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a b s t r a c t

Synapses exhibit complex filtering properties on short time scales with respect to their presynaptic

pulse trains. In particular, the quantal model of neurotransmitter release has been shown to be highly

selective for particular presynaptic pulse patterns. However, due to the iterative, pulse-based nature of

the original equations describing the quantal model, such analysis has been relegated to heuristics and

simulations. In contrast, we derive an explicit expression for the quantal model and apply it to analyzing

the transmission of modulated pulse trains across a synapse. We show that for biologically realistic

parameters, the quantal model favors periodically modulated pulse trains (such as bursting, chattering

or stuttering) over non-modulated (i.e. regular) ones.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The main computational function of artificial neural networks
has traditionally been modelled as an adjustment of the coupling
weight between neurons. In biological nets, this coupling weight
is provided by synapses, where an incoming (presynaptic)
pulse causes a release of neurotransmitters, which in turn
generate a postsynaptic current (PSC) that charges the postsy-
naptic (i.e. receiving) neuron membrane [10]. The synaptic weight
W (size of the PSC) can be modelled as a function of three different
variables [10]:

W ¼ f ðn; p; qÞ; ð1Þ

with n, p and q denoting the number of synaptic release sites, the
neurotransmitter release probability and the release quantity,
respectively. These variables represent structural characteristics of
biological neural networks [2].

Mechanisms acting on the number of release sites n seem to be
targeted at long-term learning, while plasticity of the neuro-
transmitter release probability p and release quantity q both act
on timescales of 0.1–1 s and are therefore well suited for
extracting temporal fine structure of presynaptic pulse trains
[1,9]. Even for long-term learning, this short-term synaptic
filtering may influence the type of learning carried out [6]. Thus,

dynamic synapses execute various crucial signal transformations,
for a review, see [1].

The plasticity of q has been modelled in an influential work by
Markram et al. [11]. They introduced a formulation of quantal
neurotransmitter release based on a descriptive model of
biological mechanisms and measurements (in the following
referred to as quantal model). Over the intervening years, the
quantal model has been extensively studied with respect to its
information transmission properties in single synapses [1,12,13,7]
or in populations [14]. It has also been combined with other
synaptic plasticity mechanisms to investigate possible interrela-
tions with long-term learning [6,1] or probabilistic release models
[12]. The model has also been employed in a VLSI realization of
‘selective attention’ neural information processing [4]. Various
state of the art neuroscience efforts still use the original model e.g.
in studies of pain reception [6], the differing modes of memory
retrieval [16] or in the continuing effort to fully characterize the
model itself and its various processing characteristics [15,16,6].
However, most of this work has been carried out via simulations,
probably caused by the iterative, pulse-based nature of the model,
making a closed solution, i.e. some kind of transfer function,
intractable. In this work, we show that for regular pulse rates,
the model by Markram et al. can be expressed explicitly as an
exponential decay function. Absolute time constants of this
exponential decay are derived in the appendix, based on the
original iterative time constants and the underlying pulse rate.
We use this derivation in Section 2 to analyze the response of a
dynamic synapse to frequency modulated pulse trains. These
modulated pulse trains [12,13], i.e. comprised of regular shifts
between high and low pulse rates [8], constitute an important
component of the repertoire of neural information transmission at
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dynamic synapses. The veracity of the explicit expression and its
application to modulated pulse trains is shown by comparison
with simulations of the original quantal model. Also, comparison
with similar work carried out via simulations in the literature
[13,12] confirm the findings derived from our explicit solution.

2. Synaptic transmission of modulated pulse trains

2.1. Model of activity-dependent synapses

The model developed by Markram et al. [11] is governed by
two parameters, utilization of synaptic efficacy u and available
synaptic efficacy R. It is based on the assumption that there is a
specific amount of neurotransmitter vesicles available to the
synapse for transmission. Upon transmission of a presynaptic
pulse, a certain fraction of these vesicles becomes instantaneously
unavailable, decreasing R. Two mechanisms act to restore these
vesicles. On the one hand, a constant recovery of R takes place. On
the other hand, a facilitation process is activated that increases the
utilization u with each presynaptic pulse. Facilitation thereby acts
on a longer time scale than recovery, increasing synaptic response
for intermediate pulse rates.

Both u and R are measured as fractions of maximum efficacy at
pulse n of the pulse train. The iterative equations governing the
evolution of un and Rn are as follows [11]:

unþ1 ¼ une�Dtn=tfacil þ U � ð1� une�Dtn=tfacil Þ; ð2Þ

Rnþ1 ¼ Rnð1� unþ1Þe
�Dtn=trec þ 1� e�Dtn=trec ; ð3Þ

with Dtn denoting the time difference between pulses n and ðnþ
1Þ of the pulse train. Utilization is increased (facilitated) with each
pulse and recovers with a time constant tfacil, while R recovers
with trec, dependent on the current utilization. The starting terms
for (2) and (3) can be computed from the utilization U of a relaxed
synapse (i.e. Dt0-1) as u1 ¼ U or R1 ¼ 1� U, respectively [11].
The PSC caused by a presynaptic pulse is defined as the product of
un and Rn, weighted with the absolute synaptic efficacy A (ratio of
release quantity to resultant PSC):

PSCn ¼ A � Rn � un: ð4Þ

The effect of this adaption can best be described as transmis-
sion of transients, i.e. changes in the presynaptic pulse rate are
transmitted with their full dynamic range to the postsynaptic
neuron, but the response to steady-state input pulse rates
diminishes (see Fig. 1). This seems to be a universal feature of
biological neural nets, where novel stimuli receive increased
responses compared to static ones [1,10].

For a steady-state signal, the above response can be thought of
as a signal compression, so that the high dynamic range of e.g.
sensory input is adapted to the limited range of the pulse response
of a neuron [1]. The steady-state values that u and R settle to for a
given pulse rate (Fig. 11) can be computed by equating un and unþ1

in (2) for a fixed pulse rate l ¼ 1=Dtn [11]:

ucðlÞ ¼
U

1� ð1� UÞ � e�1=l�tfacil
: ð5Þ

Using this uc and a similar equalization approach, the convergent
Rc is derived as

RcðlÞ ¼
1� e�1=l�trec

1� ð1� ucðlÞÞ � e�1=l�trec
: ð6Þ

These equations confirm the finding of Fig. 1 that the steady-state
PSC response for low pulse rates is amplified with a time constant
tfacil while the response for high pulse rates is attenuated with a
time constant of trec.

Fig. 2 shows the converged values with respect to the pulse
rate l. While synaptic efficacy R decreases with higher pulse rate,
utilization u increases. This results in a relative PSC that increases
to its maximum value at approx. 20 Hz and then slightly
decreases, which is in agreement with [11,2]. Note that this is
the response to a single presynaptic pulse; for a mean PSC
response over a given time window, as it is the case in Fig. 1, this
value has to be weighted by the pulse rate.

2.2. Analytical approach to synaptic transmission

For variable pulse rates, the attenuation of a stimulus should be
limited so as not to loose important information about the stimulus
resp. only attenuate static stimuli [10,1,4]. In the following, the PSC
response of the Markram model to modulated stimuli is analyzed. A
modulated pulse rate can be thought of as a sequence of bursts (see
Fig. 3) and as such represents a generic model for various types of
neural pulse signalling, where the information is encoded in the
temporal fine structure of the pulse signal [8,12], or where bursts
represent mechanisms in memory retrieval [16].

For the purpose of this study we approximate a natural spike
train with interspaced bursts [13] (as shown in the upper graph of

input pulses and excitatory postsynaptic current (EPSC)
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Fig. 1. Behavior of the quantal synaptic short-term adaption, protocol similar to [11, Fig. 4], but regular pulse rates instead of Poisson, frequency step after 1.5 and 3 s, pulse

rates 15 s�1-30 s�1-80 s�1, the continuous curve denotes the resulting PSC (see footnote 1).

1 The parameters are identical to [11, Fig. 4], i.e. tfacil ¼ 530 ms, trec ¼ 130 ms,

A ¼ 1540 pA, U ¼ 0:03. To derive a continuous PSC from the pulse-PSC of (4),

pulses with a duration of 1.4 ms are weighted with the responses from (4), similar

to the sum of PSCs as used in [13]. However, in contrast to [13], a moving average

with a window of 100 ms is computed to obtain a time curve rather than a scalar

figure of merit. The pulse duration is not explicitly mentioned in [11], but

biological evidence [10] and the similarity of Fig. 1 with [11] support this value.
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Fig. 3) by a spike train with a rectangular modulation between
two fixed pulse rates (lower part of Fig. 3).

As is shown in the appendix, in the case of such a piecewise
constant pulse frequency, the convergence of uðtÞ can be
expressed by an exponential decay with a new absolute time
constant tu;l that is not only related to the original iterative
time constant but also to the underlying pulse frequency.
Fig. 4 qualitatively shows the time course of uðtÞ for such a
modulated stimulus. The value of uðtÞ oscillates inside a fixed
amplitude interval that depends on the modulation frequency fm,
on the convergence limits uc for low and high pulse rates and on

the new absolute time constants tu;l1
and tu;l2

(see (20) in the
appendix).

For the derivation of the PSC’s modulation dependency, we
start with the explicit expression of (2) as derived in the appendix.
Dependent on the sign of the term ðu0 � ucÞ, this equation
describes one increasing or decreasing part of the time course,
respectively:

uðtÞ ¼ ðu0 � ucÞe
�t=tu;l þ uc: ð7Þ

For evaluating the integral over the average PSC, the initial values
for each cycle must be calculated. These are generally not the
limits of convergence, but intermediate values, as can be seen
from Fig. 4. Their calculation will be shown exemplarily for ux;l2

in
the following. Our approach is based on the observation, that the
value of uðtÞ at points 1 and 3 in Fig. 4 is the same in a steady state.
Following the time course of uðtÞ beginning at point 1 (assuming
t ¼ 0 there) yields:

uðtÞ ¼ ðux;l2
� uc;l1

Þe�t=tu;l1 þ uc;l1
-u

1

2fm

� �
¼ ðux;l2

� uc;l1
Þe�1=ð2fmtu;l1

Þ
þ uc;l1

;

ð8Þ

with the second equation determining the value of uðtÞ at the end
of the high-rate interval. An analogous relation for the low-rate
interval, i.e. the time course from point 2 to 3, results in

u
1

fm

� �
¼ ux;l2

¼ u
1

2fm

� �
� uc;l2

� �
e�1=ð2fmtu;l2

Þ
þ uc;l2

: ð9Þ

Evaluating (8) and (9) leads to the following expression for ux;l2
:

ux;l2
¼ ½uc;l1

e�1=ð2fmtu;l2
Þ
ð1� e�1=ð2fmtu;l1

Þ
Þ þ uc;l2

ð1� e�1=ð2fmtu;l2
Þ
Þ�

�
1

1� e�ðtu;l1
þtu;l2

Þ=ð2fm�tu;l1
�tu;l2

Þ
: ð10Þ

Results for ux;l1
, Rx;l1

and Rx;l2
can be derived with similar

approaches.
Now, the mean synaptic release quantity UR can be calculated.

This is done by integrating the product uðtÞ � RðtÞ and normalizing
the result with the integration interval. For the high-rate interval,
i.e. the time course between points 1 and 2, the following holds:

UR12 ¼ 2fm �

Z 1=2fm

0
½ðux;l2

� uc;l1
Þe�t=tu;l1 þ uc;l1

�

�½ðRx;l2
� Rc;l1

Þe�t=tR;l1 þ Rc;l1
�dt: ð11Þ

Evaluating this integral results in

UR12 ¼ 2fm ðux;l2
� uc;l1

ÞðRx;l2
� Rc;l1

Þ �
tu;l1

tR;l1

tu;l1
þ tR;l1

�

�ð1� e�ðtu;l1
þtR;l1

Þ=ð2fm �tu;l1
�tR;l1

Þ
Þ

þðux;l2
� uc;l1

Þtu;l1
Rc;l1
ð1� e�1=ð2fmtu;l1

Þ
Þ

þðRx;l2
� Rc;l1

ÞtR;l1
uc;l1
ð1� e�1=ð2fmtR;l1

Þ
Þ þ

uc;l1
Rc;l1

2fm

�
: ð12Þ

Integrating over the low-rate interval, i.e. the time course between
points 2 and 3, in the same way yields the corresponding
value UR23.

As mentioned together with Fig. 1, these mean values must
be weighted by the number of pulses that occurred in the
corresponding time interval. This can be done by using the ratio
between the total time any pulse was active and the time interval:

PSC xy ¼ A �
TpulseNpulse;x

Tnorm
� URxy ¼ A �

TpulseðlxTnormÞ

Tnorm
� URxy: ð13Þ
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Fig. 4. Time course of uðtÞ and its dependencies on modulation frequency fm and

convergence limits uc for high and low pulse rates l1 and l2, respectively.

Presynaptic pulse rates of the dynamic synapse are modulated as depicted in Fig. 3.
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For both the high-rate and low-rate intervals, Tnorm ¼ 1=2fm. Using
the corresponding constant pulse rate, Npulse can be calculated
for each interval as Npulse;x ¼ lx � Tnorm. For calculations, we will
use Tpulse ¼ 1:4 ms, which is in agreement with the parameters
used in [11].

2.3. Results

The explicit expressions derived in Section 2 describe the
behavior of PSC transmission dependent on the modulation
frequency. To evaluate these equations, we compare their
resulting data with numerical simulations of the original iterative
equations (2) and (3). Parameters for these simulations are
identical to those used in Fig. 1, with the addition of l1 ¼

130 s�1 and l2 ¼ 6 s�1. From these values, time constants tu;l1
, etc.

needed by the equations of Section 2 were calculated using the
results of the appendix. For calculating the limit values uc;l1

, etc.
and the initial values of a period in steady state, (5)–(6) and (10)
with its counterparts were used, respectively.

Differing from the analytical equation, a sine-modulated
Poisson process similar to the bursty spike train in the upper
graph of Fig. 3 was used for the simulations instead of the
deterministic square-modulated pulse train. Such a stochastic
pulse train more closely resembles biologically realistic ones like
the quasi-sine-modulated pulse train used in [8, Fig. 6]. Fig. 5
shows the behavior of PSC transmission.

For clarity, a logarithmic scale was used for the modulation
frequency fm. The simulation curve represents the averaged PSC
over 30 sine-modulated Poisson pulse trains of length 2 s for each
modulation frequency data point. Despite the different stimula-
tion protocols and the continuous-time generalization of the time
course of u and R used for the analytical expression, the two
curves are in close agreement with each other. Both curves show
only slight absolute variation in postsynaptic current, with the
mean PSC being almost constant over a wide range of modulation
frequencies.

Compared to the converged PSCs for constant high or low rate,
15.7 pA at 130 s�1 and 1.28 pA at 6 s�1 as derived from (5) and (6),
the PSCs under modulation according to (13) calculate to 18.5
and 0.84 pA, thus being significantly higher on average. Note
that the absolute PSC values of Fig. 5 also compare well with
Fig. 3 of [13], where the product un � Rn, when adjusted for spike

count, spike frequency and the synaptic efficacy A of [11], is equal
to 10.4 pA.

Hence, the postsynaptic ‘efficiency’, i.e. the total current
induced by a certain number of pulses, is increased for modulated
or grouped pulse trains. Transmission of modulated pulse trains is
therefore more efficient compared to constant rate pulse trains,
which is in accordance with the experimental data [1,9].

In the simulation, this effect is present even for high
modulation frequencies (fm in the order of 1=l1), since the
progression from low to high modulation frequencies is similar
to the biological one from bursting to stuttering to chattering [13],
with chattering still being significantly different from a constant
rate stimulus.2 Therefore, u and R of the simulated iteration
equations do not converge to steady-state values, but alternate
between intermediate values. The relative variation of PSC with
modulation frequency is due to the relatively high single pulse
rates l1 and l2, making the influence of the term for the
increasing PSC in (2) relatively low [11]. The depression of the
PSC is dominant, which is especially the case for low modulation
frequencies, where R decreases significantly due to the time
constant trec. For high modulation frequencies this effect is not as
strong as for low ones [1,7]. Therefore, the PSC increases with
higher modulation frequencies, as can be seen from Fig. 5.

The dashed line in Fig. 5 shows the principal behavior for low
l1 and l2. In contrast to the high-rate case, the PSC decreases with
higher modulation frequencies. Due to the lower single rates, tfacil

also has an influence on the behavior. For long modulation
intervals, the slightly higher PSC response is governed by a fast
depression with time constant trec, followed by a facilitation with
time constant tfacil that increases the overall response. At higher
modulation frequencies, the influence of tfacil decreases, resulting
in a lower PSC [13]. This effect can be observed in the analytical
solution, as well as in simulations.

Fig. 6 shows the absolute time constants of u and R for two
different parameter sets used in Fig. 5B of [13]. The corresponding
optimal spike trains derived in [13] show marked transition
between regular spiking with 20 Hz ðtrec ¼ 60 msÞ and a burst
mode with a burst pulse frequency of approx. 100 Hz and burst
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Fig. 5. Comparison of analytical and simulated PSC for l1 ¼ 130 s�1 and l2 ¼ 6 s�1. The simulated curve is an average over 30 repetitions. A rate-weighted average was used

for calculating the mean PSC values shown in the figure. Additionally, the qualitative course of frequency dependence for l1 ¼ 70 s�1 and l2 ¼ 2 s�1 is also shown (dashed

line, positive offset).

2 Interestingly, the optimal pulse trains in terms of PSC, as derived by the

heuristic methods in [13] also run through these regimes and exhibit a very similar

modulation. We will come back to this in Fig. 6.
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repetition rate of 8 Hz. When looking at the time constants of
Fig. 6, the absolute time constants for u and R at trec ¼ 60 ms are
approximately equal for low pulse frequencies. Thus, to maximize
u � R for a given total pulse number, they have to be distributed
equally across the given time interval. This is due to the fact that u

and R have opposing frequency dependence (see Fig. 2), but the
same time constants, so to extract the maximum of the product
u � R, the slopes have to be sampled at regular intervals.

In contrast, for the second parameter value ðtrec ¼ 280 msÞ, the
time constant for R is significantly higher than the time constant
for u at low pulse frequencies. Thus, R needs a longer time to
recover between bursts (low frequency) than u, consequently a
regime with very little to no pulses will increase the product
R � u, since its value mainly depends on R after u has already
recovered due to its smaller time constant. On the other
hand, the time constants for u and R at high frequencies are
higher than the time between pulses in a burst (10 ms), so that
adaptation to the high rate, especially the decay of R, will not have
much influence on a burst of 2 or 3 pulses. Therefore, it is
favorable for maximum transmission of a given number of pulses
per unit time [13] to wait a longer time for recovery and then
apply a short high-frequency burst which is too short for the
synapse to adapt.

3. Conclusion

In extension of the work presented in [11,6,7,1], we have shown
synaptic frequency selectivity of the quantal model not only for
the pulse rate itself, but also for the modulation parameters, i.e.
burst frequency, inter-burst-interval and burst duration. In [9], a
similar, but simulation-based analysis has been carried out for a
model of release probability. However, the complex dependence
of synaptic transmission on the burst characteristics has been
reported by [9] only for networks of several neurons and synapses,
whereas our work shows this dependence for a single synapse
employing quantal release plasticity.

A wide range of naturally occurring pulse trains could
be subjected to detailed mathematical analysis using the
model derived herein. For instance, the transient settling of
u and R, which our analysis is based on (see appendix), can not
only be observed for a modulation with two fixed pulse rates, but
also for Poisson pulse trains, see Fig. 4 of [11]. Furthermore, as
seen from Fig. 5, even with the approximations used in our

analytical model (fixed rate modulation, time-continuous synap-
tic dynamics) there is a very good correspondence with simula-
tions employing the iterative quantal model and quasi-natural
bursty spike trains. Thus, our analysis is also valid if the pulse
rate during a burst is not constant. Accordingly, the general
preferential treatment of bursts by dynamic synapses as derived
in Section 2 could also be extended to cases where the
information is contained in the fine structure of the bursts
[9,7,12].

Also, the modulation does not have to be constant, i.e. pauses
between bursts could vary, so that pulse trains derived in
[12,13,15] could as well be treated with a more rigorous, global
approach, rather than an analysis via simulations. In addition, the
closed expression for the transfer function developed in this work
could be employed to characterize the transfer/decoding function
of synaptic networks, such as the ones used in [9].

Significant recent work in the neuroscience community tries to
reinterpret this decoding function of neural networks with short-
timescale-adapting synapses as an attractor network that
switches to one of its states depending on external input and
synaptical properties, thus modelling memory and decision
making [16,1,3]. As shown for the limited example of Fig. 6, the
preferences of synapses and thus the attractors of such a network
(very likely some kind of repeating burst signal) could be analyzed
more thoroughly based on our absolute time constants than on
the original iterative ones.
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Appendix A. Transient analytical description
of quantal plasticity

The absolute convergence of iterative equations like those of
the quantal model [11] is only defined for some special cases. The
convergence limits for a constant presynaptic pulse rate l can be
derived with relatively little effort [11], but the speed of
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Fig. 6. Time constants tu;l (dashed) and tR;l (solid) with respect to pulse frequency l for two parameter sets as used in Fig. 5B of [13] ðU ¼ 0:32; tfacil ¼ 62 msÞ.
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convergence is difficult to define, especially due to the constant
parts of the iterative equations for un, (2), and Rn, (3).

However, as Fig. 7 shows, in case of regular spike trains
with a defined pulse rate, the iterative descriptions of u and R in
(2) and (3) can be interpreted as settling of transient responses to
a steady-state value, comparable to e.g. a resistance–capacitance
voltage settling curve. In this case, an absolute time constant for
this settling has to be derived, which is likely to depend on the
fundamental time constants of the quantal model.

In the following, an explicit expression for the settling of u will
be derived. Eq. (2), recursively describing the value of u after inter-
spike interval (ISI) Dtn�1, can be rewritten as

un ¼ un�1 � e
�Dtn�1=tfacil � ð1� UÞ þ U: ð14Þ

Note that all variables are shifted by one ISI compared to the
original formulation. To be able to derive an explicit expression,
we restrict ourselves to pulse trains having a constant rate l, so
that Dtn ¼ 1=l for all n. Recursively extending (14) by one ISI
yields

un ¼ un�2 � e
�2=l�tfacil � ð1� UÞ2 þ U � e�1=l�tfacil � ð1� UÞ þ U: ð15Þ

The further recursion back to u0 is obvious from (15). Together
with the initial condition u0 ¼ U, this results in a sum over a
geometric series:

un ¼ U �
Xn

i¼0

ð1� UÞie�i=l�tfacil ¼ U �
Xn

i¼0

½ð1� UÞe�1=l�tfacil �i: ð16Þ

Because the term ð1� UÞe�1=l�tfacil never exceeds the interval [0,1),
this series converges, and its sum can be calculated as [5]

un ¼ U
½ð1� UÞe�1=l�tfacil �nþ1 � 1

ð1� UÞe�1=l�tfacil � 1
: ð17Þ

The limit for n-1 is the same as the value for ucðlÞ calculated in
(5). For the remainder of this derivation, it is convenient to write
(17) in the following form:

un ¼ U �
U

1� ð1� UÞe�1=l�tfacil

� �

� ðð1� UÞe�1=l�tfacil Þ
n
þ

U

1� ð1� UÞe�1=l�tfacil
: ð18Þ

The speed of convergence is determined by the term dependent
on n. Using the equality n ¼ l � t, which is a generalization of the
assumption l ¼ 1=Dtn, this term gets:

ðð1� UÞe�1=l�tfacil Þ
l�t
¼ et�½l�lnð1�UÞ�1=tfacil � ¼ e�t=tu;l ; ð19Þ

with the time constant tu;l describing the speed of convergence:

tu;l ¼
1

l � ln
1

1� U

� �
þ

1

tfacil

: ð20Þ

The time constant thus is dependent on both the time constant of
the iteration, tfacil, and the pulse rate, l. Therefore, (18) can be
modelled as follows:

uðtÞ ¼ ðu0 � ucÞe
�t=tu;l þ uc: ð21Þ

An explicit expression for Rn can be derived in a similar way,
starting with an equation analogous to (15). Eq. (21) and its
counterpart for Rn were verified against simulations of the
iteration formulae (2), (3) over a wide range of parameters tfacil,
trec and U, with good results. Fig. 7 shows an example. The
differences between simulated and analytically derived uðtÞ and
RðtÞ are due to the discrete nature of the original, iterative
equations that were generalized to continuous time for the
analytical formulation.
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Fig. 7. Comparison of simulated and analytically derived time course of u (A) and R (B). Parameters are the same as used in Fig. 1.
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