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Abstract—Deep neural networks such as Convolutional Net-
works (ConvNets) and Deep Belief Networks (DBNs) represent the
state-of-the-art for many machine learning and computer vision
classification problems. To overcome the large computational cost
of deep networks, spiking deep networks have recently been pro-
posed, given the specialized hardware now available for spiking
neural networks (SNNs). However, this has come at the cost of
performance losses due to the conversion from analog neural
networks (ANNs) without a notion of time, to sparsely firing,
event-driven SNNs. Here we analyze the effects of converting
deep ANNs into SNNs with respect to the choice of parameters
for spiking neurons such as firing rates and thresholds. We
present a set of optimization techniques to minimize performance
loss in the conversion process for ConvNets and fully connected
deep networks. These techniques yield networks that outperform
all previous SNNs on the MNIST database to date, and many
networks here are close to maximum performance after only
20 ms of simulated time. The techniques include using rectified
linear units (ReLUs) with zero bias during training, and using a
new weight normalization method to help regulate firing rates.
Our method for converting an ANN into an SNN enables low-
latency classification with high accuracies already after the first
output spike, and compared with previous SNN approaches it
yields improved performance without increased training time.
The presented analysis and optimization techniques boost the
value of spiking deep networks as an attractive framework for
neuromorphic computing platforms aimed at fast and efficient
pattern recognition.

I. INTRODUCTION

DEEP neural network architectures, such as convolutional
neural networks (ConvNets) [1] and fully-connected feed-

forward neural networks [2], are currently the most suc-
cessful architectures for natural image classification. They
have achieved record-breaking results for problems such as
handwriting recognition [2], scene labeling [3], the CIFAR
benchmark [4], the ImageNet benchmark [5], and many others.
Deep neural network architectures, which are loosely inspired
by hierarchies of cortical visual information processing [6],
have seen increasing success in recent years due to the avail-
ability of more powerful computing hardware, larger datasets,
and improved training algorithms, which has enabled the
training of much deeper networks, while avoiding problems
of overfitting [7]. Despite their successes, the substantial
computational cost of training and running deep networks has
created a need for specialized hardware acceleration and new
computational paradigms to enable the use of deep networks
for real-time practical applications. Spiking neural networks
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(SNNs) are a primary candidate for enabling such acceleration,
and in this paper we introduce a new optimization method for
spiking deep architectures - both fully-connected feed-forward
networks and ConvNets - that can achieve higher performance
levels than previous spiking solutions, while achieving lower
latencies and requiring fewer operations than methods based
on conventional computing.

In recent years, spiking deep neural networks have become
an increasingly active field of research. This has been driven
both by the interest to build more biologically realistic neural
network models, and by recent improvements and the availabil-
ity of larger-scale neuromorphic computing platforms, which
are optimized for emulating brain-like spike-based computa-
tion in dedicated analog or digital hardware [8], [9], [10],
[11]. Neuromorphic platforms can be orders of magnitude
more efficient in terms of power consumption compared to
conventional CPUs or GPUs for running spiking networks,
and often permit distributed and asynchronous event-based
computation, thereby improving scalability and reducing laten-
cies. Furthermore, event-driven neuromorphic systems focus
their computational effort on currently active parts of the
network, effectively saving power on the rest of the network.
They are therefore attractive as platforms to run large-scale
deep neural networks in real-time. These platforms are ideally
driven by input from neuromorphic sensors such as silicon
retinas [12] or cochleas [13], which create sparse, frame-
free, and precisely timed streams of events, with substantially
reduced latencies compared to frame-based approaches. Earlier
work on spiking deep networks has thus focused on fast
classification in event-based vision systems with ConvNets and
Deep-Belief Networks (DBNs) [14], [15], [16].

Training of spiking deep networks typically does not use
spike-based learning rules, but instead starts from a con-
ventional ANN, fully trained with backpropagation, followed
by a conversion of the rate-based model into a model con-
sisting of simple spiking neurons. Theory has shown that
SNNs are at least as computationally powerful as their analog
counterparts [17], but practically it has proven difficult to
come up with equivalent solutions. One approach used for
example by [16] is to train spiking DBNs by using the
Siegert mean-firing-rate approximation of leaky integrate-and-
fire (LIF) neurons to approximate probabilities during training.
Another approach, used in [18], requires tuning of parameters
such as leak and refractory period in the spiking network.
In both cases, the spiking network suffers from considerable
losses in classification accuracy, when compared to a non-
spiking network of similar architecture.

Recently, [19] proposed a method for spiking ConvNet



conversion that achieves significantly better performance than
previous approaches, by taking the characteristic differences
of spiking and non-spiking networks into account. The main
challenges are the representation of negative values and biases
in spiking neurons, which are avoided by using rectified linear
units (ReLUs) during training, and setting all biases to zero.
Furthermore, the typical max-pooling operations of ConvNets
are replaced by spatial linear subsampling. Still, the resulting
spiking ConvNet after conversion suffers from a small loss of
performance. In this work we present a more detailed analysis
of the sources of such performance losses in spiking networks,
and present several tools for optimization. We find that if
SNNs are driven in the right regime, near-lossless conversion
is possible, and additionally very fast classification is possible
based on only a few output spikes.

II. NEURAL NETWORK ARCHITECTURES

A. ReLU-Based Feed-Forward Neural Networks

In fully connected feed-forward Neural Networks (FCNs),
all neurons in the preceding layer are fully connected to the
subsequent layers, with no intra-layer connections. Recent
competitive results (e.g. [2]) have renewed the interest in
this architecture. Initializing the extremely high-dimensional
weight vectors of FCNs in a good regime that preserves
the error gradient, and regularizing the network to prevent
overfitting, allows very high performance on standard test sets.
The most recent improvements have come with the introduc-
tion of the dropout training technique (see section II-C) in
combination with rectified linear units (ReLUs) [20]. ReLUs
are a type of nonlinearity which is applied to the weighted
sum of inputs, and is described by

xi = max
(
0,
∑

j wijxj

)
, (1)

where xi is the activation of unit i, wij is the weight connecting
unit j in the preceding layer to unit i in the current layer,
and xj is the activation of unit j in the preceding layer. By
successively updating all the activations of a current layer
based on the activations of the previous layer, the input is
propagated through the network to activate the output label
neurons.

Training proceeds according to standard error backpropa-
gation, successively propagating an error gradient backwards
through the layers by computing local derivatives to update in-
dividual weights and minimize the error. In these networks, the
training process adjusts the randomly-initialized weight matrix
describing the connections between the layers to minimize
the overall error through stochastic gradient descent. Further
details can be found in [20].

B. Convolutional Neural Networks

ConvNets [1] are multi-layered feed-forward architectures
in which feature detectors take the form of simple convolution
kernels. Typically, a convolutional neural network is composed
of alternating layers of convolution and spatial subsampling,
with nonlinearities between subsequent iterations. Here, a
convolutional layer generates a number of feature maps, which
are obtained by convolving patches of the preceding layer

with a set of kernels {W k, k = 1 . . . n}. The resulting maps
{xk, k = 1 . . . n} are given by

xk = f
(∑

lW
k ∗ xl + bk

)
, (2)

where f is the neuron’s nonlinear activation function, xl is
the activation of the units of the preceding layer’s activation
map l, the ∗ symbol denotes a 2D valid-region convolution,
and bk is a bias term. As above, we use ReLU, as described
in equation 1 as the activation function f . The kernels only
respond to a small rectangular patch of inputs, specified by
W k, which are repeated and moved over the whole input
map. Convolutional layers are often followed by subsampling
or pooling layers, whose units combine the responses of
multiple feature detectors into one. While many choices exist
for pooling layers, an averaging kernel is used here to enhance
the portability of this ConvNet to an SNN. The activation of
this averaging layer is identical to equation 2, except that the
kernel weights W k

ij are fixed to 1/size(W k), where size(W k)
is the number of pixels in the kernel.

ConvNets reduce the data dimensionality by alternating be-
tween convolution and subsampling layers, while producing in-
creasingly abstract features to describe the input. Additionally,
the lower number of weights in the ConvNet compared to fully
connected archictectures reduces the problem of overfitting.
The output of the ConvNet is the concatenation of all feature
maps in the final layer, which forms the input to a simple
fully-connected neural network trained as a classifier. Just like
FCNs, training uses stochastic gradient descent via backprop
to adjust the weights in the network, using weight sharing to
learn W k in the convolution layers, together with the weights
for the final output layer. Further details can be found in [1].

C. Dropout

Overfitting is a well-known problem of large and deep
neural networks. A successful method to avoid this problem is
to employ regularizers, such as the recently proposed dropout
technique [20]. Dropout randomly disables input units during
learning, and thus avoids overspecialization and co-adaptation
of hidden units. In this work, dropout is used in the activation
function as a mask that randomly disables ReLU activations
on a given trial, thereby effectively increasing the overall
robustness of the network. A ReLU activation function with
dropout is given by

xi =

{
max

(
0,
∑

j wijxj

)
with probability dr

0 otherwise ,
(3)

where the variables are as in equation 1 with the addition of
a dropout rate dr. At every training iteration, a new random
decision is made for each unit. In practice, a dr value of 0.5
is often used to turn off half of the connections randomly in
each training step.

III. SPIKING NEURAL NETWORKS

A. Background

In a conventional ANN, a whole input vector is presented at
one time, and processed layer-by-layer, producing one output
value. In an SNN, however, inputs are typically presented
as streams of events, and neurons integrate evidence during



the presentation, creating spikes to communicate information
to subsequent layers, ultimately driving firing of output neu-
rons which sum evidence over time. There are significant
advantages of this approach: pseudo-simultaneity of input and
output can be achieved [21], time-varying inputs can be more
efficiently processed [16], and more efficient computation on
specialized hardware can be accomplished [22].

The spiking neuron model used for this work is the simple
integrate-and-fire (IF) model. The evolution of the membrane
voltage vmem is given by

dvmem(t)

dt
=
∑
i

∑
s∈Si

wi δ (t− s) , (4)

where wi is the weight of the ith incoming synapse, δ(·) is
the delta function, and Si = {t0i , t1i , . . .} contains the spike-
times of the ith presynaptic neuron. If the membrane voltage
crosses the spiking threshold vthr, a spike is generated and
the membrane voltage is reset to a reset potential vres. In our
simulations, this continuous-time description of the IF model
is discretized into 1 ms timesteps.

B. Spiking Network Conversion

In previous work, a significant performance gap was re-
ported between the state-of-the-art achieved by conventional
ANNs and spiking implementations [16], [19]. Here we lay
out a framework to facilitate the conversion of deep ANNs
to SNNs, and to reduce the performance loss during this
conversion. The conversion method used here is an extension
of the one suggested in [19], extended to include our novel
normalization methods and the analysis of firing rates and
thresholds.

We start with observations about the relationships of ANNs
using ReLUs and spiking networks. Firstly, the ReLU can be
considered a firing rate approximation of an IF neuron with
no refractory period [19], whereby the output of the ReLU is
proportional to the number of spikes produced by an IF neuron
within a given time window. ReLUs are also advantageous
during training as their piecewise constant derivative leads to
weight updates of a particularly simple form. Secondly, for
classification tasks, only the maximum activation of all units in
the output layer is of importance, allowing the overall rate to be
scaled by a constant factor. Finally, without a bias to provide
an external reference value, the relative scale of the neuron
weights to each other and to the threshold of the neuron are
the only parameters that matter. This gives rise to the following
recipe for converting deep ANNs to SNNs:

1) Use ReLUs for all units of the network.
2) Fix the bias to zero throughout training, and train

with backpropagation.
3) Directly map the weights from the ReLU network to

a network of IF units.
4) Use weight normalization (see section III-C) to obtain

near-lossless accuracy and faster convergence.

These suggestions work for both the case of fully-
connected networks and ConvNets. Once the ReLUs in the
artificial neural network after training have been replaced by IF
neurons, a loss of performance for a fixed simulation duration
can come from three factors:

1) The unit did not receive sufficient input to cross its
threshold, meaning its rate is lower than it should be;

2) The unit received so much input that the ReLU model
predicts more than one output spike per timestep. This
can happen either because there are too many input
spikes in one timestep or if some of the input weights
are higher than the neuron threshold.

3) Due to the probabilistic nature of the spiking input,
it can happen that a set of spikes over- or under-
activate a specific feature set due to non-uniformity
of the spike trains.

Reducing the simulation timestep can help to reduce the
number of input spikes per timestep, and increasing the simu-
lation duration will help to avoid insufficient activation. How-
ever, all factors can be addressed by finding the right balance
of spiking thresholds, input weights and input firing rates.
Specifically, high spiking thresholds (or low input weights)
decrease the error due to the over-activation and non-ideal
spike trains, while increasing errors due to the under-activation
factor and vice-versa. Note that only the ratio of spiking
threshold to input weights determines the amount of integrated
evidence until a spike is fired but not their individual values.
Instead of hand-tuning the parameters, here we present a more
rigorous approach towards adjusting the network weights (and
thereby the ratio of spiking threshold to input weights), i.e.
to calculate rescaling factors for the weights which reduce the
errors due to the three causes described above.

C. Weight Normalization

A key contribution of this work is a novel weight normal-
ization procedure that puts the network into a regime where
the above problematic factors are avoided.

We present two possible ways to normalize the network
weights, which ensure that activations are sufficiently small to
prevent the ReLU from overestimating output activations. The
safest, most conservative method is to consider all possible
positive activations that could occur as input to a layer, and
rescale all the weights by that maximum possible positive
input. If the maximum positive input can only cause one
spike, then the network will never need to produce more than
one spike at once from the same neuron. By doing so, the
resulting spiking networks become robust to arbitrarily high
input rates and completely eliminate losses due to too many
inputs. Unfortunately, this means that evidence integration in
order to generate a spike might require much more time.
If a high classification performance is required and longer
sampling times are acceptable, this is the preferred method
of finding the right weight scaling. This approach, outlined
in algorithm 1, is referred to as model-based normalization
because it requires only knowledge of the network weights.

Alternatively, the training set can be used to estimate
typical activations within the network, rather than assuming
the worst-case scenario of maximum positive activation. In
our experiments, it was observed that this scaling factor is
much less conservative. It preserves nearly all the accuracy
but requires dramatically less evidence integration time. For
this approach, after training a ReLU network, the training set
is propagated through the neural network and the ReLU acti-
vations are stored. Then, the weights are normalized according



Algorithm 1: Model-Based Normalization

1 for layer in layers:
2 max_pos_input = 0
3 # Find maximum input for this layer
4 for neuron in layer.neurons:
5 input_sum = 0
6 for input_wt in neuron.input_wts:
7 input_sum += max(0, input_wt)
8 max_pos_input = max(max_pos_input, input_sum)
9 # Rescale all weights

10 for neuron in layer.neurons:
11 for input_wt in neuron.input_wts:
12 input_wt = input_wt / max_pos_input

Algorithm 2: Data-Based Normalization

1 previous_factor = 1
2 for layer in layers:
3 max_wt = 0
4 max_act = 0
5 for neuron in layer.neurons:
6 for input_wt in neuron.input_wts:
7 max_wt = max(max_wt, input_wt)
8 max_act = max(max_act, neuron.output_act)
9 scale_factor = max(max_wt, max_act)

10 applied_factor = scale_factor / previous_factor
11 # Rescale all weights
12 for neuron in layer.neurons:
13 for input_wt in neuron.input_wts:
14 input_wt = input_wt / applied_factor
15 previous_factor = scale_factor

to the maximum possible activation within the training set, so
that this case would emit only a single spike. Additionally, this
normalization requires taking into account the maximum single
input weight as well, since otherwise a single spike could carry
so much weight that the receiving neuron would need to spike
multiple times within one timestep. While this is not a strong
guarantee that performance can be maintained on the test set,
the training set should be representative of the test set and
results show this approach to be highly effective. This nor-
malization method is especially suitable if both short latencies
and high accuracy are required since a practically good tradeoff
between those conflicting goals is found. Pseudocode for this
approach is shown in algorithm 2 and is referred to as data-
based normalization, since the weights are scaled according to
actual activations of the network in response to data.

IV. EXPERIMENTAL SETUP

A. Dataset

Due to its ubiquity in machine learning, the MNIST dataset
of handwritten digits was chosen for this investigation. The
training set consists of 60,000 individual handwritten digits
collected from postal codes, each labeled 0-9 for the individual
28x28 pixel grayscale images. The test set consists of 10,000
digits. The highest reported accuracy on this task using a single
network and without extending the data set is 99.55% and
was achieved using maxout networks [23]; the highest reported
accuracy of a spiking implementation prior to this work is
98.30% [24] which was achieved using spiking ConvNets.

B. Architectures

The code used to train and convert the networks in this
paper is a modification of the Matlab DeepLearnToolbox [25]
and can be found online.2 Two main architectures were used
in this work. First, to prove the efficacy of these networks for
a straightforward typical neural network, a four layer fully-
connected neural network was trained. Described in terms of
the number of neurons in the network, this 784-1200-1200-
10 network has two hidden layers of size 1200 units, with
all neurons fully connected between the layers. Five networks
were trained using a fixed learning rate of 1, momentum of
0.5, a batchsize of 100, 50 epochs of training, 50% dropout,
and weights randomly initialized uniformly between -0.1 and
0.1. After training, the best-performing fully-connected neural
network achieves a classification accuracy of 99.87% on the
MNIST training set and 98.68% on the MNIST test set.

The second architecture is a 28x28-12c5-2s-64c5-2s-10o
ConvNet. The input image is 28x28, followed by 12 con-
volutional kernels of size 5x5, followed by a 2x2 averaging
subsampling window. This convolution process is repeated in
a second stage with 64 maps of size 5x5, followed by a 2x2
averaging of the network. These final features are vectorized
and fully connected to a 10-node output layer, where each
of the 10 nodes represents one of the ten digit classes. The
training process used a fixed learning rate of 1, a batchsize of
50, no momentum, 50% dropout of the kernels, zero bias, and
50 epochs of training. We did not use any distortions to extend
the original data set. The resulting ConvNet achieves 99.19%
training accuracy and 99.14% test accuracy.

The best-performing ReLU network from each of the
training methods described above was then selected and the
weights were transferred directly to a spiking IF network. A
grid search of input rates (25, 50, 100, 200, 400, 1000 Hz)
and thresholds (0.25, 0.5, 1, 2, 4, 10, 20) was then performed
to determine the spiking networks with the best classification
performance. This performance was compared to that of the
data- and model-normalized networks of default threshold.

For the FCN, the model-based normalization scaled down
the weights in each layer significantly: each layer’s weights
were multiplied according to algorithm 1, downscaling the
layer weights by factors of 0.08 and 0.045. Model-based
weight normalization was not applied to the output layer for
either FCNs or ConvNets. Unlike the aggressive decrease of
the weights due to model-based normalization, the data-based
normalization (algorithm 2) scaled the weights by factors of
0.37, 1.25, and 0.8, only adjusting the network slightly but
making it more robust to high input rates. In the ConvNet
the scaling factors of the weights of the convolutional layers
were 0.1657 and 0.1238 for the model-based normalization.
Using the data-based normalization, the scaling factors 0.1657,
1.0021 and 1.19 were applied to the convolutional layers
and the output layer, respectively. Note that the output layer
weights are increased due to too little activation for the training
set.

C. Spiking Input

The intensity values of the MNIST images were normalized
to values between 0 and 1. Based on those intensity values,

2http://github.com/dannyneil/spiking relu conversion

http://github.com/dannyneil/spiking_relu_conversion


TABLE I: Comparison of classification accuracy for different
network architectures and conversion mechanisms.

Network Type Input Rate Thr. Accuracy
ConvNets
ReLU Rate-Based – – 99.14%
IF Network 1000 Hz 20.0 99.12%
Data-Norm. Net 400 Hz 1.0 99.10%
Model-Norm. Net 1000 Hz 1.0 99.11%
FC Networks
ReLU Rate-Based – – 98.68%
IF Network 200 Hz 4.0 98.48%
Data-Norm. Net 1000 Hz 1.0 98.64%
Model-Norm. Net 1000 Hz 1.0 98.61%

Poisson distributed spike trains were generated for each image
pixel with firing rates proportional to the pixel’s intensity
value. For further details, see [16].

V. RESULTS

The overall effectiveness of converting custom ReLU net-
works to SNNs is summarized in Table I. The first network
in each section is the original trained ReLU network; its
performance is the target performance of the spiking networks.
Next, is the best-performing spiking IF network after a grid
search of parameters, followed by the data-normalized net-
work with the default threshold; and the model-normalized
network. Note that the data-normalized network shows nearly
the same performance as the original ReLU network without
choosing hyperparameters or sweeping parameters for ideal
performance. To obtain these results we simulated the spike-
based networks for 0.5 s for each input image. However, in
practice, comparable performance can be achieved already
after tens of milliseconds of simulated time, as discussed in
section V-C.

A. Conversion and Parameter Choices

The activations presented in Fig. 1 describe example re-
sponses from the different layers for different parameters of
the FCN. The top row shows responses from the layers of
the ReLU-based network in response to the input. Note that
each image in this plot is individually scaled, but the relative
activations of the neurons within the map should ideally match
across all rows. While the overall activation structure is well
preserved, small differences occur mostly when neurons fire
at lower rates.

B. Accuracy

Figure 2 shows the classification error and the number of
spikes in the network (without input spikes) of the spiking
ConvNet (upper plots) and the spiking fully-connected Net-
work (lower plots) for a range of input firing rates and firing
thresholds of the IF neurons. All performances are averaged
over five simulations and all spike numbers are averaged over
two simulations, using the same network but different input
Poisson spike trains for each run. The highest performance of
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Fig. 1: Comparison of activations between ReLU-based fully-
connected network and non-normalized spiking network vari-
ants with different thresholds and input rates. The figure shows
the accumulated spike count over 200 ms of simulation time.
Ideally, the images in the bottom two rows should resemble a
scaled version of the top row. Images shown here are scaled
individually due to the unbounded upper range of the ReLU.
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Fig. 2: Classification performance and number of spikes pro-
duced for different architectures as a function of the input
rate and the firing threshold. Upper panels show results for
ConvNets, lower panels for FCN. The color of each circle
represents the mean accuracy on the MNIST test set (averaged
over 5 trials), using an integration time of 0.5s (500 timesteps)
for every input example. The size of the circle corresponds to
the average number of spikes generated by the whole network
per example presentation. The panels on the right show the
same data for the normalized networks, whereby the threshold
was fixed at 1 for all experiments. Parameter sets that led to test
errors greater than 1.15 (ConvNet) or 2.2 (FCN), respectively,
are not displayed.
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parameter set found from the 2D grid (figure 2). All networks
except the model-normalized ones show very low error before
100 ms. Fully-connected data-normalized networks are close
to their peak accuracy after only 6 ms (1.74% error).

the spiking ConvNet was 99.12% for a first layer IF threshold
of 20 and an input rate of 1000 Hz (upper left plot). The
best performance of the spiking fully-connected network was
98.48% which was achieved using a threshold of 4 and a 200
Hz input rate, see lower left 2D plot. Generally, there is a trade-
off between increasing the threshold to integrate more spikes
before propagating the detection of a feature, and decreasing
the threshold to reduce the sampling time necessary to produce
a sufficient number of spikes to minimize the error due to the
discretization of the transmitted messages. For low thresholds,
higher performances are achieved using intermediate input
rates, whereas for high thresholds, high input rates give better
results. The number of spikes generated within the network
(including spikes generated at the output layer) increases for
higher input spiking rates and decreases for higher spiking
thresholds. Surprisingly, the number of spikes generated within
the fully-connected network and the ConvNet are comparable,
although the fully-connected network uses about 60% more
synapses than the ConvNet.

The results for the data-normalized and the model-
normalized forms of both the spiking fully-connected network
and the spiking ConvNet are shown on the four rightmost
panels of Fig. 2. For both network types, the data-normalized
networks show very high accuracies over a broad range of
input firing rates. In contrast, model-normalized networks
show a good performance only for high input rates for the
spiking ConvNet. The reason for this can be seen in Fig. 3,
which shows the classification error as a function of evidence

integration time for the data-normalized networks, the model-
normalized networks and the spiking networks with the best
parameter set of the 2D plot. Due to the increased thresholds
in each layer of the model-normalized network, the sampling
time has to be increased to converge to a solution. On the other
hand, both data-normalized networks converge faster than the
best corresponding networks found in the grid search. This
shows that data-based weight normalization is an effective
method to obtain fast and accurate spiking deep networks.

C. Convergence Time

One of the reasons to use SNNs is their configurability.
If high accuracy is desired, high spiking thresholds help to
improve the accuracy; if short latencies are important, low
firing thresholds ensure responses after only a few input spikes.
The upper plot in Fig. 4 shows the number of unclassified
examples over time, i.e. the time until the first output spike
is produced, and the lower plot shows the classification error
of the ConvNet using only the first output spike. A first layer
threshold of 0.25 leads to very short output latencies (on the
order of a few milliseconds) whereas a first layer threshold of
20 leads to greater latencies but more than 98% precision after
the first spike. Note, however, that the limited precision in the
case of a threshold of 0.25 is not ultimately problematic as
extended execution time will yield more spikes with correct
outputs.

VI. DISCUSSION

This work presents a methodology for converting tra-
ditional neural networks to SNNs while maintaining high
accuracy, and, with the introduced method of normalization,
reduced evidence integration time to obtain the same accuracy.
While previous investigations have examined the conversion
of traditional neural networks to SNNs [16], [18], [19], we
have focused here on improving the converted network by
adjusting the parameters of the spiking neurons. In particular,
we investigated typical sources of performance loss in SNNs
and presented recipes for how to best address them.

Although the proposed model-based weight normalization
led to a considerable slowdown, both the ConvNet and the FCN
were still able to achieve high performance. The data-based
normalization on the other hand improved latencies while as-
suring almost no loss due to conversion. This speedup is partly
due to neurons in the deeper hidden layers being less activated.
Therefore the data-based normalization actually increases the
weights of those layers, leading to reduced latencies compared
to just normalizing the first layer. This property of the data-
based normalization will become especially important for
converting state-of-the-art networks for challenging real-world
tasks, where it is common to use more than ten hidden
layers [4]. One reason for the good performance of spiking
networks with the 1000 Hz input rate is that it cannot happen
that inputs are only partly presented since bright pixels will
fire at every single timestep. Therefore, networks which have
high enough thresholds to avoid loss due to too many input
spikes will show lower errors for 1000 Hz inputs. However,
the longer the simulation times, the smaller is the difference
due to those occasional partial inputs and for simulations of
0.5 seconds the difference is already less than 0.02%.
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Fig. 4: Time to first output spike and performance based on
the first output spike. All 10,000 MNIST test examples were
presented to the spiking ConvNet for 0.5s. The upper graph
shows the percentage of examples for which none of the output
neurons has fired as a function of time. The lower graph shows
the error rate of the network, using only the first output spike
to determine the class label.

In recent years, a number of spiking architectures were
developed for pattern recognition tasks. In table II we sum-
marize their performance on the MNIST benchmark, showing
that our results perform better than all previously reported SNN
solutions. First implementations of spiking ConvNets focused
on hardware implementations of high-speed visual object
recognition from silicon retinas. The CAVIAR system [14]
used a network of convolution and competition chips to process
visual events and recognize objects within milliseconds, and
improved convolution chips with larger kernels and lower
latency were presented in [26]. The major advantage of such
frame-free hardware solutions is their almost instantaneous
“pseudo-simultaneous” response to input, meaning that spiking
neurons in higher layer create spikes at the moment they
receive inputs, rather than waiting for the rest of the neurons
in lower layers to finish their computations [15]. In [18],
a conversion mechanism considering also leak-currents and
refractory periods is presented. Although this is more bio-
logically realistic, the inclusion of those features renders the
rate-based to spike-based network conversion more difficult.

TABLE II: Classification accuracy of different SNNs on
MNIST. The results of this paper present the best reported
SNN performance to date.

Network-type Preprocessing Performance
STDP-trained network [27] None 93.5%
STDP-trained network [28] None 95.0%

Spiking ConvNet [29] Scaling, orientation
detection, thresholding 91.3%

Feedward network [30] Edge-detection 96.5%3

Spiking RBM [31] Thresholding 91.9%
Spiking RBM [31] Thresholding 92.6%

Dendritic neurons [32] Thresholding 90.3%
Spiking RBM [22] None 89.0%
Spiking RBM [16] Enhanced training set 94.1%

Spiking RBM [11] As [16], FPGA
implementation 92.0%

Spiking ConvNet ([24]) None 98.3%
Spiking NN (this paper) None 98.6%

Spiking ConvNet (this paper) None 99.1%

Instead, here we chose to use no leak, set vreset = 0 and vary
vthresh, as in [19] and [24]. One of the techniques used was
the clamping of vmem to non-negative values, which led to
a reduced performance for all simulations that we tried with
these constraints.

The increasing availability of neuromorphic hardware [8],
[9], [10], [11] promises an energy efficient alternative to
existing pattern recognition systems based on traditional CPUs
or GPUs. With the presented techniques, many of the existing
state-of-the-art systems (neural networks) can be converted
to SNNs and thereby harness the unique features of the
neuromorphic hardware with little or no loss in classification
performance.
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