuron. (Nesse et al., 2010) have mentioned that synaptic dynamics with a
time course similar to the adaptation current can serve this purpose. Since time constants of
calcium dependent adaptation currents fall into the 50 − 600ms range (Y.-H. Liu & Wang,
2001), the time courses of NMDA currents and/or synaptic depression/facilitation could be
suitable candidates therefor.

Regardless of the considered neurobiological interpretation however, one disadvantage of
the model proposed in figure 3 is the fact that it requires a distributed arrangement of BP
processors, one for each outgoing message, which nevertheless are all based on the same
underlying factor node. Therefore, the parameterization of the factor function needs to be
preserved spatially across all of the processors, a non-trivial requirement in the absence of a
very specific supervision signal during learning.
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3.2 Experimental Evidence for ISI-Coding in Neural Systems,
Model Predictions

The question of neurobiological implementation of the abstract processor relates to the ques-
tion, whether there exists experimental evidence supporting ISI coding in neural systems.
Whereas we have shown in section 2.3 the consistency of ISI coding with some of the elec-
trophysiological data, a substantial number of studies have directly demonstrated the signif-
icance of ISIs for processing in neurons of low-level sensory systems across species, sensory
modalities and brain areas (Usrey et al., 1998; Cariani, 1999; Usrey et al., 2000; Reich et al.,
2000; Fairhall et al., 2001; Lundstrom & Fairhall, 2006; Rathbun, Alitto, Weyand, & Usrey,
2007; Jacobs et al., 2009; Shih et al., 2011). For example, in the motion-sensitive neuron
H1 of the fly visual system, changes in stimulus variance can be unambiguously detected
using ISI histograms –in marked contrast to information solely provided by instantaneous
firing rates (Lundstrom & Fairhall, 2006; Fairhall et al., 2001). This detection happens
very fast, allowing perfect stimulus discrimination after ∼ 8− 12 ISIs. Similarly, in a visual
2-alternative forced choice task, a retinal spike code based on ISIs was the only one tested
and found able to explain the behavioral performance in a mouse model system (Jacobs et
al., 2009). Further upstream the visual hierarchy, it has been shown that the efficiacy of
spikes in cat retinothalamic (Usrey et al., 1998) as well as thalamocortical axons (Usrey et
al., 2000) for driving a spike in respective postsynaptic neurons smoothly depends on the
spikes preceding ISI. Correspondingly, in macaque visual area V1 (Reich et al., 2000) and cat
auditory area A1 (Shih et al., 2011), spikes preceded by short ISIs contain a higher amount
of information about the stimulus and show greater feature selectivity (Shih et al., 2011).
Finally on the psychophysical level, a variety of features of ISI distributions in the auditory
nerve and cochlear nucleus can be mapped directly to features of pitch perception (Cariani,
1999).

The ISI encoded stimulus information in low-level areas, e.g. primary sensory cortices,
must be picked up by neurons in high-level areas, e.g. secondary sensory and association
cortices, in order to infer the identity of the stimulus and/or to select appropriate commands,
e.g. in motor tasks. Hence, the sparsest assumption is an uniform coding scheme, such
that neurons in high-level areas preserve the ISI coding of neurons in low-level areas. As
mentioned in section 2.3.1 however, many studies have reported consistency of in vivo ISI
distributions with a class of unimodal distributions, such as quasi-exponential, gamma and
log-normal distributions, in area MT (Softky & Koch, 1993; Bair et al., 1994; Maimon &
Assad, 2009)), posterior parietal and dorsolateral prefrontal cortex (Compte et al., 2003) and
suprasylvian gyrus (Noda & Adey, 1970; Burns & Webb, 1976). These results are usually
taken as indications for quasi-poissonian firing and so point to a rather restricted class of
ISI distributions present in high-level areas of cortex. We see at least three ways to resolve
this issue.

First and foremost, if BP messages are assumed to be encoded as log(ISI)-distributions,
section 2.3.1 has shown how rich message information can be concealed behind quasi-exponential
ISI distributions. Indeed when ordinary ISI histograms are used, even primary sensory areas
display distributions of this type (see (Reich et al., 2000), figure 1). Log-encoding of infor-
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mation might be advantageous for the nervous system, e.g. when variables with drastically
different dynamic ranges have to be combined. An example of the latter is the equality
constraint factor, when used in the context of cue combination as a means of fusing different
sensory modalities.

Secondly, the presence of a restricted class of ISI distributions in cortex might be ex-
plained by the typically long electrode recording times in the seconds regime (Softky &
Koch, 1993; Bair et al., 1994): In general, BP messages in loopy graphs are not stationary
from the beginning of an inference trial (in fact message passing may not converge at all
(Murphy, Weiss, & Jordan, 1999)), which may lead to smooth ISI histograms that reflect the
average of messages computed during the whole trial, rather than the final steady-state mes-
sages only. This may explain the lack of features for large ISI values in some experimental
histograms, because these features are more susceptible for being averaged out compared to
a consistent peak at small ISI values (as it would be present e.g. in case of log(ISI)-coding).

The third objection against poissonian firing is based on a study by Maimon and Assad
(Maimon & Assad, 2009). There the authors show that spike time regularity, assessed by
the Coefficient of Variation(CV), is larger in high-level association and motor-like parietal
regions (area LIP and area 5 respectively) compared to areas lower in the hierarchy (areas MT
and MST). If cortex indeed performs computations based on Factor Graphs, unambiguous
inference results are expected in high-level areas, where stable interpretations of the world
are formed and reliable motor commands have to be read out for execution. In our model,
unambiguous marginal probabilities correspond exactly to highly regular spike trains.

This aspect immediately leads to the question, whether the CV values of our ISI distri-
butions modeling the LIP data (figure 11) do match with those measured by Maimon and
Assad. Despite qualitative similarities between the distributions, our CV values fall into the
range [0.11, 0.34] (tables 1&2) and hence are somewhat smaller than those observed in their
study (CV ∈ [0.42, 1.50] / [0.30, 1.70], with medians 0.91 / 0.74, for neurons in LIP/area 5
respectively). However it must be noted that the behavioral task the monkey had to do in
(Maimon & Assad, 2009) is different from the one employed by Yang&Shadlen. In the former
case, a ball approaching an obstacle was presented as stimulus and the monkey had to move
a lever as soon as it saw a computer controlled reversal of the ball’s motion direction. In
an alternative set of trials the monkey had to activate the lever just before the ball hit the
obstacle. We do not know how such different experimental paradigms affect the l(r) rela-
tionship for decision making and consequently the CV of the ISI distributions. Furthermore,
this relationship seems to be quite variable across neurons (Yang & Shadlen, 2007) and it
is not clear how averaging of neural responses (in case of the population data) affects the
resulting CV compared to the CVs of the individual neurons. In the presented case at least,
the two were markedly different, with the single neuron data being more close to the data
of Maimon and Assad.

Besides the CV, our approach to the LIP data makes quantitative predictions regarding
the threshold parameter θ. Even provided the threshold model to be true, it is not clear how
this parameter could be measured directly in experiments. However it seems quite reasonable
to assume, that in this case the synaptic and/or somatic response of some command executing
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neuron to a spike from a probability encoding LIP neuron depends strongly on the spike’s
preceding ISI ∆t. A motor neuron controlling eye movement for example may respond more
strongly to spikes with ∆t < θ and may initiate action only if such spikes come in at a
sufficient rate. Hence, this hypothesis could be tested if in the Yang&Shadlen experiment a
LIP neuron and one of its postsynaptic partners were simultaneously recorded. θ could then
be determined from the (supposedly different) responses to ∆t ≷ θ.

Another prediction of the threshold model is concerned with the accuracy of probability
estimation. Because it is the firing rate which determines the number of spike samples that
are used for estimation, high probabilities of a particular binary state (which we here called
the ’1’ state) are more accurately represented ’inside’ a subject than high probabilities of the
corresponding other (’0’) state. This in turn is a qualitative prediction that could be tested
in behavioral experiments.

Related to this point is the question of the time it takes a biological agent to perform
inference, when the posterior distribution is represented by ISIs. That is, how long does
the agents’ brain need to collect spike samples until the posterior can be reliably read out?
In human subjects, psychophysical have revealed reliable inference results to be accessible
after rather processing times, that is after less than 150ms (van Rullen & Thorpe, 2001;
J. Liu, Harris, & Kanwisher, 2002; Kirchner & Thorpe, 2006), whereas in our model there
is obviously a trade-off between processing time and accuracy of the inference procedure.
However, this trade-off can be alleviated by considering a population of neurons, whose
individual members independently contribute ISIs to the positional sampling process of the
BP processor and which all follow the same message ISI distributions. This way, a larger
number of samples can be collected on small time scales, e.g. in order to maintain a certain
degree of accuracy while parameter W is decreased. In fact, the results presented in section
2.1.2 have been produced by using such a population approach.

3.3 Comparison With Other Spike-Based Inference Approaches

Apart from ISI coding there are several other models using various spike-coding schemes,
that propose how Belief-Propagation (Rao, 2004; Ott & Stoop, 2006; Steimer et al., 2009)
or other methods of probabilistic inference (Yu & Dayan, 2005; Deneve, Latham, & Pouget,
2001; Deneve, 2007; Börlin & Deneve, 2011; Ma et al., 2006; Litvak & Ullman, 2009) could be
performed by spiking neurons. However, these models are limited in that they are confined
to a restricted set of graphical models (particular tree-shaped Bayesian networks (Deneve,
2007), naive Bayesian networks (Yu & Dayan, 2005; Ma et al., 2006; Börlin & Deneve, 2011)
and pairwise Markov Random Fields (Ott & Stoop, 2006)), or depend on rough biophysical
approximations (Rao, 2004). Also, except (Ma et al., 2006; Börlin & Deneve, 2011) all
other approaches are based on binary (Ott & Stoop, 2006; Deneve, 2007) or general discrete
variables (Yu & Dayan, 2005; Rao, 2004; Steimer et al., 2009; Litvak & Ullman, 2009). In
contrast, our model is very general, since it allows for inference in Forney Factor Graphs
containing analog variables and hence does not suffer from the aforementioned limitations.
Moreover, by being a functional processing model, our approach is not confined to a particular
set of neuronal mechanisms for its implementation and therefore very flexible.
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This flexibility comes for a price however: In contrast to other authors work (Yu & Dayan,
2005; Ma et al., 2006; Deneve, 2007; Börlin & Deneve, 2011) we can provide less detailed
experimental evidence supporting our model. Also, the approach of (Börlin & Deneve, 2011)
elegantly combines inference and working memory –a feature we have not considered here.
Our focus has mainly been put on algorithmic generality, rather than mimicking the results
of psychophysical studies in specific brain areas. The generality of FFGs allows Bayesian
inference to be applied in a broader context, e.g. to motor control and face recognition
problems (Bessière, Laugier, & Siegwart, 2008; Sudderth et al., 2003), whose corresponding
graphical model structures exceed the naive Bayesian networks expressed in pure optimal cue
combination. For example think of a human baby trying to imitate the vocal pronunciation
of its parents (see (Bessière et al., 2008) last chapter). When observing the parents’ lips,
while hearing their distinct vocal sound (cue combination), the baby must select appropriate
commands for its own lip and tongue muscles in order to properly imitate the vocal (motor
action selection).
Given the generality of results presented in section 2.1.2 we have no reason to assume that
our BP processor cannot be readily applied to such cognitive modelling. On the contrary
a hardware version of the spiking BP processor might even be beneficial, because it abol-
ishes the need for cumbersome discretizations that accompanies software realizations (see
(Bessière et al., 2008) last chapter for example).
We have therefore planned to implement the processor as an analog Very Large Scale Inte-
grated (aVLSI) circuit. The inferential results of such a circuit may then be used to learn
the parameterization of the underlying factor graph. Indeed samples of the marginal distri-
butions can be applied to a nested EM-procedure (Bishop, 2006), for which we have already
derived the corresponding equations.

4 Materials and Methods

4.1 Derivation of S(z,t) and SF(t)

Here we prove that the stochastic processes S(z, t) and SF (t) approximate scaled versions of
uSPR(z) and N respectively. The individual sections thereby cover different aspects of this
proof, starting with the main statement and ending with proofs of detailed assertions that are
needed in the process of proving the main statement. In section 4.1.1 we derive the expected
values of S(z, t) and SF (t), which turn out to be proportional to uSPR(z) and N respec-
tively. It is then shown in section 4.1.2 that, in relative terms, S(z, t) and SF (t) converge in
probability to these expected values, leading to a steady improvement of the approximation
in equation 10 for increasing W . For all derivations we assume that the input ISI distri-
butions mX(x) and mY (y) are both stationary, rendering S(z, t) and SF (t) stationary as well.
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4.1.1 Derivation of E[S(z)] and E[SF ]

Let [G(δ)](t) := H(t) − H(t − W ) be the impulse-response of filter G constituting the
sliding summation window, where H(t) denotes the Heaviside step function. It follows that∫ T>W

0

[G(δ)](t) dt = W . Let az(t) :=
∞∑
i=1

fz,iδ(t − ti) be the function spike train caused

by the incoming spiking messages mX(x) and mY (y), where fz,i := fz(xi, yi) represents the
i-th function spike. Given the verbal definition of S(z, t) in section 2.1.1, we can see that
S(z, t) := [G(az)](t). With plim

T→∞
(·) denoting convergence in probability of (·) and E[ntot]

denoting the expected total number of function spikes in [0, T ], stationarity of S(z, t) leads
to the following expression for the expected value E[S(z)]:

E[S(z)] = plim
T→∞

1

T

∫ T

0

S(z, t) dt (14)

= plim
T→∞

1

T
·W ·

∑
i:ti∈[0,T ]

fz,i

= W · plim
T→∞

1

T
· E[ntot] · E[fz]

The last equation above follows from the convergence behavior of
∑

i:ti∈[0,T ] fz,i, which is
examined in section 4.1.2.
Clearly it holds true that

E[ntot] = rtot · T (15)

with rtot := 1
E[X]

+ 1
E[Y ]

the total rate of incoming spikes along X and Y .

Since fz(x, y) is a deterministic function of ISI random variables X and Y , its expected value
E[fz] is given by (Papoulis & Pillai, 2002):

E[fz] =

∫
D

∫
D

fz(x, y)ps(x, y) dx dy

=

∫
D

∫
D

fz(x, y)mX(x)mY (y) dx dy

= uSPR(z) (16)

where ps denotes the density of the positional sample vector s := (x, y). In figure 12 it is
shown that, by following the sampling scheme of figure 2b, ps is indeed given by ps(x, y) =
mX(x)mY (y). Plugging 15 and 16 into the last expression of 14 one ends up with:

E[S(z)] = rtot ·W · uSPR(z) (17)

The derivation of E[SF ] runs along the same lines yielding:

E[SF ] = rtot ·W ·N (18)

�
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4.1.2 Convergence Behavior of S(z) and SF

Here we examine the behavior of sums of (integral) function spikes in the limit of large
temporal summation window sizes T . First, it is proven in the main proposition 4.1 that,
under weak conditions imposed on mX ,mY and f , these sums converge in probability to
their respective expected values. Thereby equation 10 and the final step of equation 14 are
justified. The proof is based on a decoupling of the limits T → ∞ and nf → ∞, where nf
is a fixed number of (integral) function spikes disregarding time window [0, T ]. Accordingly,
the claim about limit nf → ∞ needed by the main proposition is proven in lemma 4.2. In
that proof we also specify in detail the above conditions on mX and mY . Finally, lemma
4.3 establishes the link between the two types of limits. To simplify notation we refer in
the following to function f as both, fz in case of function spikes and F in case of integral
function spikes.

Proposition 4.1. Let A := {i ∈ N | ti ∈ [0, T ]} be a sorted set of indices of (integral)

function spikes within some time window T , such that ti < ti+1 ∀i ∈ A. Let b :=
∑
i∈A

fi be the

corresponding sum of ntot := |A| (integral) function spikes. Then, provided that f is bounded
and the ISI distributions mX and mY are well behaved (see proof of lemma 4.2 for detailed
conditions),

plim
T→∞

b

E [ntot] · E [f ]
= 1 (19)

where E [f ] is the expected value of an (integral) function spike when the sampling scheme
of figure 2b is followed and plim

T→∞
CT = C denotes convergence in probability of CT to C as

T →∞. In other words, as T →∞ the relative error between b and E [ntot] ·E [f ] converges
to zero in probability.

Proof. The proof is complicated by the fact that ntot and the values of the samples fi are not
independent, since the latter are determined through ISIs in the fixed time window [0, T ].
Therefore, we first decouple the (integral) function spikes from that window by forming

b∗ :=
nf∑
i=1

fi with a fixed number nf , for which it is shown in lemma 4.2 that

lim
nf→∞

CV2 [b∗] = 0 (20)

with CV2 [b∗] := Var[b∗]
E2[b∗]

and E [b∗] = nf · E [f ]. That is, the limit lim
nf→∞

(·) keeps on adding

(integral) function spikes to b∗, disregarding whether or not these nf number of spikes have
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occurred in [0, T ]. It then follows from 20 that b∗

nf E[f ]
converges to 1 in mean-square and

hence also in probability (Papoulis & Pillai, 2002), that is

plim
nf→∞

b∗

nf E [f ]
= 1 (21)

holds true. Finally lemma 4.3 shows that assertion 19 follows from assertion 21, which
completes the proof.

�

Lemma 4.2. Let b∗ :=
nf∑
i=1

fi be a sum of nf (integral) function spikes that are not restricted

to fall into any temporal summation window. Define CV2 [b∗] := Var[b∗]
E2[b∗]

as the squared coeffi-
cient of variation of b∗. Then, provided that f is bounded and the ISI distributions mX and
mY are well behaved,

lim
nf→∞

CV2 [b∗] = 0 (22)

and
E [b∗] = nf · E [f ] . (23)

Proof. For the proof we need to derive E [b∗] = nf ·E [f ] and an upper bound on Var [b∗] that
increases slower than E2 [b∗] for nf →∞. The former is easily achieved by using the result of
figure 12, from which it follows that the arguments (xi, yi) of each (integral) function spike
fi(xi, yi) are identically distributed. Therefore, the expected value of the sum of nf such
spikes is given by nf · E [f ].

To achieve the latter we first write

Var [b∗] =

nf∑
i=1,j=1

Cov [fi, fj] = nf · Var [f ] + 2

nf∑
i=1

∑
i<j≤nf

Cov [fi, fj] (24)

Note that fi and fj are independent, if at least one X- and one Y -spike have occurred
between fi and (including) fj. This is due to the renewal property and mutual independence
of the two spike trains, which assure that both arguments X, Y of f have been independently
updated in this case. Accordingly, we define by ξk ∈ {0, 1} the binary event that such a two-
fold update has happened for two (integral) function spikes with index difference k = j − i.
Therefore, Cov [fi, fj | ξj−i = 1] = 0. With Pξk(ξk = 1/0) denoting the probability of ξk, we
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may use the law of total covariance to decompose Cov [fi, fj] for i < j:

Cov [fi, fj] = E [ Cov [fi, fj | ξj−i] ] + Cov [E [fi | ξj−i] ,E [fj | ξj−i] ] (25)

E [ Cov [fi, fj | ξj−i] ] = Cov [fi, fj | ξj−i = 0] · Pξj−i(ξj−i = 0) (26)

+ Cov [fi, fj | ξj−i = 1] · Pξj−i(ξj−i = 1)

= Cov [fi, fj | ξj−i = 0] · Pξj−i(ξj−i = 0)

Cov [E [fi | ξj−i] ,E [fj | ξj−i] ] = E [E [fi | ξj−i] · E [fj | ξj−i] ] (27)

− E [E [fi | ξj−i] ] · E [E [ fj | ξj−i] ]

= E [fi | ξj−i = 0] · E [fj | ξj−i = 0] · Pξj−i(ξj−i = 0)

+ E [fi | ξj−i = 1] · E [fj | ξj−i = 1] · Pξj−i(ξj−i = 1)

− E [f ]2

We can infer from figure 12 that fi and ξj−i are independent, i.e. that E [fi | ξj−i] = E [f ].
However, in general the same must not hold for fj, i < j. Hence it follows from 27:

Cov [E [fi | ξj−i] ,E [fj | ξj−i] ] = E [f ]
(
E [fj | ξj−i = 0] · Pξj−i(ξj−i = 0) (28)

+ E [fj | ξj−i = 1] · Pξj−i(ξj−i = 1)
)
− E [f ]2

= E [f ]
(
E [E [fj | ξj−i] ]

)
− E [f ]2 = 0

Since f ≥ 0, plugging 26 and 28 into 25 yields:

Cov [fi, fj] = Cov [fi, fj | ξj−i = 0] · Pξj−i(ξj−i = 0) (29)

≤M2 · Pξj−i(ξj−i = 0) (30)

with M := sup [f ]. Therefore,

Var [b∗] ≤ nf Var f + 2M2

nf∑
i=1

∑
i<j≤nf

Pξj−i(ξj−i = 0) (31)

We now assume that mX(x),mY (y) are well behaved, i.e. that
limnf→∞

∑
i<j≤nf Pξj−i(ξj−i = 0) = C, with C some constant. For biologically relevant

ISI distributions this condition can always be fulfilled by assuming arbitrarily small/large
minimum/maximum ISIs, below/above which the two densities vanish. In this case a two-
fold coordinate update (ξk = 1) will always happen after a finite number K of updates, i.e.
Pξj−i(ξk = 0) = 0, ∀k ≥ K. Hence,

Var [b∗] ≤ nf
(
Var [f ] + 2M2C

)
(32)

�
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Figure 12: Density of positional sample vectors and (in)dependencies between spike-based
quantities
a) Four basic independency statements: 1) Without loss of generality suppose the last (in-
tegral) function spike fi to have happened at time ti along X. fi depends exclusively on the
positional sample vector si := (xi, yi), given by the last two respective ISIs along X and Y . In
other words, given si, fi is conditionally independent of any other variable. 2) Denote by ∆ti
the difference between ti and the time of the last spike along Y before ti, i.e. ∆ti = ti− ti−1

in the illustrated case. Denote by S∗i the state vector S∗i := (ti,∆ti). Because the two spike
trains are independent and renewal, S∗i is not informative about the ISIs xi, yi before ti and
tj respectively. It follows ps(si |S∗i ) = mX(xi)mY (yi) = ps(si), in particular si and S∗i are
independent. 3) With li ∈ {0, 1} denoting a binary label indicating whether or not spike i
was received along X, it also follows from the renewal property and spike train independence
that, given S∗i , future spiking behavior t∗i := (ti+1, li+1, ti+2, li+2, ...) is conditionally indepen-
dent from any other variable and hence also from past spiking (ti−2, li−2, ti−3, li−3, ...). In
particular pS(t∗i |S∗i , si) = pS(t∗i |S∗i ). 4) ξj−i, j > i is is a function exclusively of t∗i , i.e. ξj−i
is conditionally independent from any other variable.
b) Bayesian network modeling the (in)dependencies between the variables in (a). Any addi-
tional edge would violate any of the four independence statements (1), (2), (3), (4) in (a).
Clearly, it follows from the graph that fi and ξj−i are marginally independent, that is
Pξj−i(ξj−i | fi) = Pξj−i(ξj−i).
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It remains to be shown in proposition 4.1 that assertion 19 follows from assertion 21, which
is achieved by the following lemma.

Lemma 4.3. Let all quantities be as defined in proposition 4.1. If

plim
nf→∞

b∗

nf · E [f ]
= 1 (33)

then

plim
T→∞

b

E [ntot] · E [f ]
= 1 (34)

with E [ntot] = rtot · T and rtot := 1
E[X]

+ 1
E[Y ]

denoting the total rate of spikes coming in as
messages along X and Y respectively.

Proof. Preliminaries: To avoid cluttered notation, define n := nf and let p(x) be the short-
hand for the probability density pX(x) of some random variable X evaluated at x. Disre-
garding window [0, T ], define by Tε,n the time such that after n (integral) function spikes
the probability of tn ≥ Tε,n is ε, with ε > 0 an arbitrary constant. Denote by b∗n the random
variable that is equal to b∗ in case of tn < Tε,n and hence follows the same distribution as
p(b∗ | tn < Tε,n). Analogously, bn denotes the random variable that is equal to b in case of
tn < Tε,n ≤ T . The difference between b∗n and bn is that the latter might comprise addi-
tional (integral) function spikes in [tn, T ], i.e. ntot > n in this case. Let m(ε, T ) be the
largest (integral) function spike index such that Tε,m(ε,T ) ≤ T holds for any given T , i.e.
m(ε, T ) := max (n |Tε,n ≤ T ).

Because the (integral) function spikes are governed by independent renewal processes, we
know that plim

n→∞

n
rtot·tn = 1. It follows that if 33 holds, then

plim
n→∞

b∗

rtot · tn · E [f ]
= 1 (35)

since plim
n→∞

(Cn ·Dn) = plim
n→∞

Cn · plim
n→∞

Dn holds for convergent sequences of random variables

Cn, Dn. Furthermore, by the above definitions we know that:

p

(
b∗

rtot · tn · E [f ]

)
= p

(
b∗

rtot · tn · E [f ]

∣∣∣∣ tn < Tε,n

)
(1− ε) (36)

+ p

(
b∗

rtot · tn · E [f ]

∣∣∣∣ tn ≥ Tε,n

)
ε

and

p

(
b∗

rtot · tn · E [f ]

∣∣∣∣ tn < Tε,n

)
= p

(
b∗n

rtot · tn · E [f ]

)
(37)
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Hence, if 35 holds then

∀ε1, δ > 0 ∃N :P

(∣∣∣∣ b∗

rtot · tn · E [f ]
− 1

∣∣∣∣ > δ

)
< ε1, ∀n ≥ N (38)

⇒ P

(∣∣∣∣ b∗n
rtot · tn · E [f ]

− 1

∣∣∣∣ > δ

)
<

ε1
1− ε

(39)

⇒ plim
n→∞

b∗n
rtot · tn · E [f ]

= 1 (40)

where P (α) is the probability of event α. Because m(ε, T ) is monotonically increasing as a
function of T , we can conclude from 40 that

plim
T→∞

b∗m(ε,T )

rtot · tm(ε,T ) · E [f ]
= 1 (41)

Additionally, since the (integral) function spikes are governed by independent renewal pro-

cesses, we know that plim
T→∞

tm(ε,T )

T
= 1, from which plim

T→∞

bm(ε,T )

b∗
m(ε,T )

= 1 follows, leading to

plim
T→∞

bm(ε,T )

rtot · T · E [f ]
= 1 (42)

Using

p

(
b

rtot · T · E [f ]

)
= (1− ε) · p

(
b

rtot · T · E [f ]

∣∣∣∣ tm(ε,T ) < Tε,m(ε,T )

)
(43)

+ ε · p
(

b

rtot · T · E [f ]

∣∣∣∣ tm(ε,T ) ≥ Tε,m(ε,T )

)
and

p

(
b

rtot · T · E [f ]

∣∣∣∣ tm(ε,T ) < Tε,m(ε,T )

)
= p

(
bm(ε,T )

rtot · T · E [f ]

)
(44)

we can conclude from 42

∀ε1, δ > 0∃T0 :P

(∣∣∣∣ bm(ε,T )

rtot · T · E [f ]
− 1

∣∣∣∣ > δ

)
< ε1, ∀T ≥ T0 (45)

⇒ P

(∣∣∣∣ b

rtot · T · E [f ]
− 1

∣∣∣∣ > δ

)
< (1− ε) · ε1 + ε · 1 (46)

⇒ plim
T→∞

b

rtot · T · E [f ]
= 1 (47)

where the last implication follows from our free choice of ε, e.g. as ε < ε1.
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4.2 Calculation of E [D (B∗‖P )] and Var [D (B∗‖P )] Used in
Figures 5, 6, 8 and 9

Given a fixed distribution P (x) we are interested in having expressions for E [D(B∗‖P )]
and Var [D(B∗‖P )], when B∗(x) is a random distribution taken from a uniform distribution
of distributions of variable X. For that we first require the marginal probability densi-
ties Psingle(bx) and Ppair(bx, by) of the coefficients bx := B∗(x); by := B∗(y). These densi-
ties are necessary to compute the various expected values occurring in the expressions for
E [D(B∗‖P )] and Var [D(B∗‖P )]. When the distribution B∗(x) is drawn uniformly from the
(n − 1)-dimensional probability simplex –with n denoting the number of states of X– we
obtain the following:

Psingle(bx) = (n− 1)(1− bx)n−2 (48)

Ppair(bx, by) = (n− 1)(n− 2)(1− bx − by)n−3 (49)

Define f(bx, px) := bx · ln
(
bx
px

)
and let γ ≈ 0.577 be the Euler-Mascheroni constant. Denote

by Hn the n-th Harmonic Number and by U(n) the uniform distribution over n states.
It follows:

E
[
D(B∗‖P )

]
=
∑
x

E
[
f(bx, px)

]
(50)

=
∑
x

∫ 1

0

Psingle (bx) f (bx, px) dbx (51)

= 1−Hn −
∑
x

ln px (52)

≈ 1− γ +
∑
x

(
1

n
ln

(
1

n

)
− 1

n
ln px

)
; (n→∞) (53)

= (1− γ) +D
(
U(n)‖P

)
(54)

Var
[
D(B∗‖P )

]
=
∑
x

Var
[
f(bx, px)

]
+
∑
x,y
x 6=y

Cov
[
f(bx, px), f((by, py)

]
(55)

=
∑
x

E
[
f 2(bx, px)

]
+
∑
x,y
x6=y

E
[
f(bx, px) · f(by, py)

]
− (56)

∑
x,y

E
[
f(bx, px)

]
·E
[
f(by, py)

]
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computation of the integrals

E
[
f 2(bx, px)

]
=

∫ 1

0

Psingle (bx) f
2 (bx, px) dbx (57)

E
[
f(bx, px) · f(by, py)

]
=

∫ 1

0

∫ 1−bx

0

Ppair (bx, by) f (bx, px) f (by, py) dby dbx (58)

and subsequent rearrangement/elimination of terms then yields:

Var
[
D(B∗‖P )

]
=

3n ‖lP ‖2
2 + (π2 − 6)n2 − 3 ‖lP ‖2

1

3n2(n+ 1)
− ψ(1)(n+ 1) (59)

where ‖lP ‖1 and ‖lP ‖2 are respectively the 1- and 2-norm of vector lP := {ln (px1) , ..., ln (pxn)}
and ψ(1)(·) is the polygamma function of order 1.

4.3 Derivation of the Cost Function Used for Training Rout

Readout Rout in figure 7 has been trained using a different cost function than readouts
RX and RY . For a spiking neuron subject to escape noise –with hazard activation function
h(t,w) := h(Vm(t,w)), whose membrane potential Vm is given by a weighted sum Vm(t,w) =
wT ·X(t) of its synaptic inputs X(t)– we derive here suitable cost functions for learning the
neuron to fire with a given ISI distribution p(∆t, t). This distribution is explicitly allowed
to depend on t (as for example in equation 10). The first learning procedure is based on the
log-likelihood of an observed spike train and is semi-supervised and online in nature. In the
context of learning precise temporal spike patterns, this method has first and independently
been described by (Pfister et al., 2006). These authors also show how it relates to biologically
plausible Spike Time Dependent Plasticity (STDP) weight update schemes. We also present
a second related cost that is easier to work with in practice and which has been used to
produce the results of section 2.2.
Denote by Ts := {ti | i = 1...N, S(ti) = 1}, the sorted set of spike times of the learning
neuron, with S(ti) := 1 iff the neuron has fired a spike at time t, S(ti) := 0 otherwise. As
before, let p(∆t, t) be the target unconditioned ISI distribution at time t, and q(∆t, t,w) be
the corresponding actual unconditioned ISI distribution of the neuron. For the online method
suppose the ISI distribution of Ts follows p(∆t, t) and the neuron is teacher-forced to fire at
times Ts. Then our goal is to minimize the negative log-likelihood C(w) of the training set
Ts:

C(w) :=

N∑
i=2

− ln q(ti − ti−1, ti,w); ti ∈ Ts, N := |Ts| (60)
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Using standard results of renewal theory, q(∆t, ti−1 + ∆t,w) can be explicitely expressed in
terms of the hazard as (Cox & Lewis, 1966; Gerstner & Kistler, 2002):

q(∆t, ti−1 + ∆t,w) = h(ti−1 + ∆t,w) · exp

(
−
∫ ∆t

0

h(ti−1 + ∆t
′
,w) d∆t

′
)

(61)

yielding

C(w) =

N∑
i=2

− lnh(ti,w) +

∫ ti

ti−1

h(t
′
,w) dt

′
(62)

After having computed the gradient of equation 62 (Pfister et al., 2006), one can perform
a stochastic gradient descent procedure (Bottou, 1998) based on a biologically plausible,
online learning paradigm. Interestingly, on the postsynaptic side learning in this fashion is
feasible only at time points when the neuron spikes, i.e. at times ti ∈ Ts, since expression
62 requires integration from ti−1 to ti (Pfister et al., 2006). This feature however is a
necessary requirement in many biological accounts of learning, e.g. in models involving
STDP (Pfister et al., 2006; Gerstner & Kistler, 2002). Furthermore, under rather mild and
biologically plausible conditions on h(Vm), C(w) is a convex function and therefore devoid

of local minima (Paninski, 2004). These conditions are also fulfilled by h(Vm) = hΘe
Vm−Vθ
σh ,

the hazard activation function commonly used in the neuroscientific literature (Pfister et al.,
2006, 2010; Rao, 2005; Eggert & van Hemmen, 2001) and in section 2.2.1.

Despite these desirable properties, the presented optimization method is technically im-
practical for the processor approximation task of section 2.2.1. Since, as stated before, weight
updates are restricted to times when the learning neuron spikes, times t′ between spikes can-
not be used for learning, leading to long learning times until enough training examples have
been absorbed for proper learning. Hence, the results presented in section 2.2.1 are based
on optimizing a slightly different cost function Cbatch(w) in batch-mode using the BFGS
quasi-Newton method (Bertsekas, 1999):

Cbatch(w) :=

N∑
i=2

D(p∗i ‖q∗i ) (63)

p∗i (∆t) :=
p(∆t, ti−1 + ∆t)∫ ti−ti−1

0

p(∆t′ , ti−1 + ∆t′) d∆t′
(64)

q∗i (∆t,w) :=
q(∆t, ti−1 + ∆t,w)∫ ti−ti−1

0

q(∆t′ , ti−1 + ∆t′ ,w) d∆t′
; ti ∈ Ts (65)

where p∗i (∆t) and q∗i (∆t,w) are the above target and actual ISI distributions given that a
spike is fired for sure within the interval (ti, ti−1]. The normalization imposed by such condi-
tioning is necessary because of the neurons’ random firing as well as p’s explicit dependence
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on time, both of which generally prevent p(∆t, ti−1 + ∆t) and q(∆t, ti−1 + ∆t) from being
properly normalized probability densities of ∆t, which in turn may render the KL divergence
D a negative quantity. Plugging 61 into 63 and rearranging the terms, one obtains:

Cbatch(w) =

N∑
i=2

∫ ∞
0

p∗i (∆t) ·
(∫ ∆t

0

h(ti−1 + ∆t
′
,w)d∆t

′ − lnh(ti−1 + ∆t,w)

)
d∆t (66)

+

N∑
i=2

ln
(
Zi(w)

)
−

N∑
i=2

H(p∗i )

Zi(w) :=

∫ ti−ti−1

0

h(ti−1 + ∆t,w) · exp

(
−
∫ ∆t

0

h(ti−1 + ∆t
′
,w) d∆t

′
)

d∆t (67)

where Zi(w) is the normalization term of equation 65 and H(p∗i ) the differential Shannon
entropy of p∗i .
In contrast to C(w), for Cbatch(w) one can use time points between spikes as training examples
by constructing a long time series p(∆t, t), which is reset at assumed random spike times
Ts, without actually simulating a spiking neuron with escape rate in online mode. This then
allows Cbatch(w) to be minimized in batch mode.

4.4 Parameters Used for the Black-Box Implementations of the
Abstract Processor

The parameters below were used for the simulations in section 2.1.2 (figures 5 and 6). Quan-
tities based on time are measured in dimensionless steps:

W = 750; Domain of variable values (possible ISI values) = {i ∈ N | i ≤ 100} (if by
chance a processor did not fire after at most 200 steps, a spike was forced to keep the
inferential dynamics ongoing); Number of gaussian mixture components defining factor
nodes of dimension 1/2/3/4: 5/10/20/20 respectively; Range of standard deviations along
principal components of the gaussians defining the mixture of 1/2/3/4-dimensional factors:
[3, 7]/[3, 10]/[3, 15]/[3, 15] respectively (factors of higher dimension needed larger standard
deviations and/or more mixture components to maintain a reasonable filling of their domain
space); Range of unnormalized weights of the mixture components = [0.1, 1]; Span used for
moving average filtering of the raw ISI histograms: 3 bins.

4.5 Parameters Used for the ESN Implementations of the Ab-
stract Processor

The following reservoir parameters have been used for the simulated Echo-State networks of
section 2.2.2 (see (Jäger, Lukoševičius, Popovici, & Siewert, 2007) for parameter definitions
of the sigmoidal leaky-integrator neurons of the reservoirs):
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ISI Decoders (LX , LY , RX , RY ):

Number of reservoir neurons = 300; reservoir sparsity (probability of connecting two reservoir
neurons) = 0.10; spectral radius |λmax| = 0.90; leak a = 1; time-step δ = 1; time constant
c = 5; scaling factor of the low-passed filtered spike inputs mX and mY : 0.80; scaling factor
of the feedback connections from RX , RY : 0.80

SPR Computer (Lout, Rout):

Number of reservoir neurons = 1500; reservoir sparsity (probability of connecting two reser-
voir neurons) = 0.03; spectral radius |λmax| = 0.97; leak a = 1; time-step δ = 1; time
constant c = 2.5; scaling factor of the inputs from RX and RY to Lout: 0.013; scaling factor
of the low-passed filtered spike feedback from Rout: 0.80

4.6 Crossvalidation-like Procedure for Determining the Range of
Validity of a Common Model Underlying the Yang and Shadlen
Data

The goal of the following procedure was to find the borders of a region along the l-axis,
within which the assumption of a common model is justified. We define a common model
to be a distinct r(l) relationship that is followed during each epoch, i.e. one that does not
change with epoch number. For determining this region, we first formed all ’tangential’
subsets of the (l, r) data set. That is, for each l-datum we grouped the datum itself and its
first and second nearest neighbors into one subset. For each such set we then regressed r
on l, using three of the five points for fitting and the remaining two points for testing. We
conducted this procedure for all

(
5
3

)
combinations of fitting points, each time determining

the resulting testing errors. Error was measured as the ’root mean squared error’ (RMSE).
To avoid artifacts induced by the small extent of epoch 1 along the l-axis, we discarded these
data points from the subsets (see also main text).

The approach is based on the assumption that, while moving along the l-axis, a transition
from a common model to multiple ones is accompanied by a marked change in the distribution
of testing errors. In particular, the error distribution associated with the multiple-model
region is expected to have increased mean and variance. Due to the limited size of both of
the data sets (population and single neuron data) these distributions cannot be assessed for
each tangential subset. However they can be roughly characterized by their respective mean
and variance. Hence, we performed k-means clustering on the mean-variance data, estimated
for each tangential subset. For both data sets, the algorithm revealed the following three
distinct clusters (k = 3):

• Cluster 1: Low mean and low variance

• Cluster 2: Moderate mean and low variance
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• Cluster 3: Large mean and large variance

Members of cluster 3 were well separated from the other data points and were confined to
the region beyond l = 1.11/l = 1.16 for the population and single neuron data respectively.
For k = 2, clusters 1 and 2 were merged into a single cluster, cluster 3 remained constant,
apart from 1 out of 8 data points swapping its membership with cluster 2 in case of the single
neuron data. For k = 4 and k = 5 either cluster 1 or 3 was subdivided further depending
on the data set. Independent of k ∈ {2, 3, 4, 5} the cluster borders l = 1.11/l = 1.16 along
the l-axis remained. All results were robust against metric changes, e.g. when the ’mean
absolute error’ was used in place of the RMSE or when the standard deviation instead of
the variance was used as a defining feature of the error distribution.

In summary these results strongly suggest an abrupt change in the r(l) relationship when
a threshold at l ≈ 1.1 is crossed. We take this as an indication for the existence of multiple
r(l)-models beyond this threshold.
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