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Summary

The synapse, first introduced as a physiotogical hypothesis by C. S. Sherrington at the close of the nineteenth century, has, 100

y"u.r'on, become the nexus for ãnatomicãl and functional investigations of interneuronal communication. A number of

írypotheses have been proposed that give local synaptic interactions specific roles in generating an algebra or logic for

cómputations in the neocoitex. Experimental work, hòwever, has provided little support for such schemes' Instead, both

structural and functional studies indicate that characteristically cortical functions, e.g., the identification of the motion or

orientation of objects, involve computations that must be achieved with high accuracy through the collective action of

hundreds or thousands of neurons ìonnected in recurrent microcircuits. Some important principles that emerge from this

collective action can effectively be captured by simple electronic models. More detailed models explain the nature of the

complex computations performed by tñe corticJ circuits and how the computations remain so remarkably robust in the face of

u ,r,r-b.. of sources of noise, inctuding variability in the anatomical connections, large variance in the synaptic responses and

in the trial-to-trial output of single neurons, and weak or degraded input signals.

Introduction

The analyses of the structure and function of the
synapse rank amongst the highest achievements of
modern neuroscience. The original physiological dis-
coveries that led to the formulation of the concept of
the synapse raised many deep questions that remain to
be answered. Some of these important questions relate
to the integration of synaptic input by single neurons
within a network. In the neocortex, the circuits are

strongly recurrent. This raises especial problems for
the analysis of synaptic interactions and for attempts
to develop synthetic, simplified models that effect-
ively capture basic principles of cortical operation. In
this paper we discuss the development of ideas of
cortical computations by synapses and review the
experimental data in suPPort of these ideas.

Finally, we provide a synthetic account of the

actions of synapses in the recurrent circuits of the
neocortex and discuss their importance in cortical
computations.

Synapse as a physiological hypothesis

The concept of the synapse, that so physical of
junctions between neuron and neuron, was an

historical imperative demanded by physiologists at
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the close of the nineteenth century. The word
'synapse' was first introduced by Sherrington (1897)

in his contribution to the section on the 'Central
Nervous System' in Foster's 7th edition of A Text Book

of Physiology in 1897.'synapse' ('clasp') was actually
coined by the Euripidean scholar Verrall, as a more

elegant and grammatically tractable alternative to

Sherrington's suggestion of 'syndesm' ('connection';

see Fulton, 7949). Tlne physiological controversies
surrounding the synapse: whether transmission was

chemical or electrical (see Eccles, 7964; Whitteridge,
1993), were well in the future. Meanwhile, Sherrington
and Foster's introduction of the term 'synapse' and its

associated functional implications provided physio-
logists with a means of explaining what Foster called
the 'busy time' of the spinal cord, and enabled them to

identify mono- di- and polysynaptic reflexes' Neuro-
anatomists, then still embroiled in the controversy of
the neuron doctrine, however, were slow to accept the

term. Ramón y Cajal, for example, minutely described
the morphology of axonal boutons, but the word
'synapse' does not apPear once in the edited
English translation of his lengthy autobiography
(Ramón y Cajal,1989). He also made no attempt to
identify the possible classes of inhibitory neurons that
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physiologists, by the time of his writing, had clearly
shown to exist as a separate functional class.

The hypothesized existence of the synapse provided
Sherrington with an explanation for how postsynaptic
excitation and inhibition might be effected. In his book
of 7906, The Integrøtiae Action of the Neraous System,
Sherrington explained that by designating a set of
central afferent terminations on a motoneuron as
specifically 'inhibitory' he meant that changes in
stimulus intensity, or mode of stimulation of these
afferents produced only inhibition. He argued that
inhibition, "in all probability is . . . situated at points of
synapsis". Thus, Sherrington's introduction of the
concept of a 'synapse' was an important stepping
stone in his work to establish that inhibition was an
active process, not simply an absence of activity, and
that inhibition acted at a particular point in time
and space. FIowever, for the origin of this concept
of active inhibition in tandem with active excitation,
Sherrington credits Descartes (see Sherrington, 7940,
p. 186). This same issue is of direct relevance in under-
standing the control of excitation in the neocortical
circuits.

The transference of these fundamental concepts of
synapses and inhibition and excitation to other parts of
the brain, especially the cerebral cortex, were sur-
prisingly slow. Anatomically, terminal boutons were
first convincingly demonstrated in the cerebral cortex
by Meyer and Meyer (7945).In his discussion of the
circuits of the neocortex, Lorente de No (1949) makes
no mention of synaptic inhibition. Only with the
development of intracellular recording methods was
evidence presented that inhibitory synapses were
present in the neocortex. The earliest intracellular
recording, made by Albe-Fessard and Buser (1953,
1955) from cortical neurons showed hyperpolarising
events that were so much longer than the inhibitory
post synaptic potentials (ipsps) seen in the spinal
motoneurons that their genuineness as synaptic events
was initially doubted. F{owever, antidromic stim-
ulation of the Betz cells in the cat's motor cortex
during intracellular recording by Phillips (1959)
demonstrated convincingly the existence of recurrent
excitatory and inhibitory synapses at the level of single
neurons.

The advent of the era of the electron microscope
confirmed the hypothesis that the terminal boutons
were the sites of the synapses. Gray subsequently
established the morphological criteria for distinguish-
ing these two types in the electron microscope (EM) in
the neocortex that are still used today (Giay, 7959).
These two morphological types, called type 1 and type
2, correlate with the excitatory and inhibitory synapses
respectively (Uchizono, 7965), and confirm Sherring-
ton's early hypothesis. These ultrastructural findings
provided one of the hooks to which current concepts
of the opeîations of synapses attach. The development

DOUGLAS, MAHOWALD, MARTIN and STRATFORD

of the electron microscope as a tool of the neuro-
anatomists triggered the beginning of the modern era
of research on the microcircuitry of the neocortex,
which began with a series of papers that used the
classical technique of Golgi-staining to identify the
different morphological types of neurons in the cortex
(e.9., Valverde, 7977; Lund, 7973; Szentâgothai, 1973;
Jones,1975).

It is an interesting question why these modern Golgi
studies had such an impact, given that Ramon y Cajal,
Lorente de No and others luminaries had applied the
same technique to the same material for their classical
studies. The answer is that the view provided by the
EM of the ultrastructure of neurons and their synaptic
input led to a need to identify the sources of the images
seen in the high magnification of the electron micro-
scope (|ones, personal communication). Thus the
modern Golgi studies were certainly more direct in
their approach and provided more detailed descrip-
tions of the different cell types in order to match
their light appearance to the patterns seen in the elec-
tron nìicrographs. Technical developments allowed
the ultrastructure of Golgi-stained neurons to be
studied in the electron microscope (Blackstad,
7975; Fairén et ø1., 7977). It is clear that these studies
planted the seeds for the rich harvest of anatomical
and neurochemical data we now have for cortical
neulons.

Synapses as elementary devices for computation

While many careful experimental studies have added
greatly to our knowledge of the details of excitatory
and inhibitory neurons and their synaptic connections,
such analyses as these provide only the elemental
functional units of the cortical circuits. If we wish to
understand the collective actions of synapses and their
consequences, then we need to confront the same
fundamental questions about the excitatory and
inhibitory synapses faced by Sherrington and his
peers in studying the spinal reflexes. In modern
terms, we need to understand the computations
being carried out within the neural circuits. Compu-
tation, of course, is ultimately a physical process,
whether it is carried out by neurons or by transistors,
and necessitates that elements necessary for the
computation be brought together at the same physical
locus. This necessity has been somewhat misunder-
stood in the light of modern notion that computations
in the brain are carried out in a distributed and parallel
fashion. Parallel paths do converge in the brain.
Sherrington conceived this in synaptic terms as a
convergence towards a final common path: the means
of the convergence of the inhibitory and excitatory
pathways was through their synapses formed with
their target neuron (see below). Thus, from studies of
the spinal reflexes, Sherrington (1908) concluded
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excitation and inhibition add up algebraically:

The net change which results there when the two areas

are stimulated concurrently is an algebraic sum of the
plus and minus effects producible separately by
stimulating singly the two antagonistic nerves.

This was the important first step towards developing a

theoretical account of the computations being imple-
mented by the interaction of inhibitory and excitatory
synapses.

Arithmetic operations of synapses: linear summation

Theoretical studies of computations in neocortical
neurons stem from the investigations on the subthres-
hold biophysical properties of excitation and inhibi-
tion that might lead to logical or arithmetic operations
of the nerve cell (Blomfield,7974;lacket øl.,7975iRose,
7977; see also Koch & Poggio, 1985). The synaptic
events are in some sense the elementary 'bils' of the
brain. In neural modelling, each synapse performs a

probabilistic multiply-add. The multiplication factor is

given by the synaptic weight while the addition occurs

in the dendrite. The probabilistic element derives from
the fact that at any one central synapse, a presynaptic
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spike only causes the release of a synaptic vesicle with
a given probability (see Iack e/ ø1.,7990). Real synapses,

of course, have additional interesting behaviours, not
only because of their dynamic properties, which are

determined by the receptors and ion channels, but
because they are modifiable over a range of milli-
seconds to years. In addition to dynamics and
learning, synaptic interactions on the dendritic tree

could compute a large range of logical functions.
These synaptic interactions could be carried out by
very local operations, involving only one or a few
synapses (e.g., the synøptic microcircuits of Shepherd
7972, 7978). Both pre- and postsynaptic mechanisms
contribute to the variety of physiological responses

produced by individual synapses.
Sherrington's view is the simplest: neurons simply

sum algebraically the voltages generated by the
excitatory and inhibitory synapses they receive. If the

sum of the excitation (pluses) and inhibition (minuses)

exceeds the action potential threshold, the neuron
produces an output. In such simplified model neurons,

referred to as integrate-and-fire neurons, the dendritic
tree acts a linear device to convert input current into
firing frequency. The important corollary of the

4A 4B 5

Fig. 1. Spiny stellate neuron of layer 4A of cat visual cortex. These neurons are the major recipients of monosynaptic excitatron

irom tne laieral geniculate nucleus and have simple receptive fields. As in this example, their dendrites are largely confined to

layer 4 and their axonal arborisation is mainly in layers 3 and 4'
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algebraic summing is that both inhibitory and excita-
tory processes are graded. The solution of the equation
depends on the relative magnitude of the opposed
processes. If the excitation is intense, then threshold
will be reached even in the face of strong inhibition.
Since the discharge rate of the neuron itself depends
on the magnitude of the net excitatory current, once
threshold is reached, the sum of the synaptic current of
the excitatory and inhibitory synapses will continue to
determine the firing frequency.

There is evidence for linear summation of synaptic
input within the receptive fields of simple cells in the
visual cortex of the cat. These neurons are found
mainly in or near the zones of thalamic input to the
visual cortex (Fig. 1). When tested with sine wave

grating these neurons behave approximately as linear
filters (Movshon el ø1., 7978). Or more precisely, a sine
wave input to these neurons gives a spike output that
is halfway rectified. The rectification is explained by
the action potential threshold: the underlying mem-
brane potential is a sine-wave that passes through the
action potential threshold to produce the rectified
output signal. Such linearity is a feature only of
neurons with simple receptive fields, since the other
varieties of receptive fields - complex and end-
inhibited, are not linear. FIowever, the very fact that
there is a class of neurons that exhibits quasi-linear
behaviour is apuzzle, because in addition to the action
potential threshold there are so many sources of non-
linearities in neurons.

e
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Fig. 2. (A) Reconstruction of distal dendrite of a spiny stellate neuron in layer 4 of cat visual cortex showing synaptic boutons
(black:forming Gray's type 1 synapses, white-forming Gray's type 2 synapses), annotated features can be seen in the
micrographs. Spine 3 (sp3) is proximal, spine 1 (sp1) is more distal. (B) An electron micrograph taken from a point about
midway along the iength of the reconstruction in (A). A slender spine neck (sn) gives rise to the spine (sp2), which forms a type
1 synapse (arrowhead) with a large bouton (b2). The dendritic shaft (d) forms type 1 synapses with boutons b3 and b4
(arrowheads). (C) The dendritic shaft (d) forms a type 1 synapse (arrowhead) with b6, which is very close to the point at which
a small spine (sp3) emerges. Bouton b5 forms a type 1 synapse (arrowhead) with sp3 and the dendritic shaft (d) forms a type 1

synapse (arrowhead) with bouton b6. Scale bars (A):1 pm; (8, C):0.5 ¡rm.
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Convergence of synaptic pathways on single neurons

A model system for studying synaptic interactions in
the neocortex is layer 4 of sensory cortex, which is the
main zone of termination of the axons of the relay
neurons of the thalamus. It was Hubel and Wiesel
(1962) who not only discovered that a profound
transformation in the receptive field properties of
neurons occurs within layer 4 of cat visual cortex, but
also offered a powerful explanatory model of the
means by which the centre-surround receptive fields
of the relay neurons of the visual thalamus (principally
the lateral geniculate nucleus) are transformed into the
simple receptive fields of layer 4 neurons. The

computations carried out within layer 4 of the primary
visual cortex has, and continues to be, one of the most
active and important (and occasionally contentious,
see below) areas of cortical research.

Although it was well known on anatomical and
electrophysiological grounds that neurons with simple
receptive fields form synapses with the specific
afferents of the dorsal lateral geniculate nucleus of
the thalamus (see Martin, 7984, 1988), these synapses

only contribute a minority (less than207o;see below) of
the excitatory synapse formed with the layer 4

neurons. The remaining synapses are largely from
intracortical sources. Recent detailed mapping of the
synapses formed with the dendrites of the spiny
stellate neurons of layer   (Fig. 1; Ahmed et øl',7994;
Anderson et nL,7994) have provided the first quanti-
tative estimates of the contribution of synapses from
sources other than the lateral geniculate nucleus.
Figure 2 illustrates the rich synaptic input to the
distal portions of the spiny stellate cells' dendrites. An
analysis of the size and location of the boutons that
form synapses with the spiny stellate dendrites
(Ahmed et ø1., 7994) indicated that the small boutons
that form Gray's type 1 synaPses (filled boutons, Fig'
2) with the dendritic shaft derive mainly from the layer
6 pyramidal cells. Other spiny neurons within layer 4
itself provide most of the medium sized boutons that
form Gray's type 1 synaPses with dendritic spines.

Only about 6% oÍ ttre Gray's type 1 synaPses formed
with spiny stellate dendrites originated from the
lateral geniculate nucleus. These synaPses are

formed by the largest boutons (e.g.b2 in Fig' 2).

The small percentage of synapses from the relay
cells of the lateral geniculate nucleus is in general
agreement with other estimates. (Garey & Powell,
7977;LeYay,7986; Peters & Payne, 1993)' Two studies
have reported substantially higher numbers of 22-28%
(LeVay & Gilbert, 1976; Einstein et ø1.,1987). So much
higher percentages are surprising, given that the
tracers used in these studies were radiolabelled
amino-acids, which are acknowledged to be less

sensitive tracers than the wheat-germ agglutinin
used by LeVay (1986) who obtained a figure of only
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57o in this later study. LeVay (1986) offered several
possible technical reasons for the discrepancy between
his two studies and concluded that the estimate of 28%

may be too high and the estimate of 57a too low!
Further work with better techniques obviously needs

to be done if the precise number is to be established for
the neuropil of layer 4, but the estimate for the spiny
stellate dendrites clearly indicates that other cortical
neurons provide the major part of the found 4000-5000

excitatory synapses on spiny stellate dendrites. The
inhibitory synapses arise entirely from cortical
neurons and are distributed about 50:50 between the
soma-proximal dendrites and the distal dendrites. The
smooth neurons (basket cells) of layer 4 also receive
excitatory input from the same sources - the lateral
geniculate nucleus (LeVay, 7973; Martin et al., 7983;

Freund et ø1., 7985; Einstein et aI., 7987), Iayer 6

pyramidal cells (McGuire et øL,1984; Somogyi,7989),
from other layer 4 neurons (Anderson et q1.,7994b),

and a tiny input from the claustrum (LeVay, 1986). The
quantitative contribution of each different source
remains to be determined for the basket cells.

How these anatomical figures translate into function
is of course a major question. Stratford and colleagues
(1989) have suggested that the Presence of multiple
classes of synaptic input might enhance the com-
putational power of cortical neurons if the synapses

show different efficacies and time courses. Stratford
and colleagues (7996) have recorded from layer 4 of cat

visual cortex maintained in aitro to determine whether
this is so for spiny stellate cells. The recorded single
fibre inputs to the same class of spiny stellate
cells that were studied anatomically by Ahmed
and colleagues (1994). They used both extracellular
'minimal stimulation' techniques and intracellular
recordings between pairs of cortical neurons to
examine the excitatory connections in layer 4 neurons
and between the layer 6 pyramids and the layer 4

neurons. Because the axons of the geniculate relay cells

were severed, intracellular recordings could obviously
not be made between pairs of geniculate relay neurons
and cortical neurons. However, single cut fibres of
geniculate relay neurons could be electrically stimul-
ated within the slice by extracellular bipolar elec-

trodes. Together these techniques revealed the exist-
ence of three functionally distinct classes of fast
excitatory synaptic input to the spiny stellate cells of
layer 4. These three classes differed not only in basic
attributes, such as conduction velocity and refractori-
ness, but also in the mean amplitude and dynamics of
the excitatory postsynaptic potential (ePsP, Fig. 3). The
peak amplitudes of the epsps evoked by the layer 6

pyramidal cells in the layer 4 spiny neurons varied
from 0.08-0.8 mV, which is in the range of those
previously reported for cortical neurons in other
cortical layers (Mason et ø1., 7997; Thomson ef ø1.,

7993).In contrast to the paired-pulse depression more
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Fig. 3. Examples of the three classes of fast excitatory synaptic input recorded in spiny stellate cells in cat visual cortex in aitro.
Upper panels: averaged traces of typical single fibre epsps for the three classes show that a paired pulse protocol (at 50ms
pulse interval) results in a net depression for Class 1 input (1650 trials), slight depression for class 2 (800 trials) and facilitation
for Class 3 (1200 trials). Lower panels: paired pulse scattergrams showing the relationship between individuaÌ presentations of
the paired pulse protocol. For Class 1 inputs (left) the first stimulus evoked a constant amplitude response (CV 67") and on
most occasions there was no response to the second stimulus, probably due to refractoriness in the axon being stimulated. If
the second stimulus did evoke a response, it was smaller than the first (points below diagonal). If onty the second stimulus
evoked a response, the response was full-sized. For Class 2 (centre) the stimulus commonly evoked nearly equal-sized epsps
(CV 1'4%).In the case of Class 3 (right) most points on the scattergram lie above the diagonal, indicating that the second
stimulus usually evoked a larger response than the first. Both responses fluctuate considerably (CV 43V"). Scale bars:200 pV
and 200ms.
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commonly recorded for cortical excitatory synapses,
the layer 6 pyramidal synapses exhibited powerful
paired-pulse facilitation. The other two classes of
epsps/ which originated from putative geniculocorti-
cal synapses and from spiny stellate synapses, did
show depression on the paired-pulse protocol (Fig. 3).

The AMPA receptor mediated epsps originating
from other layer 4 excitatory neurons were three
times larger on average than those evoked by Tayer 6
pyramidal cells. However, the largest epsps were
evoked by stimulation of the putative geniculocortical
fibres, which had a mean amplitude of about 2 mV.
These fibres were also the most rapidly-conducting of
the three classes. Nevertheless, the most striking
differences between the classes was in the variance
in the amplitude of the epsp from trial to trial. The
layer 6 pyramidal synapses had large coefficients of
variation CVs - wp to 770%. The synapses between
layer 4 neurons have lower CVs - up to 407o. The
putative geniculocortical synapses have astonishing
low CVs - below 76% with some near zero. Thus, the

primary sensory input to the visual cortex in the cat is
delivered through synapses that are powerful and
unusually invariant for central synapses. On face
value this would imply that the geniculocortical
synapses might indeed provide the dominant excita-
tory drive to the simple cells as suggested in the
original linear summation model of (Hubel & Wiesel,
7962) for the input to layer 4.

Flowever, these functional data have to be factored
by the number of synapses actually provided by the
geniculate afferents. The total number is less than
300 and of course only a subset of these originate
from the relay cells whose receptive field centres align
with the specific ON or OFF subfields of the simple cell
(Bullier et ø1.,7982; Tanaka, 1983; Reid & Alonso, 1995).
During the activation of the simple receptive field by a
visual stimulus, perhaps only tens of geniculocortical
synapses will be activated as the stimulus passes over
a receptive subfield, but because of the divergence and
convergence within the cortical circuits (see Martin,
7984, 7988) many more cortical synapses will be
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activated by the same stimulus. The net current
provided by the synapses of cortical neurons is in all
probability substantially in excess of the excitatory
current provided by the geniculocortical synapses.
Thus, the recurrent exitatory pathways in the cortex
provide the means of amplifying the relatively weak
and noisy signal delivered by the geniculocortical
synapses. This manner of operation, encapsulated in
the functional microcircuit proposed by Douglas and
colleagues (1988) and Douglas and Martin (7997)

receives strong support from physiological studies
showing that the layer 6 pyramidal cells provide an
augmenting response to the simple cells (Ferster &
Lindström, 1985; Stratford et a1.,7996), Lhat the layer 4

neurons are connected in recurrent excitatory circuits
(Stratford et ø1.,7996), and that reducing the activity of
the cortical neurons that excite layer 4 simple cells
strongly depresses the response of simple cells (Grieve
& Sillito, 1991; Ferster et ø1.,7996).

Even if all these synaptic events could be summed
linearly on the dendritic tree, the dynamics of the
various synapses are also important in determining
the linearity of the response: each presynaptic neuron
sends a barrage of impulses down its axon that
produces different degrees of depression or facilitation
of the synapse, depending on the particular synapse
and the rate of activation of the bouton (Thomson ef al.,
7993;Markram & Tsodyks,7996; Stratford et ø1.,7996).
Although the initial excitation to the simple cell arises
from the geniculocortical fibres, this would be rapidly
amplified by the addition of excitation from neigh-
bouring layer 4 neurons and further facilitated by the
augmenting activity of the layer 6 pyramidal synapses
(Ferster & Lindström, 7985).It is therefore difficult to
see how strict linearity could be maintained through
these changing conditions.

Non-linearities on the dendritic tree

Neurons that have complex receptive fields do not
exhibit the linearity seen in simple cells. Complex cells
form a large proportion of the receptive field types in
the primary visual cortex and form the vast majority of
receptive fields in the extrastriate cortex. Although the
form of the non-linearities are not well defined, non-
linearities other than the action potential threshold
have been proposed on theoretical grounds. For
example, simply the existence of active synapses
means that there are conductances distributed through
the dendritic tree. These will increase the input
conductance of the neurons significantly from their
lowest value, derived from a passive, unstimulated
dendritic tree that has been traditionally used in many
theoretical simulations of synaptic action (Bernander
et al., 7997). The increase in input conductance could
be significant when several hundred synapses are
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simultaneously active at physiological rates (t 50

spikesr t). Thir increases the electrotonic length of
the dendrites, so that the more distal synapses become
relatively less effective (Bernander et al., 1991). All
neurons are in this dynamic electrical state, so that in
addition to the history-dependent response of the
synapses themselves, the conductances activated by
the synapses are elements that contribute to poten-
tially strong non-linearities in the summation of the
synaptic potentials.

The dendritic tree itself may be functionally com-
partmentalised so that the local interactions taking
place between synapses lead to non-linear outputs
(Mel, 7994). Ohzawa and colleagues (1990) have
proposed a model of stereodisparity selectivity in
complex cells that relies on the grouping of binocular
pairs of simple cells with a squaring nonlinearity. This
nonlinear grouping could be implemented by placing
the synaptic input from the subunits on the same
dendritic branch of the complex cell and providing
some active mechanism for amplifying the current
delivered to the soma when both inputs are simul-
taneously active.

Synapses can activate voltage-sensitive sodium and
calcium conductances in the dendrites, which may
also serve to amplify the synaptic inputs to different
parts of the dendritic tree (Shepherd et ø1., 7985;
Huguenard et aL, 7989; Pockberger, 1991; Bernander
et ø1., 1994; Hirsch et ø1., 7995; Markram & Sakmann,
7994; Yuste et ø1., 7994). Bernander and colleagues
(1994) have suggested that the active conductances
could serve to linearize the synaptic inputs to avoid
saturation of the dendrites by synchronous inputs.
Inhibition can modify this dendritic excitation (Kim
et a\,,7995) by reducing the sodium and calcium spikes
produced by excitation of the dendrites. The timing of
the response to the inhibitory synapses influences the
timing of the spike generation in the dendrites and can
delay or accelerate the timing of the dendritic spikes.
Although these results obtained under the controlled
conditions oÍ in aitro recording lead naturally to
theoretical considerations of temporal coding of out-
puts, it should be admitted that there is still deep
ignorance about whether similar conditions ever
prevail to control the timing of spikes in aiao (see

Shadlen & Newsome, 7994).
The timing of spikes may be relevant to the issue

of the computation role of the propagation of the
spike generated at the axon hillock back into the
active dendrites (Stuart & Sakmann, 1994). What
the computational role actually is is presently specu-
lative, but Yuste and Denk (1995) have found that
temporal coincidence between an excitatory synaptic
input and the antidromic spike produces accumula-
tions of calcium within dendritic spines, and suggest
that short term or long term modifications to the
synaptic'weight' mightbe enabled by this mechanism.
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However, if the sodium action potential is blocked by
intracellular QX-374 (Gustafsson et ø1., 1987), the
potentiation persists. Further explorations of this
pairing paradigm (Markram & Tsodyks, 1996) have
drawn attention to the relevance of the synaptic
depression induced during trains of impulses, which
may significantly alter the signal transmission proper-
ties of the synapse over short time periods. Finally, it
should be recalled that even when the results of all
the dendritic computations are brought together at
the zone of spike generation at the axon hillock, the
morphology of the dendritic tree itself shapes the
pattern of firing and limits the maximum firing
frequencies of the neuron with both passive dendiritc
trees (Douglas & Martin, 7990) or in trees with active
conductances (Mainen & Sejnowski, 7996).

Dividing with inhibitory synapses

One central idea that emerged from theoretical studies
was the possibility of inhibition not simply subtracting
from the excitation, as Sherrington conceived it, but
dividing. This idea of divisive inhibition emerged
from consideration of the biophysics of the inhibitory
conductances, and their location on the dendritic tree.
The inhibitory synapses act by increasing the con-
ductance of the membrane to ions whose reversal
potential is generally more negative than the resting
membrane potential (Eccles, 7964). When these
synapses are activated, the depolarizing effects of the
excitatory synapses are, of course, opposed by the
inhibitory current. However, the size of the conduct-
ance required to balance the excitatory synapses will
depend on the reversal potential of the ions involved
at the inhibitory synapse. If the ion has a reversal
potential that is substantially negative to the resting
membrane potential, as is the case for a potassium
conductance (the ionophore associated with GABAb
receptor), then a small increase in the conductance
would be sufficient to generate an inhibitory current
able to move the resting potential further from
threshold and so decrease the effectiveness of the
excitatory synapses. If the reversal potential of the ion
is at, or near, the resting potential, e.g., the case of the
chloride ionophore associated with GABAa receptor,
(Eccles, 7967, 7964; Krnjevió & Schwartz , 7967) , then a
large increase in the conductance is required to
produce the same reduction in the excitation. In this
case the inhibition cannot act by moving the mem-
brane further from the resting potential. It must act by
shunting the excitatory current through low resistance
pathways through the membrane. Such a mechanism
was observed in the crayfish by Fatt and Katz (1953).

The size of the inhibitory conductances thus determine
to some degree the arithmetic operations that could be
performed by nerve cells.
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The analysis of Blomfield on the arithmetic opera-
tions performed by cortical neurons (Blomfield, 1974)
indicated that not only the size oÍ the conductance,
but the position of the synapses were important in
determining the nature of the arithmetic function. If
the inhibitory conductances were located proximally
on the dendritic tree and were large, then the
interaction between the excitatory and inhibitory
synapses would be non-linear. The inhibitory con-
ductances would 'shunt' the excitatory currents
significantly and thus would appear to act 'divi-
sively'. Small inhibitory conductances located on the
proximal regions of the neuron, or inhibitory con-
ductances located on distal portions of the dendritic
tree would interact linearly with the excitatory
synapses and produce the appearance that the
inhibition was subtracting the excitatory current
arriving at the neuron (Blomfield,7974). Experimental
evidence in favour of the non-linear inhibitory
operation was not long in coming: Rose (1977)

determined the orientation tuning curves of neurons
in the cat's visual cortex while iontophoresing
different amounts of GABA onto the neurons.
GABA reduced the response of the cell, measured
as spikes per trial. F{owever the number of spikes per
trial was reduced more for the optimal orientation
(i.e. the strongest response) than for the non-optimal
orientations. This is the result predicted by Blomfield
(7974) if the inhibitory synapses are acting in a non-
linear'divisive' mode.

Complementary evidence was obtained by Morrone
and colleagues (1982) who examined changes in the
orientation tuning curve resulting from the addition of
a conditioning stimulus at the non-optimal orienta-
tion. The non-optimal stimuli induced inhibition in the
neuron and so reduced its responsiveness to the
optimal stimulus. As in the case of the GABA
iontophoresis, the change in the tuning curve pro-
duced by the presence of the conditioning stimulus
was suggestive of a divisive rather than a subtractive
inhibitory process at work. Carandini and Heeger
(1994) proposed a model that uses divisive conduct-
ance changes to explain these contrast normalization
effects as well as changes in simple cell response
latency as a function of contrast. Dean and colleagues
(1980) looked at the role of inhibition in direction
selectivity. They obtained similar results, but used a

synaptic rather than a pharmacological technique.
Their experiments might give a more realistic view of
the synaptic processes involved in the tuning of
cortical neuronal responses. Nevertheless, the con-
clusion from both kinds of experiments is that the
cortical mechanism of inhibition is divisive. Flowever,
it should be clearly pointed up that the theory applies
to the subthreshold responses of neurons, whereas the
experimental analyses were of the action potential
discharge.



Synapses in cortical computation

Synaptic logic

It has also been suggested that the local interaction of
small numbers of excitatory and inhibitory synapses
can implement logical functions of OR and AND
(Shepherd & Brayton, 7987), and AND-NOT (Koch
et ø1.,7982). Koch and Poggio considered the case of
shunting synapses located on the head of a spine,
where they would be able to interact directly with the
excitatory input arriving on the same spine head (Koch
& Poggio, 1987). They showed through simulation that
the non-linear interactions between the inhibitory and
excitatory synapse on the same spine could emulate an
AND-NOT logical operation. Such an operation had
been suggested by Barlow and Levick (1964) in their
original analysis of directionality in the rabbit retina.
This operation would occur at a site that was
electrically distant from the soma and thus might be
relatively invisible to a micro electrode located at the
soma. They referred to this as 'synaptic veto' or 'silent'
inhibition. Other non-linear functions such as multi-
plication or division can be mediated by different
synaptic receptor types or voltage-dependent mem-
brane conductances in the dendrites. For example the
NMDA or dendritic calcium channels can both
implement a form of multiplication (Mel, 1993,7994).

Extensive experimental tests of this and similar
propositions (Douglas et ø1., 7988; Berman et aI., 7997;
Dehay et ø1., 7991.; Pei et ø1.,1991; Ferster & ]agadeesh,
7992) have indicated that as a general class, the
varieties of shunting inhibition proposed by theorists
do not occur in practice. The physiological experi-
ments employed a variety of techniques to examine
the magnitude of the shunt produced during visually-
evoked or electrically-evoked inhibition in aiao. The
results of all the studies agreed that the increase in
conductance during visually-evoked inhibition is only
about20Vo, which is certainly too small to be used for
shunting all the excitatory current that arrives (see

below and Fig. 6). Dehay and colleagues (1991) used
anatomical techniques to explore the hypothesised
spine-based mechanism. They examined the spines
that were the postsynaptic targets of the geniculate
relay cells. If a synaptic veto mechanism were located
on a spine head then most spines that formed synapses
with the axons of geniculate relay cells should form a

second synapse with an inhibitory cell. Dehay and
colleagues (1.997) found that only 7% of t}l.e population
of spines had such a dual input. Thus, the vast
majority of geniculate input cannot be gated at the
level of the spine.

The conclusion of the intracellular recording and
ultrastructural studies is that synaptic veto, or 'silent'
inhibition, cannot explain the experimental findings
with respect to subfield antagonism of simple cells, or
their orientation selectivity and directionality. The
problem remains, however, of how to account to the
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extracellular observation of a divisive, shunting type
of inhibition for both orientation and direction select-
ivity (Dean et ø1., 1980; Morrone et al., 1982). Thus,
some fundamental disparity was evident at the level
of the experimental data, for which there was no
reasonable theoretical analysis. In the final section
below we outline a synthetic model that offers an
explanation of the paradoxes between the biophysics
of single cells and their performance with visual
stimuli. The model remains true to the principles of
connectivity provided by the anatomical discoveries
and provides some insights into the computational
advantages offered by such recurrent circuits.

Recurrent circuits in theory

The fundamental formulation of our model of cortical
microcircuits (Douglas et ø1., 7989, 1995; Douglas &
Martin, 1991) is that large number of excitatory and
inhibitory neurons are connected in recurrent circuits.
The details of the overall pattern synaptic connections
from one cell to another have been explored in a

simplified model of the connections between layer 4
spiny stellates. The chief point of interest is whether
the pattern of excitatory connections between spiny
stellate neurons might be a significant factor in
determining the stability of the recurrent circuit.

If we take the radial density of synaptic boutons
generated by the axon collaterals of a single spiny
stellate neuron, then the primary cluster of boutons
extends from the soma to a distance of about 500 pm
with additional clusters lying further from the soma.
The radial density of synaptic boutons on the cluster
surrounding the neuron can be characterised by a

three dimensional Gaussian distribution. The standard
deviation of the distribution of the primary cluster is
about 100-150 pm (Douglas et ø1., 7995). Thus, the
major output of the neuron is to its nearest neighbours.
Flowever, the neuron's neighbours have similar mor-
phology and thus the neuron may receive excitatory
connections back from neighbours to which it has
given connections. Such 'first-order' reciprocal con-
nections between pairs of neurons have been reported
between pyramidal cells in rat visual cortex, for
example Mason and colleagues (1991). These consti-
tute the most direct circuit for positive feedback. Of
course, di- and polysynaptic loops may be constituted
in the same way, but at present the circuits are
unknown.

In a similar vein, the inhibitory neurons may also be
connected within such loops to produce a negative
feedback circuit. The more smooth neurons that
are reciprocally connected to a given spiny stellate
neuron, the higher will be the inhibitory current
received by a given spiny stellate neuron. If there are
many inhibitory cells receiving excitatory input from
the spiny stellate, each of which provides an inhibitory



902

connection back to that spiny stellate, then the
convergence of inhibitory synapses will produce a
recurrent inhibition of sufficiently large magnitude to
prevent the spiny stellate from firing altogether, or at
least reduce greatly the degree of amplification
allowed by the recurrent excitatory circuits. Thus
the overall 'gain' of the system is to some degree
embedded in the physical connections. Of course,
issues of the physiology of synapses and neurons are
also important, but these must act within the context of
the circuit. The problem for theoretical analyses of
these properties is that so little is known about the
three dimensional organization of neurons and rules
governing their synaptic connections. Flowever, sim-
plified models based on the biology can provide some
view of the significance of the problem.

The number of neuron pairs involved first-order
connections depends on several factors, including the
density of synapses and any specificity of innervation
there might be. We have derived these data from an
analysis of the input to the spiny stellate neurons
(Ahmed et ø1., 7994; Anderson et ø1., 7994a; Douglas
et aL,7995) and from counts of neuronal densities in
layer 4 (Peters & Payne, 1993). In layer 4 there are
approximately 4x 1da spiny stellate cetls per cubic
millimeter. Of the 5000 synapses formed with the
soma and dendrites of spiny stellate cells, 1000-1500 of
which probably derive from other spiny stellates. Each
makes about 5000 synapses, of which about 1200 are
made with other spiny stellate cells. We have assumed
that about one third of the boutons occur in the
primary cluster and that they are homogenously
distributed in the three-dimensional space. If we
make the simplifying assumption that local con-
nections are made between spiny stellates on a
random basis (Braitenberg & Schü2, 1991), then the
number of such first-order recurrent connections can
be estimated precisely from the density of the synaptic
boutons and the total number of such synapses made
with the dendrites of the target neuron.

Given these statistics and these simplifying assump-
tions, we have calculated that for axonal arbors whose
primary clusters have standard deviations of 100 ¡rm,
the spiny stellate neuron would participate in 117 first-
order recurrent connections. If the standard deviation
of the primary cluster increases to 150 pm, which
effectively reduces the synaptic bouton density, then a

given spiny stellate would participate in only 34 such
pairs (Douglas et a1.,1995). While it is obvious that the
more first-order connections a given neuron is
involved in, the stronger will be the synaptic current
it receives from those neurons, this is a very interesting
case for consideration, because the effects of the
feedback may differ significantly between the two
cases. It might be expected intuitively that if the
excitatory current is sufficient to drive the intercon-
nected neuron to threshold, then, in the absence of any
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inhibition, the neurons in the network will be driven to
their maximum discharge rates. Inhibition, it seems, is
essential. Surprisingly, however, analysis of these
first-order excitatory networks indicates that in some
configurations they can be stable, in the sense that they
remain bounded without the restraint of saturation,
without the addition of inhibition. The analysis of the
conditions under which this is achieved is explored in
the following section. The essential problem is how to
control the gain, or amplification, that is inherent in
these recurrent excitatory circuits.

Electronic equivalent circuit for recurrently con-
nected neurons

These ideas of recurrence, amplification and control of
gain, are encapsulated in a simple electronic circuit
that represents a recurrent network of excitatory and
inhibitory neurons. The representation is simple,
but the biology it captures is far from simple. The
excitatory neurons are represented as single con-
ductances (G, in Fig.  ). The current (1r) dissipated
through this conductance (G), generates a voltage (F)
that represents the 'firing frequency' of the neuron.
Thus the current-voltage relationship gives a straight
line of slope 1/G (Fig. a). Conservation of current
demands that the current entering the 'neuron' is
exactly matched by the current leaving the neuron via
the passive membrane conductances and the action
potential conductances, which are very much larger
than the membrane conductances. The action poten-
tials themselves are thus significant sinks of synaptic
current in this model. The source of the excitatory
current is from two pathways: one from a feedforward
input, which represents the geniculate input tolayer 4,
the second being a feedback pathway, which repre-
sents the intracortical recurrent excitatory circuits. In
addition, there is a recurrent inhibitory pathway that
arises from the cortical basket cells, which themselves
are driven by the cortical excitatory neurons.

The recurrent pathways are expressed in the
electronic circuit model (Fig. a) by two sets of other-
wise identical neurons, that differ only in having
synapses of opposite sign. Since all the excitatory
neurons are identical, their synapses can be repre-
sented as a single lumped excitatory synapse. In the
electronic circuit, this lumped synapse is approxi-
mated as a current source whose magnitude is
proportional to the firing rate of the point neuron, F.
This recurrent excitation generates an effective 'net-
work conductance' ø, represented in the circuit by a
current source that is controlled (grey arrow) by the
output voltage across the conductance, G. The 1/cx

curve represents the dependence of the excitatory
feedback current lrr., measured in a particular neuron,
on the average output rate of neurons in the popula-
tion. For an external observer measuring the input
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current provided to a neuron and the voltage out, it
will appear as if the conductance of the neuron has
decreased. The effective conductance of the neuron,
Gr6, wlll be G - ø and the slope of the current-
frequency relationship will now be 1/(G - cr).

It is the relationship of this 1/cr curve to the 1/G
curve, that is crucial to the stability of a recurrent
circuit of purely excitatory neurons. As long as this
curve lies to the left of the 1/G curve, then the circuit
will remain stable because the individual neurons will
be able to 'sink' all the synaptic current supplied by

A Iin-
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the feedforward and recurrent circuits. This 'sink' is
provided by the action potentials themselves as

explained above. In this condition the output of the
network will remain proportional to the feedforward
current. If the feedfoiwaid current falls to zero, the
activity in the network will also rapidly fall to zero. In
electrical engineering terms this means that the 'open
loop' gain is less than 1 . However, if the 1/a lies to the
right of the 1/G curve, then any feedforward current
supplied to the network will be amplified by the
recurrent circuit to a degree that it will increase the
firing of individual neurons until they reach satura-
tion. Under these conditions, the open loop gain is
greater than 1 and there is no proportionality between
the feedforward current and the output of the net-
work. Under such conditions, stability could only be
achieved through the addition of other 'sinks', for
example, inhibition.

In the electronic circuit the inhibitory circuitry is
similarly represented to the excitatory circuit, but in
place of the ø of the excitatory circuit we have a second
constant, p, which, like ø, also acts as a network
conductance, but has the opposite sign. We treat the
inhibition as a linear, hyperpolarizing current, neglect-
ing the shunting aspects of inhibitory inputs, since
they have been difficult to observe experimentally (see

above). With the inhibitory circuit added, the effective
conductance of the neuron, Gr¡, is the sum of the

Fig. a. A circuit for the simple cells of layer 4. (A) A spiny
stellate neuron receives inward excitatory synaptic current
from two sources/ the synapses of the relay neurons of the
lateral geniculate nucleus (4,) and the synapses of other
cortical neurons (1*r). The basket cells of layer 4 are the
source of the outward inhibitory current (I¡n¡). The frequency
of firing, F, if determined by the net current (1r) at the axon
initial segment. (B) The electronic circuit analogue of the
biological circuit represented in (A). The spiny stellate is
represented as a single conductance G. The currents are as in
(A). Grey arrows indicate the recurrent inhibitory and
excitatory circuits. o represents the 'network conductance'
for the recurrent excitatory circuit, p the 'network conduc-
tance' for the recurrent inhibitory circuit. (C) Current-
discharge relations characterizing the behaviour of the
cortical amplifier. The 1/G line, corresponding to the
current-discharge curve, expresses the amount of current 1,

that dissipated across the somatic membrane by spike
currents at discharge rate F*. The 1/(G * p) curve indicates
the increased current, Is + Iírh, required to maintain a given
discharge rate in the presence of inhibition that is propor-
tional to the output of the neurons. The 1/a curve expresses
the dependence of the excitatory feedback current 1r"r,

measured in a particular neuron, on the average output
rate of neurons in the population. For any particular input
current I¡¡ the steady state discharge rate F* occurs where
the equation Iuç I I¡ ¡ : l, + I¡¡ is satisfied. At F 

* the input
current.I¡¡ is exceeded in amplitude by the recurrent current
Irrr.
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individual neuron conductance G, and the two net-
work conductances, cr, for the excitatory circuit, and B

for the inhibitory circuit. These two network con-
ductances naturally have opposite signs. The effective
conductance of the neuron is therefore G - cr I 0. The
magnitude of the inhibitory current is pF and the total
recurrent current arriving at the soma is given by
Iu, - (d - B)F and the output firing frequency of the
neuron, F, is given by I¡ lG + p - ü).

The effects of the inhibitory network on the input-
output functions of the neuron can be represented
graphically (Fig. a). For an isolated neuron the current-
frequency relationship is linear with a slope 1/G. In the
presence of an inhibitory network where the inhibition
applied is proportional to the output of the neuron, the
total current sunk by the neuron will be the sum of
the load current and the inhibitory current, I, I I¡n¡.
Consequently, the slope of the spike frequency versus
current (FI) curve will be ll(G+ B). Although the
synapses themselves are linear, the change in slope
of the FI curve during recurrent inhibition appears
as a divisive process, because the inhibition is pro-
portional to the output of the neuron. Interpreted
physiologically, feedback inhibition that acts through
approximately linear'subtractive' synapses neverthe-
less generates a network conductance that appears
as a shuntinglike inhibition of the output of the
neuron. This inhibition changes the gain of the cortical
response to a given input current. This crucial insight
provides the solution to the problem posed by the
experimental data. It explains how shunting, or
divisive inhibition can be revealed in the spike
discharge of the neuron (Rose, 7977; Dean et qL, 7980;
Morrone et ø1., 7982), while intracellular recordings
indicate the shunts associated with inhibitory events
are extremely modest (Douglas et al., 7988; Ferster,
1988; Berman et ø1., 7991; Pei et øL, 7997) and largely
induce small amplitude hyperpolarizations.

Computation of orientation

The dry abstraction of an electronic circuit may seem a
long way from the actual organization and workings
of the wet biology. Flowever, the principles of
operation that have been outlined above link directly
to more realistic models of functions that are carried
out by visual cortical neurons. The computations
carried out by the neurons in layer 4 of the cat's
visual cortex are amongst the most beguiling that have
so far been observed in the neocortex. 'Beguiling',
because while they seem quite simple and obvious,
efforts to understand how the neuronal machinery is
achieving its results have blunted the sharpest instru-
ments available.

The computation that has been a canonical example
for two generations of neuroscientists is that of
orientation selectivity. This is the computation that
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transforms the non-oriented centre-surround recept-
ive fields into the simple cells can be considered as

filters that effectively 'select' a limited set of the
information from the representation of the stimulus
supplied to layer 4by the relay neurons of the lateral
geniculate nucleus. At the level of single cells this
cortical representation may appear reduced compared
to the geniculate neurons, as indicated by the select
number of features to which the cortical cell responds.
Flowever each cortical cell represents a location in a

multidimensional spacei each neuron responds not
only to a particular stimulus orientation, but also
stimulus size, direction of motion, velocity, depth, and
so on. Hubel and Wiesel, who first discovered this role
of layer 4, also provided the 'simplest' model of the
simple receptive field, of which Sherrington might
well have approved: a row of geniculate relay neurons
converging on a layer 4 cortical neuron, which linearly
sums the excitatory synaptic currents. In their model
the cardinal properties of the simple receptive field are
generated entirely by the spatial convergence of the
excitatory geniculate synapses whose activity is
summed linearly by the poststynaptic neuron.

However, such a simple addition is insufficient
account for the sophisticated processes being carried
out in layer 4. For example, it is clear from such a

feedforward system that the degree of orientation
tuning will be highly dependent on the strength of the
geniculate input and it will be very susceptible to
noise. A strong stimulus presented at the non-optimal
orientation should have the same effect as a weaker
stimulus presented at the optimal orientation, for
example. Experimentally, however, orientation tuning
of cortical neurons remains largely unchanged over
considerable changes in the contrast of the stimulus
(Sclar & Freeman, 7982) and is surprisingly robust in
the face of potentially confounding stimuli e.g.,

simultaneous presentations of a second stimulus at a
different orientation over the same receptive field
(Morrone et aL, 7982). Such invariance in ihe face of
noise is in fact a cardinal property of cortical
processing and visual perception. The computations
to achieve invariance are clearly present even at the
earliest stage of cortical processing. Hidden in the
rnaze of synaptic connections within layer 4 are these
rather powerful operations.

The computational role of the amplification mech-
anisms described in the sections above was explored
in the context of the layer 4 simple cell (Douglas et ø1.,

7994, 7995). Models with similar recurrent architec-
tures have recently been explored by Somers and
colleagues (7995), Ben-Yishai and colleagues (1995)

and Suarez and colleagues (1995). For our exploration
we extended the model described above to include
aspects of the local interneuronal connections of the
spiny stellate neurons. The connectivity is represented
in a one-dimensional array of 40 neurons, represented

I
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as a ring of filled black symbols in Fig. 5. As
determined experimentally (Ahmed et nl., 7994), the
spiny stellate receive their major functional input from
other cortical neurons and a minor input from the
lateral geniculate nucleus. Following the anatomical
analysis of bouton distribution described above, the
connections in the model were organised so that each
excitatory neuron connected to its neighbours with a

strength, or weight, determined by their distance apart.
Neurons that encoded similar orientations were recipro-
cally connected with weights that were a Gaussian
function of their similarity of orientation preference
(indicated by 'proximity' curve in Fig. 5). Near-
est neighbours interconnected with more/stronger
synapses than more distant pairs. This pattern of
connections is also consistent with the ice-cube model
of the functional architecture of area 17 (Hubel &
Wiesel, 1977), in which neighbouring neurons have
closely similar functional properties and interconnect
most strongly. Although simple cells code a multi-
dimensional space, we consider only the orientation
domain. However, a model with similar has been
explored for directionality and velocity (Swarez et ø1.,

7995).
We did not differentiate between the cortical

component of excitation produced by spiny stellate
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from that of the layer 6 pyramids and we did not
attempt to replicate the varieties of synaptic dynamics,
because the kinetics of these synapses have yet to be
specified with sufficient detail to be incorporated in a
model. Thus, we used a simplified continuous output,
firing rate model, rather than using detailed models of
spiking neurons, with their considerable overhead in
parameterization. (Note however, that the recurrent
model recently simulated by Somers et al., 7995, uses
spiking neurons and gives similar results). The
strength of the reciprocal connections between two
excitatory neurons i and jis given by o¡ j, here assumed
to be a Gaussian function of the preferred stimulus
angle between the coupled neurons i and j. Unlike the
spiny neurons, the lateral clusters of the axons of
inhibitory neurons do not connect exclusively to iso-
orientation zones (Kisvarday et nL,7995).Instead, they
appear connect all orientation zones. Thus, in our

Fig. 5. Orientation tuning in the presence of noisy signal,
and/ or noisy connections. (A) Forty simple cells (large filled
circles, examples indicated) each receive convergent feed-
forward excitation from a group of geniculate relay cells,
whose receptive field positions (small filled circles, examples
indicated) fall along an oriented axis in visual space (large
rectangles). A light bar stimulus (shaded rectangle) excites
the geniculate cells. If the orientation of the stimulus
activates most of the geniculate cells that converge on the
simple cell (e.9. lower left group) then the simple cell will be
optimally excited. If however the stimulus is orthogonal to
the bias of the geniculate receptive fields (upper right
group), then the excitatory drive to the simple cell will be
much weaker. Neurons that prefer similar orientations are
located near each other and are connected reciprocally with
synaptic weights (a¡7) that are a Gaussian function of their
distance apart, as indicated in the 'proximity' curve. (B) The
response of the 40 simple cells to presentation of the oriented
stimulus. Cells 1-40 are plotted along the absiscae, synaptic
current along the ordinate. The dashed line indicates the
response of the neurons when only the feedforward
geniculate input is activated. The continuous dark line
indicates the response with the recurrent circuits connected.
The geniculate input is noisy because the connections are
imprecise and because the signal may be noisy. The level of
inhibition at t : 0 (horizontal line) is insufficient to suppress
noisy peaks at off-orientations. Nevertheless, there is a better
response of simple cells near the preferred orientation, and
the positive feedback is strongest there. The increased
activity of preferred populations increases the average
inhibition, and suppresses more of the weakly activated
cells. Elimination of the outliers improves the correlations
amongst the survivors, and enhances their gain (resulting in
increased inhibition indicated by horizontal line t - oo). This
process converges on a narrow bandwidth tuning curve
(solid line in B), indicating that this model is able to extract
signals from noise. It does this by expressing the tuning
curve implicit in the nearest neighbour rule of cortical
connectivity.

cf,

B
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model all the neurons that contribute to the recurrent
inhibitory loop can be lumped into a single 'inhibitory
neuron' that receives excitation from all 40 neurons
and recurrently provides equal numbers of inhibitory
synapses' to all 40. This global 'inhibitory neuron' is
represented as a grey dot in the centre of the circle of
Fig.5A.

The relay neurons of the lateral geniculate provided
all the feedforward current to layer 4. This component
is represented in the model by the current, IJ¡ or I¡
(Fig. a). The pattern of the connections between the
geniculate relay neurons and the simple cells was
generated by drawing a random sample from an
oriented binormal spatial distribution, which repre-
sented a portion of the two-dimensional visual space.
The concentric centre-surround receptive fields of the
geniculate relay neurons that provide a biased input to
two of the simple cells, are represented by the
scattered dots in the boxes of Fig. 54. The aspect
ratio of the binormal distribution was 1.6, which is
typical for subfields of simple cells. The principle axis
of the binormal distribution was rotated through 180',
and samples were taken at 40 different orientations
within that range. These samples then provided the
geniculate input to a single subfield of the simple cell
(arrows from boxes in Fig. 5A). Thus, following the
basic connections of the Hubel and Wiesel model, the
input to the 40 simple cells is provided by a row of
relay cells aligned along a slightly different princi-
pal axis to that of its neighbour. When an oriented
stimulus is presented (grey rectangle in Fig. 5), it will
activate most the geniculate neurons that converge on
some simple cells (e.9. lower arrowed neuron in Fig.
5A), but only a few for other simple cells (e.g.

upper set in Fig. 5A). This bias in the geniculate
input provides for the differences in the strength of
the response when the stimulus is presented, as

indicated by the undulating dotted line in Fig. 58.
This line plots the response amplitude for each of the
40 excitatory neurons in the ring. The neurons most
strongly excited are those whose orientation tuning
provided by the pattern of feedforward connections
most closely matches the stimulus orientation, but all
neurons respond to some degree because the geni-
culate neurons respond to all orientations. Thus the
population of cortical neurons expresses only weak
orientation preference (Fig. 58, dotted line).

The recurrent excitatory current was expressed in
the simple electronic model as øF, because all neurons
had identical connectivity. The situation in the more
elaborate orientation model is more difficult to cal-
culate, because the excitatory neurons connect to
each other unequally, with strengths related to their
distance apart. In addition, some of the neurons will be
below threshold and so will not contribute synaptic
current to the network. The synaptic current provided
by a neuron to any one of its target neurons is a
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product of its firing frequency and the coupling
coefficient ui7. At the limits it is apparent that the
recurrent current in a given neuron is maximal, i.e. the
gain of the amplifier is greatest when all neurons
connected to it are above threshold, and zero when all
are below threshold. The synaptic currents arising
from all the different neurons are then summed by the
given target neuron.

In this circuit, the inhibitory neuron acts as a

summing device and provides the same inhibitory
current to all 40 spiny neurons, in proportion to the
total activity in the circuit. Virtually all 40 spiny
neurons are active initially, because geniculate relay
neurons will response to a stimulus of any orientation
(Fig. 5, dotted line). As the total activity in the network
increases due to the positive feedback, the excitatory
drive to the inhibitory neuron increases. Neurons that
are just above threshold will thus be silenced by
inhibition and they will no longer contribute to the
total excitation (threshold at f:0 and /: oo âre
indicated by horizontal lines in Fig. 5B). However, the
pattern of connectivity ensures that they will continue
to receive an inhibitory input, and so their threshold
for activation will continue to be raised as the total
activity in the circuit increases through the recurrent
excitation between the remaining active members. The
inhibited neurons will always be those who were most
weakly driven by the stimulus and thus received the
least amount of feedforward synaptic current from the
geniculate relay neurons. The neurons who were most
biased for the stimulus orientation will receive the
most feedforward current. They will produce the most
activity and re-excite each other most strongly and
thus remain above threshold despite the recurrent
inhibition. In this way the initially small input from the
lateral geniculate relay neurons will be amplified
selectively by a subgroup of the total 40 excitatory
neurons to provide a robust orientation signal (con-

tinuous bell-shaped curve in Fig. 5B).

Once the stimulus is presented, the tuning of the
inhibition rapidly changes from broad band to narrow
band. Progressively it becomes more strongly tuned to
the orientation of the remaining active neurons. At
convergence, or steady state, the orientation tuning of
the inhibitory neuron is that of the net tuning of the
surviving active members of the excitatory group. The
amount of inhibition experienced by a given neuron
is obviously proportional to the number of active
neurons in the network. The question naturally arises
as to how long this convergence takes. Somers and
colleagues (7995) have performed a detailed simul-
ation of a recurrent circuit of layer 4 with 2205 cortical
neurons and 882 geniculate relay cells and have
determined the speed at which the network converges
to a stable solution. Their simulations indicated that
sharp orientation selectivity in the membrane poten-
tial of a given test neuron emerged just after the
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test neuron produced its first spike. Neurons whose
geniculate input was biased to the stimulus orientation
will have a head start on those whose input bias is for a
different orientation. These latter neurons therefore
have to rely more on temporal integration to reach
threshold, but they may never respond, because of the
recurrent lateral feedback inhibition arising from
activity in the optimally biased neurons. This 'delay'
effect contributes to the rapid suppression of the
neurons whose geniculate input is biased for non-
optimal orientations, and the rapid emergence of
sharp tuning in the 'winners.' In their simulations
the weakest tuned cortical neuron had a stronger
orientation tuning than the best tuning provided by
the feedforward convergence of the geniculate relay
cells.

In the recurrent configuration of Fig. 5, it is
interesting to note that the role of inhibition changes
over time. Initially, it is used as a means of setting a

threshold to extract the best estimate of the signal
arising from the visual input. Later, inhibition assists
in stabilizing the recurrent excitation of the active
population: as the excitation grows, so the inhibition
grows proportionately and acts as a divisor. This
proportionality is important in helping to maintain a
balance between inhibition and excitation. Obviously,
when the neuron responds, the sum of the inhibitory
and excitatory currents do not cancel out, for excita-
tion exceeds inhibition. Similarly, when the cortical
neuron is shut off in the face of activity in the relay
cells, the cortical inhibition exceeds the excitation.
Flowever, too much inhibition would make the
response to the optimal stimulus weaþ while too
little inhibition may broaden the tuning curve. Because
of the gain provided by the recurrent excitation, small
swings in the balance between excitation and inhibi-
tion are amplified. This is a useful attribute because it
makes neurons more sensitive to both the input
excitatory current and reduces the amount of inhibi-
tion required to have a given effect. This result is
illustrated in Fig. 6.

In models that receive all their excitation from a
feedforward pathway, as in Hubel and Wiesel's
simple cells, the magnitude of the inhibition has to
equal that of the excitation to prevent the neuron from
firing. In the case of the recurrent circuit, however,
there are two components of excitation, one from the
feedforward pathway and the other of larger magni-
tude from the recurrent pathway. Since all the cortical
neurons are in the recurrent circuit, the amplification
by the recurrent circuit is exactly proportional to the
output of a given neuron. Similarly, the amount of
current supplied by the recurrent pathway is exactly
proportional to, and dependent on, the amount of
synaptic current supplied by the feedforward path-
way (Fig. 6). Thus, the decrease in firing of a neuron
reduces the total feedback current, which further

inhibition of feedback excitation

llu
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Fig. 6. Neurons are more sensitive to inhibition in the
presence of current gain. (A) A conventional, feedforward
(inset, right), view of cortical neurons in which all of the
input current, .I¡,, must be controlled by inhibition. In this
case complete inhibition of F requires that an inhibitory
current, at least as large as I¡n, raise the current threshold by
displacing the FI curve to the right (asterisk). (B) When the
neurons are embedded in a recurrent circuit (inset, right),
they cooperate to provide current amplification in each
neuron. In the presence of this current gain, the same value
of F is achieved with a much smaller 1¡,,, because a
substantial fraction of the total current is due to a recurrent
current, 1r"". lJnder these conditions complete inhibition of
discharge also requires that the inhibitory current be at least
as large as I¡n. But because 1¡,, is smaller than the feedforward
case, so is the required inhibitory current.

reduces the firing and so on until a new steady state
is achieved. To reduce the firing of the neurorl.to zero,
the inhibition has only to be the magnitude of the
smaller feedforward component of the excitation.

There are a number of features that become
apparent in this simulation. First, the system is
robust in the face of noise. The pattern of intracortical
connectivity ensures that even if the stimulus is
embedded in noise, there will be a subpopulation of
'winners'. The selective, noise resistant properties
arise out of the actual pattern and weighting of the
synaptic connections between the cortical neurons,
here modelled as a Gaussian weighting. This property
does not arise out of feedforward circuits. Secondly,
the circuit performs a version of gain control or
'normalization'. The average activity in the excitatory
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network determines the strength of the recurrent
inhibition and thus the threshold for spike activity.
When the network has converged, then the inhibition
is essentially divisive - strong inhibition is seen for
strong excitation, weak inhibition for weak excitation.
This extraction of invariance is one cardinal feature of
cortical operations that feedforward models lack.
Thirdly, it is obvious that the current threshold
required to produce a minimal discharge for a given
neuron will vary according to the amount of recurrent
inhibition it receives at any moment. In this respect,
the circuit responds dynamically to the incoming
stimulus. Finally, this form of circuit provides a

reconciliation of the disparity we detected in the
experimental data: the observation of divisive or
shunting inhibition (Rose, 7977; Dean et al., 7980;
Morrone et al., 7982), with the failure to detect this
shunt biophysically (Douglas et ø1.,7988;Berrnan et ø1.,

7997; Pei et al., 7997; Ferster & Jagadeesh, 1.992). The
division arises out of the network conductance
generated by the recurrent inhibition and not, as was
previously thought, out of the individual inhibitory
synaptic conductances on the neuron.

The recurrent microcircuit described here gives a

more robust computation of the variable, orientation,
by employing the strategy of amplifying only the
portion of the incoming signal that provides the best
estimate of the orientation of the actual visual
stimulus. This best estimate originates from a bias
provided by the convergence of a patterned input
from the relay neurons of the lateral geniculate
nucleus, perhaps in the manner originally suggested
by Hubel and Wiesel (7962), but avoids the problems
of noise and ambiguity that is inherent in a purely
feedforward system. The recurrent circuit also permits
the excitation to be controlled by small levels of
inhibition, provided that the inhibition is provided to
all members of the excitatory circuit. This provides an
explanation for why strong inhibition is not seen in
cortical networks during activation with natural sti-
muli. These principles may be generally applied to new
models of cortical networks that exploit the features of
recurrency (Douglas et al., 7994, 1995; Ben-Yishai et ø1.,

1995; Somers et nl., 1995; Suarez et ø1.,7995).
Recent discussions of the merits of the purely

feedforward and recurrent models have concluded
that purely feedforward mechanisms are sufficient
and that the recurrent cortical circuitry is redundant
for the generation of orientation selectivity and
perhaps direction selectivity as well (Das,7996; Ferster
et al., 1996; Hubel, 1996). While it is quite true that
orientation and direction selectivity can theoretically
be achieved by purely feedforward mechanisms, what
is omitted entirely from these discussions is a

consideration of how the observed robustness of
these computations comes about. The simple feed-
forward circuits are not noise tolerant. The emergent
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properties of the recurrent circuits that we have
emphasised above, such as extraction of meaningful
patterns from noisy or incomplete input patterns and
invariance, seem to be characteristic of what we think
to be neocortical functions. The additional power of
the recurrent circuit models is not just that they
capture more of the principles of organization of
the biological microcircuits than the feedforward
models, but that they offer simple explanations for
experimental results beyond the phenomenon of
orientation selectivity itself. Of course/ in proposing
here that the microcircuits of the neocortex actually do
more than simply sum their synaptic inputs, we make
no novel claim. Hubel and Wiesel put it succinctly in
the opening sentences of their classic paper of 7962,

when in echoing Lorente de Nó (7949), they wrote:

What chiefly distinguishes cerebral cortex from other
parts of the central nervous system is the great diversity
of its cell types and interconnexions. It would be

astonishing if such a structure did not profoundly
modify the response patterns of the fibres coming into it.

Indeed it would be, but fortunately it does, by
microcircuits that use novel computational principles
that we are only just beginning to explore.

Conclusion

In this paper we have moved from the development of
the concept of the synapses by Sherrington, through
the theory of the possible computational operations
that can be carried out by neurons, to the anatomical
and physiological details of the circuits in the input
layer of visual cortex, to abstract electronic models of
cortical recurrent circuits and finally to a synthetic
model that encapsulates some essential principles of
cortical anatomy and physiology. One of the pleasing
aspects of progress in the development of these many
links between the different levels of analysis is that it
leads us back to where Sherrington started - with
behaviour. And of course for Sherrington (1908):

"Motor behaviour would seem to be the cradle of
recognizable mind". This is the task and challenge that
we have set ourselves: that as neuroscientists we are
bound to explain how the multiple facets of ourselves

- our perception, attention, memory, thought, emotion
and consciousness - are created by the operations of
neurons and their synaptic interactions.
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