
Belief-Propagation in Networks of Spiking Neurons

Andreas Steimer
Institute of Neuroinformatics, University of Zurich and ETH Zurich

asteimer@ini.phys.ethz.ch

Wolfgang Maass
Institute for Theoretical Computer Science, Technische Universitaet Graz

maass@igi.tugraz.at

Rodney Douglas
Institute of Neuroinformatics, University of Zurich and ETH Zurich

rjd@ini.phys.ethz.ch

April 23, 2009

Abstract

From a theoretical point of view, statistical inference is an attractive model of
brain operation. However, it is unclear how to implement these inferential processes
in neuronal networks. We offer a solution to this problem by showing in detailed
simulations how the Belief-Propagation algorithm on a factor graph can be embedded
in a network of spiking neurons. We use pools of spiking neurons as the function nodes
of the factor graph. Each pool gathers ’messages’ in the form of population activities
from its input nodes and combines them through its network dynamics. The various
output messages to be transmitted over the edges of the graph are each computed by
a group of readout neurons that feed in their respective destination pools. We use
this approach to implement two examples of factor graphs. The first example is drawn
from coding theory. It models the transmission of signals through an unreliable channel
and demonstrates the principles and generality of our network approach. The second,
more applied example, is of a psychophysical mechanism in which visual cues are used
to resolve hypotheses about the interpretation of an object’s shape and illumination.
These two examples, and also a statistical analysis, all demonstrate good agreement
between the performance of our networks and the direct numerical evaluation of belief-
propagation.

1

1 Introduction

1.1 Graphical Models and the Belief-Propagation algorithm

Many computational problems faced by nervous systems involve infering unknown infor-
mation from incomplete sensory data combined with some prior knowledge, and so can
be considered a form of statistical inference (Kersten et al., 2004; Ernst & Banks, 2002;
Körding & Wolpert, 2004; von Helmholtz, 1867; Kersten & Yuille, 2003). These problems
usually comprise a set of observed variables whose state is known, and a second set of hid-
den variables whose states must be estimated probabilistically from the known variables by
computing their (conditional) marginal probability distributions. For many problems there
are dependencies between only some of the variables, hence graphs are an elegant way of
visualizing and computing on these dependencies. For example, in graphical models like
’Factor Graphs’ (Kschischang et al., 2001; Bishop, 2006) a factor node expresses a relation
between the variables the node is connected to, and provides a nonnegative scalar value for
each combination of states of these variables. Multiplying the values of all nodes together
provides a factorized representation of the probability of any joint state. The structure of the
graph can be used as a starting point for calculating quantities like the ’maximum a poste-
riori’(MAP) estimate or the marginal probabilities associated with each unobserved variable
(Kschischang et al., 2001; Löliger, 2004; Löliger et al., 2007; Bishop, 2006). By contrast,
computing marginal probabilities by straightforward summation is not feasible for nervous
systems. Firstly, it is inefficient because the number of operations scales exponentially with
the number of variables; and secondly, it requires a summation mechanism that has global
access to all states of all variables, a requirement that is incompatible with biology’s physical
constraint of local information-processing.

The Belief-Propagation (BP) algorithm (Kschischang et al., 2001; Löliger, 2004; Bishop,
2006) avoids these problems, and so is a plausible mechanism for brain computation. The
algorithm employs computational units (the nodes of a graphical model) that communicate
by distributing ’messages’ exclusively to their neighbors in the graph. An outgoing message
from a source node can be regarded as an estimate of the state of a particular variable.
This estimate depends on local information given by the input that the node receives from
its neighbours. After the message-passing dynamics have converged, a node multiplies all
(locally available) messages that depend on the same variable and normalizes across its
states, to yield the variable’s (possibly approximate) marginal probability distribution. The
advantage of this message-passing scheme compared to straight-forward summation lies in
the decomposition of a ’large’ inference problem containing exponentially many terms to
compute, into several ’small’ subparts each of which can be solved locally by a node of the
graph in a parallel manner(see Methods).

If the ’Sum-Product’ rule (Kschischang et al., 2001; Löliger, 2004) is used to compute
the outgoing message from the incoming ones, the BP algorithm is guaranteed to converge
to the exact marginal distributions for tree-structured graphical models, but not necessarily
for general graphs containing cycles(Yedidia et al., 2005; Löliger, 2004). However, even in
these cyclic cases the algorithm often performs surprisingly well(Yedidia et al., 2005).

2

Several recent studies have considered how single neurons or their networks could im-
plement BP(Rao, 2004; Ott & Stoop, 2006), or of how they could perform probabilistic
computations in general(Yu & Dayan, 2005; Deneve et al., 2001; Deneve, 2007; Ma et al.,
2006). However, the neuronal level models offered so far are limited in that they are confined
to a restricted set of graphical models(Deneve, 2007), use restricted inference procedures(Ma
et al., 2006), or depend on rough approximations(Rao, 2004).

In this study we focus instead on a neuronal network approach, in which BP-dynamics
play out on an abstract graphical structure (a ’Forney-Factor-Graph’(FFG)(Löliger, 2004))
that is embedded in a network of spiking neurons. Each node in the graph represents a
single factor of a factorized joint probability distribution and, at the neuronal level, can
be associated with a collection of ’Liquid State Machines’(LSMs)(Maass et al., 2002). As
in a typical LSM, our graphical node is composed of two kinds of neuronal populations: a
pool of recurrently connected neurons whose rich dynamics implicitly performs nonlinear
transformations of the input(liquid pool); and additional pools of neurons that compose
particular output functions as linear combinations of these transformations(readout pools).
The output functions constitute the output messages transmitted across the edges of the
abstract graph(Figure 1). At the implementation level, these messages are encoded in the
spike patterns traversing the axons of the neurons in the readout pools. All messages arriving
at a node are fed into the single liquid-pool, whose nonlinear projections of the input are
crucial for implementing the multiplicative message update rule (Sum-Product rule) of the
BP-algorithm. The various pools of readout units within a node each compute the output
message associated with a particular edge of the graph. Both the liquid and the readout
pools consist of leaky-integrate-and-fire units.

We demonstrate the concept illustrated in figure 1 by two different examples of inference
problems. The first example models a problem from coding theory involving signal transmis-
sion through a noisy channel (Figure 3). We choose this non-biological problem because it
demonstrates well the principles and generality of our approach. In the second example we
model a psychophysical mechanism where visual cues are used to resolve hypotheses about
the interpretation of an object’s shape and illumination in a visual scene (Figure 4).

2 Methods

2.1 Specific Version of the Belief-Propagation Algorithm

Depending on the context, the Belief-Propagation(BP) algorithm can be formulated in dif-
ferent ways; and various graphical models with different message update rules have been
described(Pearl, 1988; Kschischang et al., 2001; Löliger, 2004; Ott & Stoop, 2006). We use
the ’Forney-Factor-Graph’ (FFG) model, in which the nodes of the graph correspond to
factors and the edges to variables(figure 1). We use this form because the formulation of BP
is simplest in these graphs. For example, in contrast to BP in ordinary (bipartite) factor
graphs, FFG’s have only a single type of message (from factor node to factor node), which

3

Figure 1: Neural implementation of Belief-Propagation (BP) on a network of recurrently
connected Liquid State Machines. Left: Symbolic illustration of BP in a Forney-Factor-
Graph(Löliger, 2004)(nodes represent factors f1, ..., f4 and edges the variables X1, ...X7).
The product P (X1, ...X7) ∝ f1(X2, X3) · f2(X1, X2, X6) · f3(X5, X6, X7) · f4(X3, X4, X5) then
provides a factorized representation of the joint probability distribution P (X1, ...X7). The
BP-messages exchanged between neighboring nodes are indicated by arrows along the edge
connecting two neighbors. Right: Schematic showing the principles of the neural network
implementation of BP in the graph at left. ’L’ and ’R’ respectively represent liquid and
readout populations of neurons in a liquid state machine. Each message (arrowed) is com-
puted by a combination of a pool of liquid and readout neurons. The liquid pool represents
the factor of the node sending the message. Messages are encoded by the population rate of
the corresponding readout population and are injected into the target liquid pool through
synapses.

is a canonical strategy and more likely to be implemented by the cortex.
In a FFG, a message mf1→f2(X) sent from a node f1 to a node f2 along the variable X

provides a biased estimate about the states of X by summarizing the subgraph G1 ’behind’
(with respect to the direction of the message) f1. That means that in a marginalization task
mf1→f2(X) contains all summations associated with variables in G1(Löliger, 2004). Since
(in a tree-structured graph) these summations do not depend on the variables in G2, the
subgraph ’in front of’ f2, they need not be repeated for each (joint) state of the variables
in G2. This property is a consequence of the distributive law, and the reason for the much
greater efficiency of BP compared to marginalization by direct summation.

The variables in a FFG can be binary, of arbitrary base, or even continuous. For sim-
plicity, we have in this work focused on the binary type, although in principle our approach
is applicable also to variables of arbitrary base. When normalized, a message of a binary
variable can be a single scalar value that represents the estimated probability of the variable
taking the value ’1’. Thus, normalization also encodes implicitly the probability for value ’0’.
These estimates are based on information locally available to the node sending a message

4

(incoming messages).
In the computational science domain the execution time of the BP-algorithm is necessar-

ily discrete, so allowing different ’clocked’ message-passing schedules/schemes. A schedule
determines when a message must be computed and to which neighbor it must be transmitted.
One of the simplest of these schemes is the ’flooding schedule’(Kschischang & Frey, 1998;
Kschischang et al., 2001). There, every message in the graph is computed and transmitted
at every time step. This strategy has the advantage that the Sum-Product rule can be easily
formulated as a system of first-order, nonlinearly coupled differential equations in continuous
time, and therefore is well suited to a neural implementation.

Furthermore, in practice it is often helpful for the algorithm to converge if the messages
are only partially updated at each time step(Yedidia et al., 2005), and the differential version
of the flooding schedule can be regarded as the extreme case of an infinitesimal update dm
in ’time step’ dt. It belongs to the class of time-invariant filters with fading memory, and so
can be approximated by a LSM(Maass et al., 2002). In general, the differential version of
the flooding schedule for binary variables in a FFG is given by:

τṁi→j(t) + mi→j(t) =
1

Z(t)

∑

X∈{0,1}n

fi(xj = 1, X)
∏

k∈N (i)/j

pk→i(xk, t − D) (2.1)

where mi→j(t) is the (scalar) message passed from node i to node j at time t; τ , an arbitrary
time constant determining the overall speed of the computation dynamics; N (i)/j, indicates
the set of neighbors of node i besides j; n, the cardinality of N (i)/j; X = (xk)k∈N (i)/j is the
vector of binary variables xk each of which links nodes i and k; fi is the factor associated
with i; D is a fixed transmission delay (synaptic delay); pk→i(xk, t) = {mk→i(t), if xk = 1; 1−
mk→i(t), otherwise}; and Z(t) is a normalization term assuring that 0 ≤ mi→j(t) ≤ 1. Z(t)
therefore depends on the fi(xj = 1, X) as well as on the fi(xj = 0, X).

2.2 Implementation of the Liquid Pools

Our spiking neuron simulations were implemented using the software package CSIM (avail-
able at the Institute of Theoretical Compute Science/TU-Graz, www.lsm.tugraz.at). The
organization of our liquid pools followed closely that of Maass (Maass et al., 2002). We
used leaky-integrate-and-fire(LIF) neurons (20 % inhibitory) located on the integer points
of cuboid lattices with a distance dependent gaussian connection probability. A synpatic
connection between two neurons with position vectors a and b was established with proba-
bility p = C · exp−‖(a−b)‖2

λ2 . We used only current injecting synapses, which were modeled
as low-pass filters of the input spike trains. That is, after a synaptic delay, each presynaptic
spike generated an instantaneous increase of the postsynaptic current that was followed by
an exponential decay(see supplementary material for parameter values).

Spike inputs(SI) to a liquid pool were provided either externally by a population of
’dummy’ neurons (used to model prior knowledge or observed variables); or by a readout
pool(R) consisting of a population of spiking LIF neurons (used for messages computed

5

within the network)(see figures 3,4&5). Input neurons of both types connected to neurons
of the postsynaptic pool with a probability that was independent of distance.

For the results presented in this paper, neurons in liquid pools did not receive any dif-
fusive noise current (in contrast to neurons belonging to readout populations, see Section
3). However, the performance is robust even in the presence of noise in the liquid pool (see
supplementary material).

2.3 Neural encoding of the Messages and Generation of Training
Inputs

We have used the population activity/rate(Gerstner & Kistler, 2002) of the readout neu-
rons as a method for encoding the time-series of the messages mi→j(t) in equation 2.1 with
spikes. Therefore, the spiking neurons of the readout pools (figure 1) should encode mes-
sages (probability values) using a population rate code that depends linearly on the encoded
scalar message value (probability values 0/1 corresponded to a population rate of 0/90Hz
respectively, see section 3).

The problem is then, how to arrange for the readout neurons to report the correct output
message in response to the current state of the liquid-which depends on the time-series of
the input messages? In overview, our solution is to drive the liquid with a broad range of
possible input time-series (spike trains), and to train the readout pools to generate their
corresponding output messages. We expect that when suitably trained, these pools will be
able to generalize their learned behavior to generate appropriate output messages in response
to novel input messages injected into the liquid.

If a general filter of the kind in equation 2.1 is to be implemented by a LSM, the training
examples must cover a wide range of possible input time-series mk→i(t), because it is not
known in advance what input time-series mk→i(t) liquid pool i will be exposed to once
trained. Therefore, training examples were generated as follows: Low-pass filtered white
noise (an Ornstein-Uhlenbeck process with reflective bounds) was used to generate random
population rate curves, each coding for a possible message signal mk→i(t). These patterns
represented the instantaneous firing rate underlying an inhomogeneous poisson spike process.
Since each rate curve determines a population message signal, the same curve determines the
instantaneous rate of each neuron in an input population. The training input spike trains
had a duration of 120-300s in simulated biological time.

3 Characterizing the Population Code of the Readout
Pools

In order to generate the spiking readout messages of our choice, we had first to determine
the relationship between the total mean input current (I) provided by the synapses from
the liquid neurons to the readout neurons, and the population rate (R) of the latter. This
step was necessary to ensure consistency between the encoding of the (training) input mes-

6

sages and the readout response which, after training, provided the input to a neighboring
liquid pool. We obtained this relationship empirically by conducting several simulations with
independent samples of networks of the following type:

All N = 343 neurons belonging to the same readout population were mutually uncon-
nected and their threshold values were drawn independently from a uniform distribution.
Each neuron received a diffusive (white) noise current, however all of them received the
same temporally varying mean input current I(see (Silberberg et al., 2004; Brunel et al.,
2001) for similar networks, but without distributed threshold values).

We performed 20 trials, in each of which a random instance of such a network was created.
A random mean current trace I(t) was then injected into all the neurons. This current, to-
gether with additive gaussian noise, evoked poissonian spike trains of varying instantaneous
firing rates in the neurons. All neurons received the same mean current. However, their
individual white noise processes were independent. The corresponding population rate R(t)
was the result of the combined firing of all neurons and computed as follows: The spike
trains of all neurons in a given trial were merged into a single one and R(t) = 1

N
dC
dt was

determined, where C(t) is the (smoothed) total number of spikes fired until time t by the
whole population. The I(t) and R(t) data of all trials were lumped together and the I(R)
relationship determined by polynomial fitting. This relationship was then used to deter-
mine the desired target current during all supervised learning procedures. We used a linear
dependency between R and the message m ∈ [0, 1] encoded by it: R = 90Hz × m.

After learning, the current I is provided by the sum of (trained) postsynaptic currents
(PSCs) injected by the neurons of the presynaptic liquid pool. We found that the distributed
firing thresholds in the readout populations have an important role in that they permit
the population responses to depend mainly on the actual I and less on past values of this
current[M.Bethge personal communication]. The goal was to map instantaneously I together
with the noise onto a corresponding population rate without introducing dependencies on
the distant past, which the liquid pool is unable to provide because of its fading memory
(Maass et al., 2002).

3.1 Training the Readout Pools

The response spikes of the liquid neurons were recorded for each training input message,
and used to compute the resultant synaptic current injected into the neurons of the readout
pool.

The desired synaptic current could be derived from the training input message as follows:
Firstly, the desired population rate to instantiate the required output message can be calcu-
lated from equation 2.1 and the linear dependency between encoded message (probability)
mi→j(t) and population rate. Then the desired input current can be derived from the empir-
ically measured I(R) relationship. The I(R) relationship assures that this current (together
with noise) will result in the correct population rate encoding of the output message mi→j(t).

For computational simplicity we used linear regression to adjust the synaptic weights
towards the desired input current, however in future work this task is expected to be solved
within the framework of reward-modulated STDP learning(Legenstein et al., 2008). In our

7

simulations the synaptic weights were the same for all neurons in the same readout popula-
tion. Consequently, after successful learning all the readout neurons received the same mean
synaptic current through the synapses from their presynaptic liquid pool.

All readout populations were trained separately, and then connected to their presynaptic
liquid pool.

4 Results

4.1 Evaluation of the Model in a General Inference Problem

Our first task was to evaluate the ability of a single readout population to approximate the
dynamics determined by the Sum-Product rule in equation 2.1. Figure 2 shows the response
to test input signals of a single, trained readout population in an isolated factor node. The
’=’-factor defines an equality constraint node as given in (Löliger, 2004). Since in a FFG a
variable (edge) can only be connected to at most two factors, this specific factor has been
constructed for the purpose of ’cloning’ a variable. Connected to the variables X, Y, Z it
is defined through f=(X, Y, Z) := δ(X − Y)δ(Y − Z) (δ(W) = {1 if W = 0; 0 otherwise}
denotes the (discrete) Kronecker delta function), thereby enforcing equality among X, Y
and Z.

When inserted into equation 2.1 the ’=’-factor leads to the following expression for the
message mO in figure 2:

τṁO(t) + mO(t) =
mI1(t − D)mI2(t − D)

mI1(t − D)mI2(t − D) + (1 − mI1(t − D))(1 − mI2(t − D))
(4.1)

In figure 2b the test input time-series was drawn from a completely different distribution
to that of the training phase. Clearly, the readout is able to generalize its behavior to the
novel situation and its population rate is highly correlated with the target output. This
ability to train robust individual message outputs provides a foundation for constructing
more elaborate factor graphs with interconnected liquid and readout pools, as shown in
Figures 3b and 4d.

We first examined the ability of a generic neural network to perform general inference.
Here it is the principle rather than the particular (e.g. neurophysiological) application that
is at issue, and so we chose to simulate a FFG representing a signal transmission problem
that has been described in the literature as an example of standard discrete BP (Löliger,
2004) (Figure 3). The problem is as follows: Suppose each bit Xi of a binary code word
(X1, ..., X4) ∈ {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)} is fed into an unreliable signal
transmission channel, which inverts the bits with a certain probability. Given the observation
of all bits at the end of the channel (Y1, ..., Y4), we wish to know the marginals P (Xi|Y1, ..., Y4).

8

The model is expressed as the FFG of Figure 3a. The FFG represents a factorization
of the a posteriori probability P (X1, X2, X3, X4, Z|Y1, Y2, Y3, Y4), where Z is an auxiliary
variable, Xi the value of bit i at the beginning, and Yi the observed value of this bit at
the end of the channel. The product of the ’⊕’-and ’=’-factors connected via Z models
membership of a given binary sequence (X1, ..., X4) to the set of code words above: It can
be seen from those code words that the ’⊕’-node implements the parity check function
f⊕(X1, X2, Z) = δ(X1 ⊕ X2 ⊕ Z) (’⊕’ denotes the exclusive-or function), and the equality
constraint node enforces equality among the variables Z, X3, X4. The product of the two
factors therefore assures that for valid code words both X3 and X4 are the parity bit of X1

and X2. The empty nodes model the unreliability of the bit-wise signal transmission, i.e.
they are defined by the conditional probabilities Pi(Yi|Xi). These probabilities are equal to
0.8 for Xi = Yi and 0.2 otherwise. The product of all factors yields the a posteriori probability
P (X1, ..., X4|Y1, ..., Y4) ∝ f⊕(X1, X2, Z)f=(X3, X4, Z)

∏4
i=1 Pi(Yi|Xi). By applying message-

passing within the Belief-Propagation framework it is possible to obtain the marginal a
posteriori probabilities P (Xi|Y1, ..., Y4) for all i simultaneously, i.e. the degree of belief one
can have in the value of each bit at the beginning of the channel, given the observed values
of those bits at the end of the channel. The messages are scalar values in [0, 1] representing
the sender nodes local estimate about the associated variable to take on value 1. An example
message obtained by inserting the definition of the ’⊕’-factor into equation 2.1 can be found
in the supplementary material.

A network of spiking neurons equivalent to the graph in figure 3a is shown in figure 3b. We
evaluated the ability of this neuronal circuit to perform inference against a series (n=600) of
random external stimulations (corresponding to the messages along the variables Y1, ..., Y4).
For each trial all these external inputs were assigned to a random but temporally constant
value (constant instantaneous firing rates). Then for internally computed messages, the error
between their exact steady-state value and the corresponding value found by the spiking
network was determined (figure 3c). Each colored curve shows the histogram of the error
mcorrect − mspiking between the correct steady-state message(mcorrect) and the one found by
the spiking network(mspiking) during each run. The spiking messages are normalized to 1 s.t.
they correspond to probabilities. The black histograms serve as control and correspond to the
error mcorrect −mrandom, i.e. in each run mspiking has been replaced by a random probability
mrandom. The numbers on top of each curve are the trial-averaged Kullback-Leibler(KL)
divergences (in bits) between the distributions induced by mcorrect and mspiking/mrandom

respectively. Each run lasted for 0.5s in simulated time. For each message, steady-state was
assumed to be reached after 0.2s, the temporal averages of the instantaneous firing rates
during the remaining 0.3s were taken as the encoded steady-state solutions found by the
spiking network.

The results summarized in Figure 3c indicate a close correspondence between the BP
steady-state solution and the solution found by the spiking network. However, the perfor-
mance decreases with increasing ’depth’ of the messages: i.e. the KL divergence and his-
togram width associated with messages that depend on strongly processed input are typically
larger than those of messages that depend on less processed input (compare green,blue/yellow,

9

Figure 2: Performance of the computation of a single message in an isolated fac-
tor. (a) Schematic of the simulated factor together with the corresponding messages
{mI1(t), mI2(t), mI3(t), mO(t)}. The factor defines an equality constraint node as defined
in (Löliger, 2004). (b) First row: Example spike trains of the three input populations coding
for the messages mI1, mI2, mI3 respectively. 343 neurons are coding each message. The green
lines schematically indicate the instantaneous firing rates used to create these input spike
trains. Every 50ms the rates have been chosen independently for each message according
to an uniform distribution. The max./min rates were 90/0Hz, representing the probabilities
mIk = 1/mIk = 0, k ∈ {1, 2, 3} respectively. Second row: Response spike trains of a trained
readout population representing the output message mO(t). Third row: blue line: target
curve showing the population rate corresponding to the ideal message mO(t) solving equa-
tion 4.1. Red line: actual population rate calculated out of the spike trains in the second
row. The encoded probability signal is a linearly scaled version of this rate curve. The
correlation coefficient between the red and the blue curve is 0.91.

10

−1 −0.5 0 0.5 1
0

0.1

0.2

Fr
eq

ue
nc

y

−1 −0.5 0 0.5 1
0

0.1

0.2

−1 −0.5 0 0.5 1
0

0.1

0.2

−1 −0.5 0 0.5 1
0

0.1

0.2

Fr
eq

ue
nc

y

Message Error
−1 −0.5 0 0.5 1
0

0.1

0.2

Message Error
−1 −0.5 0 0.5 1
0

0.2

0.4

Message Error

0.52 0.53 0.59 0.93 0.92 0.98

0.020

0.45

0.019

0.48

0.018

0.44

0.025

0.59

0.035

0.52

0.014

0.60

Figure 3: (a) An unreliable binary channel model(Löliger, 2004) (see text for details) (b)
Schematic of the neural implementation of the FFG in (a), using interacting pools of neurons
(circles).(c) Error histograms of a robustness evaluating Monte-Carlo simulation consisting
of 600 runs (see text for details). X-axes shows the error between the exact steady-state
value of a message and its value as found by the spiking network. 100 bins were used, the
histogram colors correspond to the colors of the messages in (b). Graphs corresponding
to the messages sent by the nodes Pi(Yi|Xi) have been omitted because the underlying
computations are simple and errors are not of relevant magnitude (comparable to yellow
graph in Figure 6c). (d) Correlation coefficients for each message in (c) between a numerical
evaluation of continuous time BP and the population rates of the readout pools. External
input was provided by instances of the stochastic process as defined in section 2.3. These
time-series had a length of 20s in simulated time. The correlation coefficients were highly
significant with p-values less than 1%.

11

purple curves with pink/red curves respectively). This effect could be caused by error prop-
agation associated with the necessarily imperfect training of the readouts.

To gain further insight into the dependency between the dynamics as defined by equation
2.1 and those of the neural circuit, we also stimulated the circuit with spike trains of tem-
porally varying instantaneous firing rates. These rates followed, but were different instances
of, the same stochastic processes as those used during the training procedure (see section
2.3). Since the message dynamics can be important for the BP-algorithm to converge (see
section 2.1), the goal here was to assess the goodness-of-fit between a numerical solution
of equation 2.1 and the spike dynamics of the readout units when random time-series have
been externally applied. The correlation coefficients between these two quantities for each
message are summarized in figure 3d. One can infer a strong linear relationship. However
as expected from the previous results, there is a slightly higher correlation for less processed
input than for messages ’deep’ in the network. Also, coefficients associated with messages
emitted by the ’⊕’-node are much smaller than those of messages emitted by the ’=’-node.
Probably this result arises because the sum-product rule of the former node is much harder
to learn.

4.2 Application of the Model to a Psychophysical Inference Prob-
lem

Many probabilistic inference problems faced by biological systems can be described in an
elegant way by using graphical models. For example, (Kersten & Yuille, 2003; Kersten et al.,
2004) define four basic types of Bayesian computations in the framework of object recogni-
tion and perception. One of these models the phenomenon of ’explaining away’ alternative
hypotheses about the interpretation of a visual scene in presence of auxillary stimuli favoring
a particular hypothesis. An example is shown in Figure 4a. Knill and Kersten(Knill & Ker-
sten, 1991) have shown that when two cylinders with an identical photometrical luminance
profile are attached to each other, subjects consistently perceive two identical objects. How-
ever, when the cylinders are replaced by cubes with the same luminance profile, the right
cube as a whole appears to be brighter than the left one.

The authors explain these distinct perceptions as being due to the integration of auxillary
information provided by the contour shape of the two types of objects. The round contours
of the cylinders make it more likely that the scene has a light source on the left, with
constant material reflectance across the position, ie. across the two cylinders. Thus, the two
cylinders are interpreted and perceived as identical objects. This hypothesis ’explains away’
an alternative one that assumes uniform illumination, and a higher reflectance of the right
object. In the case of straight contours, the latter explanation is more likely and hence the
two cubes are perceived differently.

Figure 4b and c show a Bayesian Network and its equivalent FFG that provide a proba-
bilistic interpretation of this phenomenon. Figure 4d shows our corresponding spiking neural
network. The two ’non-prior’-factors of the FFG in (c) (P1(S|R, O) and P2(C|O)) are defined
by the values given in tables 1 and 2 respectively. As in the noisy channel case above, our

12

goal was to implement general filters as expressed by equation 2.1 for arbitrary input signals
mk→i(t). An example message obtained by inserting the definition of the P1(S|R, O)-factor
into equation 2.1 can be found in the supplementary material.

We performed two types of simulations: Firstly, a psychophysically relevant case, in which
the visual scene in Figure 4a changes suddenly, so that curved contours are observed instead
of straight ones (i.e. variable C in Figure 4 steps from 0 to 1). We expect this step to result
in a decrease in the marginal probability of variable R (perceived reflectance), indicating the
reduced belief in the homogeneous reflectance hypothesis.

Figure 5 shows the results obtained by our spiking network, and by direct numerical
emulation of BP in that situation. There is a clear decline of the message along R(green
trace) from about 0.6 to about 0.4. Since the prior of R was assumed to be uniform, this
message corresponds directly to the (conditional) marginal probability of R. Therefore,
after the transition a constant reflectance across position(R = 0) is a more likely hypothesis
than a reflectance step(R = 1). On a perceptual level this result corresponds to a change
in the interpretation of the scene, i.e. the perception of two different objects switches to
the perception of two identical objects. Note the network computes the new steady-state
probabilities in less than 100ms (the LSMs were trained with τ = 10ms in equation 2.1).
This latency corresponds well to estimates of human performance in object classification tasks
(which can also be seen as Bayesian inference problems) as reported in the psychophysics
literature(Kirchner & Thorpe, 2006; Liu et al., 2002). With a classic single-neuron firing
rate code such a fast performance would have been rather unlikely to occur, because in this
case each computational stage (node) needs to perform temporal averaging of spikes which
slows down the dynamics more and more the deeper the node is in the graph.

As in the noisy channel case in the previous section, we also evaluated the ability of the
neuronal circuit to perform inference against a series (n=600) of random external stimula-
tions. The results are summarized in Figure 6a. Once again the results indicate a close
correspondence between the two solutions which is far from chance level. As before, we
evaluated also the correlation coefficients between the spiking and the numerical solutions
after applying random input time-series, which gave the results of figure 6b. There, we can
also see a silght effect of error accumulation which gives rise to smaller correlation coeffi-
cients for strongly processed messages(e.g. compare mP1→P3 to mP1→=). It can also be seen
that for this graph the minimum correlation coefficient of all messages is larger than in the
noisy channel example. Most likely this is because the messages emitted by factor P1 in the
’explaining away’ graph were easier to learn than those emitted by the ’⊕’-node in the noisy
channel case.

13

Figure 4: Graphical models and neural implementation of an ’Explaining Away’ phe-
nomenon. (a) Knill and Kerstens lightness illusion (see text for details, figure taken
from (Adelson & Gazzaniga, 2000), see http://web.mit.edu/persci/gaz/gaz-teaching/
index.html for an animated movie making the illusion even more apparent). (b) Bayesian
Network describing the illusion in (a) as an explaining away phenomenon. All variables
(nodes) are binary. The observed luminance profile or shading can either be as in (a)
(S = 1) or different (S = 0). The material reflectance of the two objects can either be
homogeneous (R = 0), or such that the reflectance of the right object is higher (R = 1).
There are two types of 3D objects, cylinders (O = 1) and cubes (O = 0), and two types
of observed contours: curved (C = 1) and straight (C = 0). The network corresponds to
the joint probability distribution P (S, R, O, C) = P1(S|R, O)P2(C|O)P3(R)P4(O). In this
model, whether two attached objects are preceived identically or distinctly will depend on
the marginal probability of the material reflectance P (R|S, C) given external observations
S and C (graph taken slightly modified from (Kersten et al., 2004)). (c) FFG representing
the same joint probability as in (b). Observed variables S and C occur as singly connected
edges. (d) Implementation of the Belief Propagation algorithm with spiking neurons on the
FFG shown in (c). The individual liquid pools(L) correspond to the factors drawn in the
same color or dashing. Together with the associated spiking readouts(R) message signals
are implemented. Externally provided spike inputs(SI) either stand for observed variables
(C and S) or for constant messages originating from factors representing prior knowledge
(P3(R) and P4(O′)). The purpose of the network is to compute all the (conditional) marginal
probabilities associated with the unobserved variables.

14

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Time[s]
0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 5: Simulating ’Explaining Away’ with a sudden change in contour perception. (a)
Color code of the messages (arrows) within the network of Figure 4. Externally supplied input
messages are fed into the network via the black SI-populations. All inputs were constant
during the whole run besides the message entering node P2(C|O′′) along observed variable
C. This probability switched from 0.1 to 0.9 at time 0.5s, indicating the visual scene has
suddenly changed from observed straight to curved contours. External input messages from
nodes representing prior knowledge were uniform (mP3(R)→P1(S|R,O)(t) = mP4(O′)→P=(t) = 0.5)
and a nonuniform luminance profile was observed (mS→P1(S|R,O)(t) = 0.9) (b) Colored solid
lines: Time-series of the probability values encoded by the population rate of the individual
readouts in response to the externally applied spike trains representing the input messages.
Color code as in (a). Black dashed lines represent the result of a non-neural simulation of
BP by solving equation 2.1 numerically.

15

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

0.25

Fr
eq

ue
nc

y

−1 −0.5 0 0.5 10

0.05

0.1

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

−1 −0.5 0 0.5 10

0.02

0.04

0.06

0.08

0.1

0.12

Fr
eq

ue
nc

y

Message Error
−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

Message Error
−1 −0.5 0 0.5 10

0.1
0.2
0.3
0.4
0.5
0.6

Message Error

0.73 0.85 0.94 0.97 0.94 0.99

0.007

0.52

0.014

0.48

0.038

0.68

0.037

0.77

0.029

0.53

0.001

0.57

Figure 6: (a) Performance analysis of the ’Explaining Away’ circuit. Shown are the results of
a Monte-Carlo simulation consisting of 600 runs. In each run, all external spike inputs (’SI’ in
figure 5) where assigned to randomly chosen, constant values (constant instantaneous firing
rates) corresponding to random input messages. Each colored curve shows the histogram of
the error mcorrect − mspiking between the correct steady-state message(mcorrect) and the one
found by the spiking network(mspiking) during each run. Since the messages are normalized
to 1, they correspond to probabilities. 100 bins were used, color code of the messages is as
in figure 5. Each run lasted for 0.5s in simulated biological time. Steady-state was assumed
to be reached after 0.2s, the temporal averages of the instantaneous firing rates during
the remaining 0.3s were taken as the encoded steady-state solutions found by the spiking
network. The black histograms serve as control and correspond to the error mcorrect −
mrandom, i.e. in each run mspiking has been replaced by a random probability mrandom.
The numbers attached to each curve are the trial-averaged Kullback-Leibler divergences (in
bits) between the distributions induced by mcorrect and mspiking/mrandom respectively. (b)
Correlation coefficients for each message in (a) between a numerical evaluation of continuous
time BP and the population rates of the readout pools. External input was provided by
instances of the stochastic process as defined in section 2.3. These time-series had a length
of 20s in simulated time. The correlation coefficients were highly significant with a p-value
less than 1%.

16

5 Discussion

As a proof of concept we have shown that a network of spiking neurons can implement belief
propagation on a Factor Graph. The principle is to use Liquid-State Machines composed
of pools of spiking neurons as function nodes of (Forney style) factor graphs. Each pool
gathers messages from its input nodes and combines these through its network dynamics.
The various output messages transmitted over the edges of the graph are extracted from
their source liquids by groups of readout neurons and fed into their destination liquid pools.
We have applied this approach to an inference problem from the engineering domain dealing
with the passing of bits through an unreliable signal transmission channel(Figure 3), and
also to a more biologically relevant case in which visual cues are used to resolve hypotheses
about the interpretation of object shape and illumination (Figure 4). The dynamics of these
networks followed closely the numerical evaluation of the algorithm.

A restriction of our model is the use of binary variables. In this case if normalized
messages are assumed, each message (i.e. probability estimate) can be defined by a single
scalar value, and so only a single readout population is needed to encode this value. In
principle though, our spiking readout method is extendable to vector-valued variables by
using a population for each individual value of the underlying variable. Unfortunately, we
expect this strategy to be expensive in terms of the number of required neurons, both for
the liquid and readout populations. A problem of a rate-based population code is that only
the fraction of neurons firing during a small time interval, and not their position within the
population, is the relevant variable. This restriction hinders the learning of the readouts,
and we assume that it is part of the reason for the larger sizes of our liquid pools compared
to those reported by Maass (Maass et al., 2002) (see supplementary material). Therefore we
are currently applying a place coding scheme to our approach which is also closer to known
properties (tuning curves) of real neurons.

We have chosen to implement the Factor Graph on a distributed arrangement of LSMs
(Figure 1) rather then on a single (global) liquid pool. However, due to the approximation
properties of LSMs(Maass et al., 2002) one could construct a circuit consisting of just a single
liquid pool, with each of its readouts feeding back into the pool in a recurrent manner. These
readouts could also be trained according to the Sum-Product rule(equation 2.1). Although
this strategy looks plausible, there is a clear reason why the distributed arrangement is
superior: In BP every node uses exclusively locally available incoming messages to compute
its outgoing messages. In the LSM framework this means that each readout is required
to access only a subset of all shared knowledge within the network. Using a single global
liquid pool with recurrent readouts makes the state of the liquid neurons dependent on all
information present in the network. Therefore, as the number of nodes in the graphical
model increases it becomes more difficult to filter out irrelevant information during training
of the readouts.

The mechanism that we have presented here is very general, and lends itself to imple-
mentation in, for example, the neuronal networks of the neocortex. Many anatomical studies
indicate that the entire neocortex is composed of a relatively few basic types of excitatory
and inhibitory neurons that are everywhere connected in a similar pattern, suggesting that

17

cortex uses a common fundamental circuit architecture that repeats over its entire area
(Mountcastle, 1997; Douglas & Martin, 2004). Various candidates for the computational
process supported by this common architecture have been proposed (e.g. (Hopfield, 1982;
Pouget et al., 2002; Maass et al., 2002)). But, the ability to infer unknown information
from incomplete sensory data combined with some prior knowledge must rank as one of the
most fundamental principles for incorporation in cortical circuits. And, in this paper we
have shown that such inference can be instantiated in a highly distributed manner, using a
common architecture of interconnected pools of spiking neurons. In using pools of neurons,
our approach stands in contrast to previous models whose basic inference elements are single
neurons (Rao, 2004; Ott & Stoop, 2006; Deneve, 2007). The advantage of interacting pools
is that they allow the implementation of FFGs, which belong to the most general types of
graphical models. They subsume Bayesian Networks (as in (Rao, 2004; Deneve, 2007)) as
well as Markov Random Fields (as in (Ott & Stoop, 2006)). Bayesian Networks and Markov
Random Fields are restricted in that there are instances of graphs of either type that cannot
be translated into the other, while keeping the same set of variables(Bishop, 2006). And for
example, the noisy channel problem in figure 3 has no analogous Bayesian Network.

In our simulations we have used ’general purpose’ liquid pools which, when interpreted
biologically, opens the possibility for cortex to perform many other computations on top of
and in parallel to BP using the same neural hardware. Therefore, our approach predicts
that, on the anatomical level, there is no specific neural circuitry implementing the Sum-
Product rule. Instead, it can just be one out of many computational results that a specific
readout can extract from a generic pool. For example, the most probable state of each
marginalized variable connected to a given liquid-pool might be determined by BP, and the
resulting state-vector then be processed by a classifier readout unrelated to the inference
task at hand. Such readouts could be represented by projection neurons transmitting their
classification results to various target areas.

On the other hand, if cortex is a pure inference machine, a ’general purpose’ liquid pool
might be unnecessarily complex for only inference tasks. An interesting future direction
of research is therefore the development of an appropriately ’structured liquid pool’ whose
computational abilities are specialized to the supply of all necessary products according
to the Sum-Product rule. Such a ’special purpose’ circuit might be genetically prewired
in cortex and can be thought as an explicit multiplicative feature mapping whose scalar
product with itself implements a ’kernel function’ as in the framework of support-vector-
machines(Bishop, 2006). Therefore we consider a spiking version of the recently presented
’Evolino’ method(Schmidhuber et al., 2007) as a suitable starting point for circuit creation
by means of evolutionary algorithms. The Sum-Product rule would then be provided by the
output of a trained readout through a linear combination of the circuit-provided products.
In this context a factor node is exclusively defined by the weights of its readouts, and a
customization of the factor to a particular problem can then be accounted for by assigning
specific values to those weights.

This approach raises the question of whether it is possible to learn these weights by un-
or semi-supervised (reinforcement) learning methods. In this paper we have not tackled

18

this problem as our intention was only to provide a proof of concept as proposed in figure
1. However, as a next step we will explore the use of reward-modulated STDP learning
to obtain suitable readout weights (Legenstein et al., 2008; Izhikevich, 2007). This method
has already been applied successfully to responses of a generic cortical microcircuit (liquid)
model (Legenstein et al., 2008).

6 Acknowledgements

We cordially thank Matthias Bethge and Laurenz Wiskott for fruitful discussions about
the proposed method and valuable suggestions regarding population coding. This work is
funded by the EU within the ’DAISY’- and FACETS-Grants (Grant No: FP6-2005-015803
and 15879)

References

Adelson, E.H. & Gazzaniga, M. (2000). The New Cognitive Neurosciences 2nd Ed. Cam-
bridge, chapter 24. MA: MIT Press.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business
Media,LLC.

Brunel, N., Chance, F.S., Fourcaud, N., & Abbott, L.F. (2001). Effects of synaptic noise and
filtering on the frequency response of spiking neurons. Physical Review Letters, 86(10),
2186–2189.

Deneve, S. (2007). Bayesian spiking neurons 1: Inference. Neural Computation, 20(1),
91–117.

Deneve, S., Latham, P.E., & Pouget, A. (2001). Efficient computation and cue integration
with noisy population codes. Nature Neuroscience, 4(8), 826–831.

Douglas, R.J. & Martin, K.A.C. (2004). Neuronal circuits of the neocortex. Annual Review
of Neuroscience, 27, 419:451.

Ernst, M.O. & Banks, M.S. (2002). Humans integrate visual and haptic information in a
statistically optimal fashion. Nature, 415, 429–433.

Gerstner, W. & Kistler, W. (2002). Spiking Neuron Models. Cambridge University Press.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. Proc.Natl.Acad.Sci.USA, 79(8), 2554–2558.

Izhikevich, E.M. (2007). Solving the distal reward problem through linkage of stdp and
dopamine signaling. Cerebral Cortex, 17, 2443–2452.

19

Kersten, D. & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in
Neurobiology, 13, 150–158.

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as bayesian inference.
Annu.Rev.Psychol., 55, 271–304.

Kirchner, H. & Thorpe, S.J. (2006). Ultra-rapid object detection with saccadic eye move-
ments: Visual processing speed revisited. Vision Research, 46, 1762–1776.

Knill, D.C. & Kersten, D. (1991). Apparent surface curvature affects lightness perception.
Nature, 351, 228–230.

Körding, K.P. & Wolpert, D. (2004). Bayesian integration in sensorimotor learning. Nature,
427, 244–247.

Kschischang, F.R. & Frey, B.J. (1998). Iterative decoding of compound codes by probability
propagation in graphical models. IEEE Journal on Selected Areas in Communications,
16(1), 219–230.

Kschischang, F.R., Frey, B.J., & Löliger, H.A. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2).

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-modulated
spike-timing-dependent plasticity with application to biofeedback. PLoS Computational
Biology, 4.

Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: An meg
study. Nature Neuroscience, 5(9), 910–916.

Löliger, H.A. (2004). An introduction to factor graphs. IEEE Signal Proc. Mag.

Löliger, H.A., Dauwels, J., Hu, J., Korl, S., Ping, L., & Kschischang, F.R. (2007). The
factor graph approach to model-based signal processing. Proceedings of the IEEE, 95(6),
1295–1322.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural Compu-
tation, 14, 2531–2560.

Ma, W.J., Beck, J.M., Latham, P.E., & Pouget, A. (2006). Bayesian inference with proba-
bilistic population codes. Nature Neuroscience, 9(11), 1432–1438.

Mountcastle, V.B. (1997). The columnar organization of the neocortex. Brain, 120, 701–22.

Ott, T. & Stoop, R. (2006). The neurodynamics of belief-propagation on binary markov
random fields. In Saul, Lawrence K., Weiss, Yair, and Bottou, Léon, editors, Advances in
Neural Information Processing Systems, volume 18, pages 1057–1064.

20

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. San Francisco, CA: Morgan Kaufmann.

Pouget, A., Deneve, S., & Duhamel, J.R. (2002). A computational perspective on the neural
basis of multisensory spatial representations. Nat.Rev.Neurosci., 3(9), 741–747.

Rao, R.P.N. (2004). Bayesian computation in recurrent neural circuits. Neural Computation,
16(1), 1–38.

Schmidhuber, J., Wierstra, D., Gagliolo, M., & Gomez, F. (2007). Training recurrent net-
works by evolino. Neural Computation, 19(3), 757–779.

Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., & Tsodyks, M. (2004). Dynamics
of population rate codes in ensembles of neocortical neurons. Journal of Neurophysiology,
91, 704–709.

von Helmholtz, H. (1867). Handbuch der physiologischen Optik. L.Voss,Leipzig.

Yedidia, J.S., Freeman, W.T., & Weiss, Y. (2005). Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51(7), 2282–2312.

Yu, A.J. & Dayan, P. (2005). Inference,attention, and decision in a bayesian neural archi-
tecture. In Saul, Lawrence K., Weiss, Yair, and Bottou, Léon, editors, Advances in Neural
Information Processning Systems, volume 17, pages 1577–1584.

21

