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Abstract—The recent development of power-efficient neuro-
morphic hardware offers great opportunities for applications
where power consumption is a main concern, ranging from
mobile platforms to server farms. However, it remains a chal-
lenging task to design spiking neural networks (SNN) to do
pattern recognition on such hardware. We present a SNN for
digit recognition which relies on mechanisms commonly used on
neuromorphic hardware, i.e. exponential synapses with spike-
timing-dependent plasticity, lateral inhibition, and an adaptive
threshold. Unlike most other approaches, we do not present
any class labels to the network; the network uses unsupervised
learning. The performance of our network scales well with
the number of neurons used. Intuitively, the used algorithm is
comparable to k-means and competitive learning algorithms such
as vector quantization and self-organizing maps, each neuron
learns a representation of a part of the input space, similar to a
centroid in k-means. Our architecture achieves 95% accuracy on
the MNIST benchmark, which outperforms other unsupervised
learning methods for SNNs. The fact that we used no domain-
specific knowledge points toward a more general applicability of
the network design.

Index Terms—Spiking Neural Network, STDP, Classification,
Digit Recognition.

I. INTRODUCTION

THE mammalian neocortex offers an unmatched pattern
recognition performance given a power consumption of

only 10-20 watts [1]. Since energy consumption is a major
cost factor for companies with lots of data [2], there is a
strong motivation to decrease power consumption of chips.
Current implementations of spiking neural networks (SNN)
on neuromorphic hardware [3, 4, 5, 6] use only a few nJ or
even pJ for transmitting a spike [7, 8, 9] (for some setups as
little energy as 0.02 pJ per spike [10]) and consume only few
pW of power per synapse [11]; some of those neuromorphic
systems also offer on-chip learning mechanisms [4, 12, 13].
However, so far it remains a challenging task to achieve good
performance on classical machine learning benchmarks like
MNIST [14] using SNNs. There are two main approaches
of designing (and training) SNNs for machine learning ap-
plications (1) learning the weights of the SNN using different
variants of spike-timing dependent plasticity (STDP), which
we will call “spike-based learning” [15, 16, 17, 18, 19], and
(2) training a rate-based neural network with backpropagation
[20] (or other rate-based learning algorithms) and using those
weights for an SNN, which we will call “rate-based learning”
[8, 21, 22, 23].

Here we present an SNN that is trained in an unsupervised
fashion using STDP, i.e. the weights of the network learn
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the structure of the input examples without using labels. No
preprocessing of the MNIST dataset is used (besides the
necessary conversion of the intensity images to spike-trains).
The performance of this approach scales well with the number
of neurons in the network, and achieves a performance of 95%
using 6400 learning neurons.

In the next section we explain the architecture including the
neuron and synapse models, and the training and evaluation
process. Section III contains the simulation results and in sec-
tion IV we compare our results to those of other architectures
as well as giving an intuition into how our network works.

II. METHODS

To simulate our SNNs we used Python and the BRIAN
simulator [24]1. Here we describe the dynamics of a single
neuron and a single synapse, then the network architecture
and the used mechanisms, and finally we explain the MNIST
training and classification procedure.

A. Neuron and Synapse Model

To model neuron dynamics, we chose the leaky integrate-
and-fire model. The membrane voltage V is described by

τ
dV

dt
= (Erest − V ) + ge(Eexc − V ) + gi(Einh − V ) (1)

where Erest is the resting membrane potential, Eexc and
Einh the equilibrium potentials of excitatory and inhibitory
synapses, and ge and gi the conductances of excitatory and
inhibitory synapses, respectively. As observed in biology, we
use a time constant τ , which is longer for excitatory neurons
than for inhibitory neurons. When the neuron’s membrane
potential crosses its membrane threshold vthres, the neuron
fires and its membrane potential is reset to vreset. Within
the next few milliseconds after the reset, the neuron is in its
refractory period and cannot spike again.

Synapses are modelled by conductance changes, i.e.
synapses increase their conductance instantaneously when a
presynaptic spike arrives at a synapse, otherwise the conduc-
tance is decaying exponentially. If the presynaptic neuron is
excitatory, the dynamics of the conductance ge are

τge
dge
dt

= −ge (2)

where τge is the time constant of an excitatory postsynaptic
potential. Similarly, if the presynaptic neuron is inhibitory, a

1The code (including used parameters) is available under
http://www.ini.uzh.ch/admin/extras/doc get.php?id=52538 (only the Brian
package has to be installed additionally to the standard python packages to
run the code).
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Fig. 1. Network architecture. The intensity values of the 28 x 28 pixel MNIST
image are converted to Poisson-spike with firing rates proportional to the
intensity of the corresponding pixel. Those Poisson-spike trains are fed as
input to excitatory neurons in an all-to-all fashion. The blue shaded area shows
the input connections to one specific excitatory example neuron. Excitatory
neurons are connected to inhibitory neurons via one-to-one connections, as
shown for the example neuron. Each inhibitory neuron is connected to all
excitatory neurons, except for the one it receives a connection from. The
red shaded area denotes all connections from one inhibitory neuron to the
excitatory neurons. Class labels are not presented to the network, so the
learning is unsupervised. Excitatory neurons are assigned to classes after
training, based on their highest average response to a digit class over the
training set. No additional parameters are used to predict the class, specifically
no linear classifier or similar methods are on top of the SNN.

conductance gi is updated using the same equation but with
the time constant of the inhibitory postsynaptic potential τgi .

We use biologically plausible ranges for almost all of the
parameters in our simulations, including time constants of
membranes, synapses and learning windows [25]; the excep-
tion is the time constant of the membrane voltage of excitatory
neurons. By increasing the time constant of the excitatory
neuron membrane potential to 100 ms (from the 10 to 20 ms
that are typically observed for biological neurons) we were
able to increase the classification accuracy.

B. Network Architecture
The network consists of two layers, see figure 1. The first

layer is the input layer, containing 28×28 neurons (one neuron
per image pixel), and the second layer is the processing layer,
containing a variable number of excitatory neurons and as
many inhibitory neurons. Each input is a Poisson spike-train,
which is fed to the excitatory neurons of the second layer.
The rates of each neuron are proportional to the intensity of
the corresponding pixel in the example image, see subsection
input coding.

The excitatory neurons of the second layer are connected in
a one-to-one fashion to inhibitory neurons, i.e. each spike in
an excitatory neuron will trigger a spike in its corresponding
inhibitory neuron. Each of the inhibitory neurons is connected
to all excitatory ones, except for the one from which it receives
a connection. This connectivity provides lateral inhibition and
leads to competition among excitatory neurons.

C. Learning

All synapses from input neurons to excitatory neurons
are learned using STDP. To improve simulation speed, the
weight dynamics are computed using synaptic traces [26].
This means that, besides the synaptic weight, each synapse
keeps track of another value, namely the presynaptic trace
xpre, which models the recent presynaptic spike history. xpre
decays exponentially

τxpre

dxpre
dt

= −xpre (3)

where τxpre
is the time constant of the decay. Every time a

presynaptic spike arrives at the synapse, the trace is increased
by 1. When a postsynaptic spike arrives at the synapse the
weight change ∆w is calculated based on the presynaptic trace

∆w = η(xpre − xtar)(wmax − w)µ (4)

where η is the learning-rate, wmax is the maximum weight,
and µ determines the dependence of the update on the previous
weight. xtar is the target value of the presynaptic trace at
the moment of a postsynaptic spike. The higher the target
value, the lower the synaptic weight will be. The target
value ensures that presynaptic neurons that rarely lead to
firing of the postsynaptic neuron will become more and more
disconnected and is especially useful if the presynaptic neuron
is only rarely active. A similar effect can be achieved by
adding some noise to the input and adding a weight decrease
mechanism to the learning rule (like in classical STDP [27])
to disconnect irrelevant inputs. However, in our simulations
it comes at the cost of an increased simulation time. The
learning rule is similar to the one used in [18] but here we use
an exponential learning window instead of a rectangular one,
which is more biologically plausible [28] and more similar
to the learning mechanisms available on some neuromorphic
systems [4, 12, 13].

D. Homoeostasis

The inhomogeneity of the input leads to different firing
rates of the excitatory neurons, and lateral inhibition further
increases this difference. However, it is desirable that all
neurons have approximately equal firing rates to prevent single
neurons from dominating the response pattern and to ensure
that the receptive fields of the neurons differentiate. To achieve
this, we employ an adaptive membrane threshold similar to the
mechanism used in [18]. Specifically, each excitatory neuron’s
membrane threshold is not only determined by vthresh but by
the sum vthresh+θ, where θ is increased every time the neuron
fires and is exponentially decaying according to

τθ
θ

dt
= −θ (5)

with τθ being the time constant of the decay. Therefore, the
more a neuron fires, the higher will be its membrane threshold
and in turn the neuron requires more input to spike in the near
future. Using this mechanism, the firing rate of the neurons is
limited because the conductance-based synapse model limits
the maximum membrane potential to the excitatory reversal
potential Eexc, i.e. once the neuron membrane threshold is
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close to Eexc (or higher) it will fire less often (or even stop
firing completely) until θ decreases sufficiently.

E. Input encoding

The input to the network is based on the MNIST dataset
which contains 60,000 training examples and 10,000 test
examples of 28 × 28 pixel images of the digits 0 to 9
[14]. The input is presented to the network for 350 ms in
the form of Poisson-distributed spike trains, with firing rates
proportional to the intensity of the pixels of the MNIST
images. Specifically, the maximum pixel intensity of 255 is
divided by 4, resulting in input firing rates between 0 and 63.75
Hz. Additionally, if the excitatory neurons in the second layer
fire less than five spikes within 350 ms, the maximum input
firing rate is increased by 32 Hz and the example presented
again for 350 ms. This process is repeated until at least five
spikes have been fired during the entire time the particular
example was presented.

F. Training and Classification

To train the network, we present the entire MNIST train-
ing set (60,000 examples) ten times to the network. Before
presenting a new image, there is a 150 ms phase without any
input to allow all variables of all neurons decay to their resting
values (except for the adaptive threshold). After training is
done, we set the learning rate to zero, fix each neuron’s
spiking threshold, and assign a class to each neuron, based
on its highest response to the ten classes of digits over one
presentation of the training set. This is the only step where
labels are used, i.e. for the training of the synaptic weights
we do not use labels.

The response of the class-assigned neurons is then used
to measure the classification accuracy of the network on the
MNIST test set (10,000 examples). The predicted digit is
determined by averaging the responses of each neuron per
class and then choosing the class with the highest average
firing rate.

III. RESULTS

We trained and tested a network with 100 excitatory neurons
by presenting 40,000 examples of the MNIST training set. The
resulting rearranged input to excitatory neuron weights are
shown in Figure 2 A. For each neuron, the 784-dimensional
input vector is rearranged into a 28 × 28 matrix to visualize
that the neurons learn prototypical inputs.

Additionally to the 100 neuron network, we trained and
tested three other networks with 400, 1600 and 6400 excitatory
neurons by presenting 3, 7 and 15 times the entire MNIST
training set; the four networks achieved an average classifi-
cation accuracy of 82.9%, 87.0%, 91.9% and 95.0%, respec-
tively. The accuracies are averaged over ten presentations of
the 10,000 examples of the MNIST test set, see figure 2 B.
Since the intensity images of the MNIST test set are converted
into Poisson-distributed spike trains, the accuracy can differ for
different spike timings. However, the standard deviation of the
performance over ten presentations of the entire test set (using
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Fig. 2. Training results. A) Rearranged weights (from 784 to 28 × 28) of
the connections from input to excitatory neurons of for a network with 100
excitatory neurons in a 10 by 10 grid. B) Performance as a function of the
number of excitatory neurons. Each dot shows the performance for a certain
network size as an average over ten presentations of the entire MNIST test
set, during which no learning occurs. Error bars denote the standard deviation
between ten presentations of the test set. Performances of two additional
learning rules are denoted by the red square (exponential weight dependence
STDP) and the green star (pre-and-post STDP).

the same trained network) is small (≈ 0.1%), as shown in the
error bars in figure 2 B.

For all simulations, the same neuron, synapse, and STDP
parameters were used (except for the parameters of the adap-
tive threshold and the inhibition strength). The time constant
of the adaptive threshold is chosen such that approximately 5
spikes are fired per presented example.

The chosen STDP rule has the advantage that only one
addition is needed for each spike received by an excitatory
neuron (which is necessary for updating the presynaptic trace).
Since the firing rate of the postsynaptic neurons is quite low,
a more complex STDP update for postsynaptic firing doesn’t
require many computational resources.

In order to compare the robustness of the chosen architec-
ture to the exact form of the learning rule, we tested two other
STDP learning rules. The first one uses an exponential weight
dependence as in [18] to compute the weight change

∆w = ηpost(xpre − xtar) exp(−βw) (6)

where β determines the strength of the weight dependence.
The second rule uses not only a presynaptic trace but also

a postsynaptic trace, which works in the same way as the
presynaptic trace but its increase is triggered by a postsynaptic
spike. Additionally, for this learning rule weight changes occur
for pre- and postsynaptic spikes. The weight change ∆w for
a presynaptic spike is

∆w = −ηprexpostwµ (7)

where ηpre is the learning-rate for a presynaptic spike and µ
determines the weight dependence. The weight change for a
postsynaptic spike is

∆w = ηpost(xpre − xtar)(wmax − w)µ (8)

where ηpost is the learning rate, wmax is the maximum weight,
and xtar is the target average value of the presynaptic trace
at the moment of a postsynaptic spike. The second learning
rule is computationally more expensive to simulate using soft-
ware simulations since for every presynaptic event the weight
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TABLE I
CLASSIFICATION ACCURACY OF SPIKING NEURAL NETWORKS ON MNIST TEST SET

Architecture Preprocessing Training-type (Un-)supervised Learning-rule # Neurons/
# Plastic synapses Performance

Dendritic neurons [21] Thresholding Rate-based Supervised Morphology learning 794/50,100 90.3%

Spiking RBM [8] None Rate-based Supervised Contrastive divergence,
linear classifier

740/123,904 89.0%

Spiking RBM [22] Enhanced training set
to 120,000 examples Rate-based Supervised Contrastive divergence 1,794/647,000 94.1%

Spiking RBM [23] As in [22],
implemented on FPGA Rate-based Supervised Contrastive divergence 1,794/647,000 92.0%

Spiking RBM [29] Thresholding Rate-based Supervised Contrastive divergence 1,324/412,000 92.6%
Spiking RBM [29] Thresholding Spike-based Supervised Contrastive divergence 1,324/412,000 91.9%

Spiking convolutional
neural network [19]

Scaling, orientation
detection, thresholding Spike-based Supervised Tempotron-rule ?/?2 91.3%

Two layer feedward
network [16] Edge-detection Spike-based Supervised STDP with calcium

variable
934/117,600 96.5%3

Multi-layer hierarchical
network [15] Orientation-detection Spike-based Supervised STDP with calcium

variable
71,026/

133,000,000 91.6%

Two layer network [18] None Spike-based Unsupervised Rectangular STDP 1184/313,600 93.5%
Two layer network

(this paper) None Spike-based Unsupervised Exponential STDP 7184/5,017,600 95.0%

change has to be calculated for every single postsynaptic
neuron. Therefore we train a network with only 400 excitatory
neurons; the exponential weight dependence network achieves
87.9% accuracy (red square in figure 2 B) and the pre-and-
post STDP network achieves 87.0% accuracy (green star).

IV. DISCUSSION

1) Comparison: The presented network achieves the best
classification performance of SNNs with unsupervised learn-
ing on the MNIST data set. One common way the weights
are trained is using a rate-based algorithm and then transfer
those trained weights into a SNN (referred to as “Rate-based”
training in table table I). The standard training procedure used
for such rate-based training is based on Restricted Boltzman
Machines (RBM). The other approach is to train the weights
using spike-based training procedures, typically relying on
STDP. A comparison of spiking neural networks used for
MNIST classification is shown in table I. Note that [29]
and [21] tested their networks only on 1000 and 5000 digits,
respectively. Also, in [16] it was not possible to determine
whether the examples from the training set were also part
of the test set. This question is important because in machine
learning the goal is to be able to generalize from seen examples
and not to memorize previously seen ones (although this
is still interesting for other tasks). A likely reason for the
good performance of our network is its strong generalization
ability, which is indicated by the fact that the training error is
essentially the same as the testing error (less than 1% between
both of them). This hints that the network is still underfitting
the data and that a further increase of the network size should
also increase its classification performance.

A network architecture style similar to ours is presented
in [18, 30, 31], using the learning rule presented in [32].
The main differences between their network and ours is that
we use more biologically plausible mechanisms, most of

2Number of neurons or plastic synapses cannot be inferred from the paper.
3From the paper it is not clear whether the training set was separate from

the test set.

which are closer to many neuromorphic hardware implemen-
tations. Those differences include that we use an exponential
conductance-based synapse instead of a current pulse, that we
use an exponential shape of the STDP time-window instead
of a rectangular one, and that in our network inhibition is
applied using an inhibitory exponential conductance instead of
clamping the postsynaptic membrane voltage to a certain value
for some inhibition time tinh. Especially the latter modification
makes learning more difficult, i.e. using 400 excitatory neurons
for each one of the networks, the one in [18] outperforms
the one presented here by about 5%. Nevertheless, since the
performance of our network scales well with the number of
neurons it is possible to achieve an even higher accuracy. The
likely reason for the increased difficulty in learning is that in
[18] learning works best when tinh is equal to the refractory
period of the neuron, such that after one neuron fires, all
neurons have the same chance of firing after the refractory
period. It is not easily possible to achieve the same effect
using inhibitory exponential conductances, since it would be
necessary to simultaneously fine tune the time constant of the
inhibitory conductance, the refractory period, and the strength
of the connection from inhibitory to excitatory neurons. Even
if such a fine tuning is achieved, neurons that are not in
their refractory period can still integrate incoming excitatory
potentials and thus increase their chance of firing. Since
many neuromorphic systems exhibit exponential dynamics for
postsynaptic potentials and for learning that are similar to
the ones in our network, it should possible with only minor
changes to port our network to existing neuromorphic systems.

2) Inhibition: In the current implementation we used as
many inhibitory neurons as excitatory neurons, such that every
spike of an excitatory neuron (indirectly) leads to an inhibition
of all other excitatory neurons. This can be changed by substi-
tuting the big pool of inhibitory neurons by a smaller one and
using a one-to-many connectivity from excitatory to inhibitory
neurons. This would result in a network where a spike of an
excitatory neuron leads to inhomogeneous inhibitory inputs to
other excitatory neurons and thus might favour the activation
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of some neurons over others. Nonetheless, in a big network
those effects should be averaged out and the performance of
the network should stay approximately the same.

3) Spike-Based Learning: Given that power consumption is
most likely going to be one of the main reasons to use spike-
based machine learning architectures, it maybe preferable to
use spike-based learning instead of rate-based learning since
the learning procedure itself has a high power consumption.
Specifically, spike-based learning is important when the learn-
ing procedure takes up a significant part of time the network
will be used. Another application where spike-based learning
is needed is for systems which have to adapt dynamically to
their environment, i.e. when it’s not enough to train the system
once and run it with the pre-trained weights. Possible examples
include speech recognition systems that are pre-trained but
adaptable on the user’s accent, or vision processors that have to
be tuned to the specific vision sensor. Such an adaptive vision
processing system is especially interesting in conjunction with
a spiking vision sensor like the ATIS or the DVS [33, 34, 35]
as it provides an end-to-end low-power spike-based vision
system. If our network were implemented on a low-power
neuromorphic chip [3, 4, 5, 6], it could be run on a very
low power budget; for example, using IBM’s TrueNorth chip
[6] which consumes about 72mW for 1 million neurons, the
network would consume less than 1mW.

4) Competitive Learning: Intuitively, the function of the
network is similar to competitive learning procedures [36]
like self-organizing maps [37] or neural-gas [38], which share
aspects with k-means. The main idea is that each neuron learns
and represents one prototypical input. Every time an input is
presented, the network determines the prototypes that are most
similar to the input. Those winner prototypes are then used
to predict the class of the input and their weights are adapted
such that they become more similar to the current input. In our
network this means that every time a neuron spikes, because an
example is similar enough to its receptive field, it will make
its receptive field more similar to the example. The lateral
inhibition prevents the prototypes from becoming too similar
to each other (which means that they spread out in the input
space), since only a few different neurons will be able to
respond to each example and in turn only a few neurons can
adapt their receptive fields towards it. Homoeostasis can be
thought of as a tool to keep an approximately constant number
of examples within range of the prototype. This analogy
to k-means-like learning algorithms is especially interesting
since recently such approaches have been shown to be very
successful in complex machine learning tasks [39].

The main advantages of our system are its scalability,
making use of the large number of neurons in neuromor-
phic systems, and its flexibility in spike-based unsupervised
learning rules, allowing training of the network without labels
and using only few labels to assign neurons to classes while
achieving state-of-the-art performance.
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