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Abstract— Most VLSI spiking network implementations are
constructed using point neurons. However, neurons with extended
dendritic structures might offer additional computational ad-
vantages. Experimental evidence suggests that dendritic com-
partments could be considered as independent and parallel
computational units. Depending on the synaptic input patterns,
the dendritic integration could be either linear or nonlinear.
We show the influence of spatio-temporal input patterns on
the evoked dendritic integration in an aVLSI neuron chip with
programmable dendritic compartments.

I. INTRODUCTION

Pyramidal cells in neocortex and hippocampus have highly
complicated dendritic structures, but the computational contri-
bution of the dendritic tree in neuronal processing is still elu-
sive. Experimental evidence suggests that individual dendritic
branches can be considered as independent computational
units, and NMDA channels located within the branches poten-
tially allow either linear or nonlinear computation depending
on the input's spatio-temporal pattern [1]–[6]. This evidence
supports the two-layer model from Poirazi and colleagues [7],
[8], which suggests that pyramidal cells first process their
synaptic inputs within the individual dendritic compartments
following a sigmoidal function before these signals are linear
integrated at the soma. In contrast with the widely used point-
neuron model, this two-layer model adds to the richness of
neuron-level computation.

Most aVLSI spiking network implementations at present
are constructed using point neurons. A few systems have
included the passive cable circuit model of the dendrite [9],
specifically by implementing the dendritic resistance using
switched-capacitor circuits [10], [11]. Some researchers have
also incorporated active channels into VLSI dendritic com-
partments [12], [13], and showed their use for the propagation
of dendritic spikes [13]. However, the impact of the synaptic
input pattern on the functionality of neurons with a dendritic
tree has not been investigated. Physiological results suggest
that temporally asynchronous and spatially distributed inputs
evoke linear integration in the dendritic tree; while temporally
synchronous and spatially clustered inputs evoke nonlinear in-
tegration [14]. To study this intriguing multi-functional device,
we constructed an aVLSI neuron with a reconfigurable den-
dritic architecture. This architecture includes both individual
computational units and spatial filtering.

In this paper, we show the impact of different spatio-
temporal input patterns on the functionality of the neuron. This
paper is structured as follows: In section II we introduce the
aVLSI dendritic architecture; in section III we characterize
the dendritic responses due to the nonlinearity of NMDA
synapses; and in section IV, we show dendritic responses for
different spatio-temporal patterns before we present conclud-
ing remarks.

II. DENDRITIC ARCHITECTURE

The silicon neuron circuit is composed of 9 dendritic com-
partments and 1 soma compartment (Fig. 1). Each dendritic
compartment is an independent computational unit. This unit
includes a nonlinear subunit which is capable of producing
linear/nonlinear response according to the input pattern; a
voltage-dependent dendritic spike-generating circuit; and a
dendritic cable circuit that allows the interconnection be-
tween different compartments. The nonlinear subunit has 2
AMPA synapses, 2 AMPA+NMDA synapses, and 2 GABA
synapses. The connections between compartments are fully
programmable in both directions to create different dendritic
architectures. The somatic spike can also be propagated back
along the dendritic tree to the different compartments.
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Fig. 1. Dendritic architecture. The neuron consists of 9 dendritic com-
partments (C) and 1 soma compartment (S), the dotted lines indicates the
bidirectional programmable dendritic pathways. The solid red arrows in the
figure show the programmed configuration for the experiments in Section III.
The blue arrows indicate the stimulated compartments in those experiments.
The right subfigure shows the components within each compartment. Layout
size of each dendritic compartment is 87.8 µm by 231.1 µm.

The simplified circuitry is shown in Fig. 2. The circuit was
fabricated in a 4-metal 2-poly 0.35 µm CMOS process. The
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Fig. 2. Simplified schematics of the synaptic circuits in each compartment.
The top left schematic shows the circuit for AMPA synapse, which is modeled
as a low-pass filter (LPF). The top right schematic shows the NMDA synapse,
which has a relatively long time constant and is sensitive to both the local
dendritic membrane potential and the presynaptic stimulation. The bottom left
schematic shows the circuit for the summation of currents from the individual
synapses and neighboring compartments. The bottom right schematic shows
the circuit for the integration of the currents on the dendritic membrane
and the conveyance of this integrated current to neighboring compartments.
The synapse and dendritic membrane circuits are based on the LFP circuits
described in [12]. The biases are named in the following way: τ stands for time
constant, W for synaptic weight, Th for threshold, Pw for pulse width, SPin
for synaptic spike input. In this paper, the time constants are set to τampa =
0.6ms, τnmda = 15ms, τden = 3.8ms, τsoma = 23.1ms, the dendritic spatial
constant λden = 2.5 fold/compartment, the NMDA threshold VThnmda =
0.266V, and the soma threshold is 0.345V.

dendritic spike-generating circuit and GABA synapses are not
discussed in this paper.

III. TEMPORAL PROCESSING

As mentioned above, the nonlinearity of the dendritic inte-
gration can be triggered by temporally synchronous synaptic
input patterns. The nonlinearity we discuss in this paper is due
to the NMDA channels. The state of these channels are con-
trolled not only by the presence or absence of the agonist (e.g.
glutamate), but also by the postsynaptic dendritic membrane
potential. Hence, they play an important role in coincidence
detection, and provide the superlinear influx current when the
compartment receives temporally synchronous input [1], [2].

For the experiments in this section, we configured the chip
so that it has 3 dendritic branches with 3 compartments
each (see Fig. 1). Only the left branch is connected to the
soma. Each of the 4 excitatory synapses (2 AMPA and 2
AMPA+NMDA synapses) in the top compartment of each
branch is stimulated with a 20Hz regular spike train for 2s
(indicated by the blue arrows in Fig. 1).The temporal offset,
dt, between activated synaptic inputs varies as a parameter of
the degree of synchrony.

A. Linear vs nonlinear response

To demonstrate the superlinear response contributed by the
NMDA channels, we stimulate the top compartments with
highly synchronous inputs, where dt = 1ms (1st row of
Fig. 3). To illustrate the change in the soma response due
to this nonlinearity, the NMDA channels are first blocked

(shut off), and the linear integrated responses are recorded
from each compartment (2nd to 5th row of Fig. 3). The
highly synchronous inputs evoke sharp excitatory postsynaptic
potentials (EPSPs) at the top compartments, but the signals
degrade very fast in the direction of propagation. Since we
use current mode membrane circuits, the membrane potentials
or EPSPs are represented by current in nA. When we unblock
(turn on) the NMDA channels, the sharp linear responses of
the AMPA synapses activate the NMDA channels of the top
compartments, leading to superlinear amplification (Fig. 4).
The long time constant of the NMDA synapses (15ms),
accounts for the slow EPSP component in the responses.
The slow signals can propagate more effectively along the
passive dendrite, thus eliciting much stronger somatic response
(compare bottom rows of Fig. 3 and Fig. 4). For direct
comparison of the membrane depolarization, somatic spikes
are abolished in both cases.

Despite the circuit mismatch that leads to the variance in the
linear EPSP response across the branches (2nd row of Fig. 3),
the temporally synchronous input can trigger the nonlinearity
in every compartment. This implies that the synchronous input
pattern is more likely to activate the nonlinear response in the
compartment.
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Fig. 3. EPSP responses of the compartments of each of the 3 dendritic
branches (columnwise) when the NMDA channels are blocked (turned off).
Each row shows the corresponding compartment for each of the 3 branches.
Each column shows the effect of spatial smoothing along the 3 compartments
of one branch. The bottom row shows the somatic EPSP evoked by the inputs
from the left branch. The measured somatic response is amplified by a gain
factor in the circuit.

B. Relationship between input synchrony and activation of
nonlinearity

To quantify the relationship between the input temporal
synchrony and the compartment function, we vary the input
temporal offset dt from 0.5ms to 10ms, and record the
peak EPSP of the top compartment of each dendritic branch
and the soma both in the absence and presence of NMDA

2895

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 31,2010 at 08:06:20 UTC from IEEE Xplore.  Restrictions apply. 



0

50

100

D
en

dr
iti

c
m

em
br

an
e

va
lu

e 
(n

A
)

0

50

100

D
en

dr
iti

c
m

em
br

an
e

va
lu

e 
(n

A
)

0 50 100
Time(ms)

0 50 100
Time(ms)

0 50 100
0

100

200

S
om

at
ic

 m
em

br
an

e 
va

lu
e 

(n
A

)

Time(ms)

0

50

100
D

en
dr

iti
c

m
em

br
an

e
va

lu
e 

(n
A

)
S

yn
ap

tic
 

  I
np

ut
s

Fast Slow

Fig. 4. EPSP responses of the compartments of each of the 3 dendritic
branches (columnwise) when the NMDA channels are unblocked (turned on).
The experimental setup is the same as in Fig. 3 except that the NMDA
synapses are now activated by the temporally synchronous input. The NMDA
response evokes the superlinear response within the stimulated compartments.

channels. The peak EPSP in the input-driven compartments is
superlinear (Fig. 5 solid curves) across three branches when
dt ≤1.5ms, in spite of mismatch. For dt ≤1ms, the peak
corresponds approximately to the peak of the fast component
in the response (indicated by the pink arrow in the 2nd
row of Fig. 4) which is generated mainly by the strongly
correlated AMPA responses. With increasing dt, NMDA influx
current dominates the response, and the peak shifts toward the
slow component relatively independent of the synaptic inputs
(indicated by the red arrow in the 2nd row of Fig. 4). From
dt ≥4.5ms on, the compartment response becomes linear for
all branches. Then there is no difference between responses
with NMDA channels blocked (Fig. 5 dashed curves) and
unblocked (Fig. 5 solid curves).

As comparison, the dependence of the peak somatic EPSP
on dt clearly follows a sigmoidal-like function (Fig. 6). Since
the fast component in the response decays faster than the
slow one along the spatial propagation, the amplification of
the somatic response for small temporal offsets dt is due to
the input-specific activation of the nonlinearity function in the
compartment. With dt > 2.5ms, the response returns to the
linear case.

IV. SPATIO-TEMPORAL PROCESSING

We bring together the results in Section III to illustrate the
spatio-temporal interaction of the whole dendritic structure.
We first programmed a random architecture for the dendritic
tree, following the red lines in Fig. 7. We assigned a group of
4 inputs with a regular 20Hz rate to different spatial locations
of the dendritic tree. In addition, the inputs have different
temporal relations.

We show two cases of how a spatio-temporal input pattern
evokes a different functionality of the dendritic tree. In the
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Fig. 5. The curves show the peak dendritic responses (current) from the top
compartments of the 3 dendritic branches in response to 4 inputs with different
input temporal offsets, dt. Blue (Left branch); Green (Middle branch); Red
(Right branch). The mean and standard deviation of these measurements
obtained over 10 trials are shown in these curves. The peak dendritic values for
dt ≤1ms is due to the the peak of the fast response generated by the AMPA
synapses. The responses in the absence (dashed curves) and presence (solid
curves) of NMDA channels for these 3 compartments show that temporally
synchronous inputs triggers the nonlinear function of the compartment, while
temporally asynchronous inputs produce linear response.
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Fig. 6. Peak somatic responses (current) for the same experiment in Fig. 5.
The mean and standard deviation over 10 trials are shown. The soma is
connected to the left dendritic branch. The blue crosses and red circles
correspond to the cases in the absence and presence of NMDA channels
respectively. The measured somatic responses is amplified by a fixed gain
over the actual responses.

first case, the inputs are temporally asynchronous (temporal
offset between different inputs is dt=10ms) and spatially dis-
tributed (inputs go to different compartments). The membrane
responses of all compartments are shown in Fig. 7, along with
the location and temporal ordering of the inputs. In this case,
individual compartments linearly integrate their inputs leading
to a linear spatio-temporal response at the soma (last row of
Fig. 7).

In the second case, the inputs are temporally synchronous
and spatially clustered (2 inputs per compartment). This spatio-
temporal input pattern triggers the nonlinear computation
within the two stimulated compartments (C1 and C3), and
leads to a somatic spike (last row of Fig. 8).

In summary, the results show that because of the NMDA
induced nonlinear response, the dendritic structure is able
to distinguish between two different spatio-temporal input
patterns which could correspond to two distinct network
states [14].
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Fig. 7. Membrane response of each dendritic and somatic compartment for
temporally asynchronous and spatially distributed inputs (The time diagram
is shown in the 1st row. Inputs to each column are highlighted in blue). The
programmed dendritic tree is superimposed on the top of the response curves.
The red line indicates the existence of a connection between the corresponding
compartments, and the red arrow specifies the direction of signal flow. The
blue arrow at a compartment symbol C marks an input to that compartment
and the associated number indicates the temporal order of the input. The
smallest temporal offset between different synaptic inputs is 10ms. This spatio-
temporal pattern evokes linear integration in the dendritic structure.

V. CONCLUSION

The reason for the existence of a dendritic architecture could
be as simple as a way for a neuron to collect inputs from
spatially distant layers. However, the dendritic architecture
is ideal for parallel local computations on a set of inputs
before the summation at the soma. In this work, we show
results that illustrate possible computational advantages of
this local computation on the dendritic tree. The results show
that the dendritic tree can respond differently to different
spatio-temporal input patterns. Temporally synchronous and
spatially clustered input can evoke nonlinear integration while
temporally asynchronous and spatially distributed inputs will
evoke primarily linear dendritic integration. These differences
imply that dendrites can have multiple input-activated func-
tions under distinct network states.
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