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Neural control of motor prostheses
Hansjörg Scherberger1,2
Neural interfaces (NIs) for motor control have recently become

increasingly advanced. This has been possible owing to

substantial progress in our understanding of the cortical motor

system as well as the development of appropriate decoding

methods in both non-human primates and paralyzed patients.

So far, neural interfaces have controlled mainly computer

screens and robotic arms. An important advancement has

been the demonstration of neural interfaces that can directly

control the subject’s muscles. Furthermore, it has been shown

that cortical plasticity alone can optimize neural interface

performance in the absence of machine learning, which

emphasizes the role of the brain for neural interface adaptation.

Future motor prostheses may use also sensory feedback to

enhance their control capabilities.

Addresses
1 Deutsches Primatenzentrum GmbH, Kellnerweg 4, D-37077 Göttingen,

Germany
2 Institute of Neuroinformatics, University of Zürich and ETH Zürich,
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Introduction
In the past decade, neural interfaces (NIs) that are able to

read out brain signals for motor control have become

increasingly popular and sophisticated [1–5]. Notwith-

standing previous work using direct neural and non-

invasive signals [6–8], the field took off in 1999 when

Chapin et al. controlled a simple robot arm using signals

from simultaneously recorded neurons in rat cortex [9].

NI systems with implanted recording electrodes were

then refined and demonstrated to work in non-human

primates using signals from primary motor, premotor, and

the parietal cortex [10–13]. These studies demonstrated

the possibility to control the continuous position of a two-

dimensional or three-dimensional cursor, the selection of

discrete targets, or walking patterns [14��].

Other groups have shown similar capabilities using non-

invasive EEG signals [15–19], thereby challenging the
www.sciencedirect.com
need to use direct neural signals to operate neural pros-

thetics. However, EEG-based systems have a limited

information transfer rate capacity and need substantial

amount of training and attention to operate [2,4]. On

the contrary, invasive systems still suffer from a limited

lifetime (months to years instead of years to decades)

owing to tissue reactions around the implanted sensors

[20�,21�,22]. Technological improvements may overcome

some or all of these shortcomings. Until then, the debate

will probably continue.

Human implants
Recently, it was demonstrated that invasive NIs can be

functional in the brains of paralyzed patients [23��,24].

This is an important advancement for several reasons.

First, the experiments have demonstrated that neural

signals in the human motor cortex are similar to those

of non-human primates. Neurons in the human cortex

encode the position and velocity of imagined cursor

tracking movements, which then could be used for the

decoding of cursor movements [24]. This is significant,

since it shows that the ongoing effort in discovering

electrophysiological principles of motor control and

decoding in non-human primates is transferable to

humans. Second, it was possible to decode cursor and

robotic control signals from motor cortex even years after

the infliction of the brain lesion or spinal cord injury. This

implies that the topographic reorganization of motor

cortex is reversible after the injury or was never really

complete. All this is good news for paralyzed patients who

hope that results from animal studies can be transferred to

the clinical setting soon.

Robotic arms
Previous NIs frequently controlled a cursor on a computer

screen [11–13,25]. While this has considerable value in its

own, for example to regain the capacity to operate a

computer, an important application for paralyzed patients

would be to substitute natural hand or arm function. This

was recently demonstrated in monkeys. Using an

implanted NI, monkeys were able to control a robotic

arm and gripper and use it to feed themselves pieces of

food (Figure 1A) [26��]. The NI recorded single and

multiunit activity from the hand area of primary motor

cortex and used population vector decoding to determine

the three-dimensional position of the robotic arm as well

as the gripper aperture. Using this arm, the monkey was

able to grasp small food pieces that were placed in various

positions in (3d) space and could transport them to the

mouth (Figure 1B). These movements were not ballistic,

but included online error correction and trajectory control

by means of visual feedback. Interestingly, robotic control
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Figure 1

Cortical control of a prosthetic arm for self-feeding. A. Setup with hand-

restrained monkey controlling a prosthetic arm using a neural interface

(NI). Food targets were presented randomly in space that the animal

could grasp, bring to the mouth, and eat. B. Spatial trajectory of robotic

endpoint position of four consecutive trials. Color indicates gripper

aperture (red: open, blue: closed). Modified with permission from [26��].
appeared to be quite effortless and the animal was able to

perform eye and head movements simultaneously with it.

Transfer of this kind of robotic control to human patients

would be an important next step, which could also meet

recent efforts to develop dexterous robotic limbs for

neuroprosthetic control [27,28].

Connecting to body muscles
Besides artificial devices like computer screens or robotic

arms, paralyzed patients could also benefit from NI

applications that directly control their muscles. Such an

approach could avoid the need of a complicated and

energy-consuming mechanical arm. Instead, it would

restore motor function by directly connecting to the

subject’s limb.

A first proof of principle for such a system was recently

demonstrated [29��]. Moritz et al. recorded neural activity

of individual primary motor neurons in macaque monkeys

and transformed these signals to stimulation signals that

directly activated two opposing wrist rotation muscles (a

pronator and a supinatior). To test the effectiveness of

this NI, animals were trained to perform an instructed
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wrist rotation task. Then, peripheral nerves of the per-

forming arm were pharmacologically inactivated, which

temporarily paralyzed the wrist rotation muscles. Acti-

vation of the NI then allowed the animal to perform the

wrist rotation task despite the nerve block, hence demon-

strating the effectiveness of the neuromuscular interface

(Figure 2).

Connecting a NI directly to paralyzed muscles is very

appealing and sounds like an ideal therapy for paralysis.

Such an approach links NI research with the functional

electrical stimulation (FES) community that uses muscle

stimulation for rehabilitation [30,31��]. The combination

of NIs with FES could lead to fully implantable systems

that require no transdermal connections and no external

devices, which would greatly improve the comfort, safety,

and usefulness of such systems.

However, there are two main problems associated with

this approach. The first one is that prolonged electrical

stimulation induces muscle fatigue, which means that the

muscle force in response to stimulation is not constant but

progressively weakens over time. The second is the

control problem of how to coordinate the many synergis-

tic and antagonistic muscles precisely and meaningfully.

Because of the common lack of proprioceptive and sen-

sory feedback from paralyzed limbs, prosthetic control

needs to rely entirely on visual feedback. This requires a

lot of attention from the patient and is potentially worse

than controlling a robot arm, where the control variable is

usually position or velocity, but not acceleration (i.e.

force). To establish direct muscle control, it will therefore

be important to restore not only muscle activation, but

also sensory feedback from the activated limb [32�,33��].

Cortical plasticity
A common approach to improve NI performance is to

retrain the decoder at the beginning of each session or

even continuously to account for possible changes of the

neuronal ensemble and its tuning properties [9,11–13,25].

In addition, however, the brain adapts to the NI, which can

be concluded from the observation that NI performance

usually improves after the first decoding sessions. The

brain and the NI therefore could act as two coupled

controllers, which can lead to a potentially unstable system.

But is external adaptation of the NI really necessary?

Previous experiments have shown that individual single

units can adapt to an external decoder [6,8]. This idea was

recently tested for the control of a NI for reaching [34��].
Ganguly and Carmena trained macaque monkeys to per-

form a center-out reach task and recorded neural ensem-

ble activity in motor cortex. In the following decoding

experiments, the weights of the external decoder were

randomly permutated among the neurons and then fixed

for the entire experiment. The neural ensemble activity

adapted to this reshuffled decoder, leading to a decoding
www.sciencedirect.com
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Figure 2

Direct control of paralyzed muscles by cortical neurons. The monkey simultaneously modulates two neurons (cell 1 and cell 2) in motor cortex. Each cell

controls a separate muscle group for antagonistic hand wrist rotation. Top: wrist torque curve produced by the muscles (F: flexion, E: extension) following

presentation of the wrist torque targets (colored rectangles; red: extension, blue: flexion). Below: muscles are activated by proportional functional electrical

stimulation (FES) when neural activity exceeds a threshold (red: extensor stimulation, blue: flexor stimulation). Modified with permission from [29��].
performance of >95% after about 10 decoding sessions.

This demonstrates that high performance decoding is

possible with brain adaptation only, provided the neural

ensemble remains stable over time.

Furthermore, the same cortical ensemble could be

trained for a new decoder that operates with a second

set of reshuffled weights (Figure 3). Within a few sessions,

the brain adapted also to the new decoder while conser-

ving the performance of the old one. In other words, the

brain could learn two independent decoders through the

same NI and neural ensemble. Interestingly, the tuning

properties of individual neurons differed substantially for

the two decoders, indicating different cortical adaptation

in the neural ensemble. Neural plasticity therefore is a

powerful mechanism to excel NI performance, even to

the point that no external learning is necessary. This

could be of tremendous value for motor prosthetics.

Finger movements
A particular challenge for motor prosthesis is the control of

dexterous hand and finger movements. Finger movements

are highly complex and versatile, and humans spend much

of their childhood learning to use their hands. From a

control theoretical point of view, the difference between

arm and hand movements is complexity. While reaching

in space involves about three degrees of freedom, this

number increases to 20 for moving a five-fingered hand.

Currently, it is unclear how skillful hand movements are

stored and retrieved in the brain, which makes effective
www.sciencedirect.com
decoding hard. We have developed a simple decoder for

hand grasping movements that is able to distinguish var-

ious grip types (power and precision grips) and wrist

orientation from neural activity in the premotor and par-

ietal cortex [35]. Such a NI is a first step, but more research

is needed to determine which brain areas are suited best

(e.g. motor, premotor, parietal cortex) to achieve dexterous

finger control [28,31��,36].

Future perspective
Basic research aiming at understanding the fundamental

mechanisms of how the brain generates movements has

become more and more relevant for clinical application.

Currently, invasive and non-invasive decoding methods

appear to be complementary [2,4]. Invasive methods

seem to have a larger potential in decoding fidelity and

information transfer rate, but the longevity of the

implants still needs to be improved [20�]. It remains to

be seen, which methods will be associated with better

results and patient compliance in the long-term.

To improve the versatility of motor prostheses, an import-

ant enhancement would be to include sensory feedback

from the actuated (artificial or natural) limbs. Such feed-

back could include tactile and proprioceptive information

that can be sent either to a shared robotic controller [37] or

to the nervous system [33��,38,39��]. In addition to other

senses, such information could augment motor planning

and execution, as it happens normally in healthy subjects.

This corresponds to the emerging view that the motor
Current Opinion in Neurobiology 2009, 19:629–633
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Figure 3

Emergence of stable cortical maps for neuroprosthetic control. A.

Decoding performance over four consecutive days for predicting a

center-out reaching task with a previously learned (blue epochs) or a

new decoder (red epochs). Both decoders have differently assigned

randomized weight parameters. Performance of the new decoder

increases from chance to above 95% correct trials within 4 days while

performance of the old decoder remains nearly perfect. B. Directional

tuning of three example neurons (i–iii) during brain control with the new

(red) and old decoder (blue); tuning curves of many neurons substantially

change. Modified with permission from [34��].
system does not operate in isolation, but is tightly con-

nected to sensory and cognitive networks [40�]. NI for

motor prostheses should incorporate this fact for optimal

performance.
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