
LETTER Communicated by Alexander Loskutov

Hebbian Self-Organizing Integrate-and-Fire Networks
for Data Clustering

Florian Landis∗

flandisf@ethz.ch
Thomas Ott
thomas.ott@zhaw.ch
Ruedi Stoop
Ruedi@ini.phys.ethz.ch
Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057,
Zurich, Switzerland

We propose a Hebbian learning-based data clustering algorithm using
spiking neurons. The algorithm is capable of distinguishing between
clusters and noisy background data and finds an arbitrary number of
clusters of arbitrary shape. These properties render the approach par-
ticularly useful for visual scene segmentation into arbitrarily shaped
homogeneous regions. We present several application examples, and in
order to highlight the advantages and the weaknesses of our method,
we systematically compare the results with those from standard methods
such as the k-means and Ward’s linkage clustering. The analysis demon-
strates that not only the clustering ability of the proposed algorithm is
more powerful than those of the two concurrent methods, the time com-
plexity of the method is also more modest than that of its generally used
strongest competitor.

1 Introduction

In the analysis of sensory data, we often deal with huge amounts of data. It
is then useful to partition such data sets into classes (clusters) of items that
share similar properties. This fact is illustrated by the visual scene analy-
sis task, where a large set of individual pixels is segmented into (usually
few) objects. The problem of finding appropriate groupings in the data set
is referred to as the clustering problem (Jain, Murty, & Flynn, 1999; Xu
& Wunsch, 2005). In everyday life, humans cluster sensory data without
any perceivable effort. Seen from a neural network perspective, clustering

∗Florian Landis is now at the Center for Energy Policy and Economics, ETH Zurich,
CH-8032 Zurich, Switzerland, and Thomas Ott is now at the Institute of Applied Simula-
tion, Zurich University of Applied Science, CH-8401, Winterthur, Switzerland.

Neural Computation 22, 273–288 (2010) c© 2009 Massachusetts Institute of Technology



274 F. Landis, T. Ott, and R. Stoop

is the most general formulation of a perception task. Whereas the clas-
sical backpropagation network requires a teacher to convey the correct
association between input and output, in unsupervised learning, we use
prototype examples to which we associate the examples from the data set.
In the clustering context, where prototypes are no longer given, we pro-
ceed in a fully self-organized way. The prototypes, if desired, could then
be derived from the obtained clusters. Simple examples, some of them
exhibited in our contributions, however, demonstrate that for general prob-
lems, the selection of appropriate prototypes is generally difficult or even
impossible.

Despite the existence of a plethora of standard algorithms (Jain et al.,
1999), the technical implementation of human clustering skills is still
a challenging task. Two classical, and therefore benchmark, approaches
are k-means (Steinhaus, 1956) and hierarchical clustering (Johnson, 1967;
D’Andrade, 1978). In these methods, the number of clusters either has to
be prespecified or remains undetermined, which can be a severe draw-
back. Moreover, both algorithms proceed by assigning each data item to
a cluster. Such an assignment is not always appropriate, as we some-
times deal with noisy data, where we have independent singletons that
should not be attributed to clusters. Finally, most clustering algorithms
bias the shape of the resulting clusters. For example, the clusters found by
k-means tend to be of spherical shape. It goes without saying that such
forms of bias should be avoided since it will generally severely hamper
the correct outcome of the clustering process. In the Hebbian learning clus-
tering (HLC) that we introduce here, we avoid most of these problems
(see Figure 1). The algorithm is based on dynamic processes occurring in
integrate-and-fire networks, making the clusters arise out of the interplay
between neural activity and changes in the network connectivity. Our al-
gorithm is inspired by the rich tradition of self-organizing clustering meth-
ods, such as the self-organizing map (SOM; see, e.g., Kohonen, 1997, or
Samsonova, Kok, & Ijzerman, 2006, for novel developments), as well as by
spin system methods, such as the Hopfield network (e.g., Hopfield & Tank,
1986) or superparamagnetic clustering (Blatt, Wiseman, & Domany, 1996,
1997).

Figuratively, our algorithm proceeds by dwelling on slight initial inho-
mogeneities in the network structure from which the final clusters emerge.
The local rule nature of the processing renders it ideal for extracting clusters
without shape bias. The algorithm does not require any prior information
about the number of clusters and has the capability of recognizing back-
ground singletons. In the following section we describe the HLC algorithm
and discuss typical results in detail. The algorithm is applied to various
test data. By comparing the performance of the algorithm to k-means and
Ward’s linkage method (Ward, 1963), we exhibit both its advantages and
potential drawbacks.



Hebbian Self-Organizing Clustering 275

27 29  9 10 11 12 20 30  1  8 13 23  7 14 15 26 16 17 22 24  2  3 28  4 21 25  5  6 18 19

5

10

20

25

clusters

distance

−2
−1

0
1

2
3

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

−2
−1

0
1

2
3

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

−2
−1

0
1

2
3

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

A B

E

C

−2
−1

0
1

2
3

−2
−1

0
1

2
−1.5

−1

−0.5

0

0.5

1

1.5

D

Figure 1: Clustering of two noisy rings in dimension 3 (A), performed by HLC
clustering with ease (B). The k-means clustering method is inherently unable
to perform this task. Ward clustering also runs in severe problems (C–D), even
when going to the optimal region of the corresponding dendrogram (E).



276 F. Landis, T. Ott, and R. Stoop

A B C

Figure 2: (A) Two-dimensional data distribution with N = 170 points, consist-
ing of three clusters and background points. (B) Basic (initial) graph structure,
involving the knn = 10 next neighbors. (C) Evolved connectivity graph by HLC,
clearly exposing three main clusters and some small accidental structures. Sin-
gletons are not reported.

2 Hebbian Clustering HLC

It is convenient to partition our clustering approach into four steps.
In the first step, the network structure that will represent the data needs

to be created. Given a data set S with N data items as in Figure 2A, using
an appropriate distance function d, the pairwise similarities or distances dij

between items i and j are calculated. For each item, we then determine the k
nearest neighbors knn. By identifying each item with a node and connecting
each node with its k nearest neighbors, we obtain the basic graph structure
(see Figure 2B). Each node is now identified with an integrate-and-fire (I&F)
neuron; each edge stands for a symmetric synaptic connection wij of initial
strength

wi j = w j i = e−d2
i j /d2

0 . (2.1)

d0 denotes a local parameter initially chosen proportional to the average
distance d̄ =< di, j >|i, j connected between connected nodes. Whereas within
the context of Potts-Spin systems that comotivated our approach (see, e.g.,
Ott et al., 2004; Ott, Kern, Steeb, & Stoop, 2005; Ott & Stoop, 2006), d̄ has a
precise meaning; the precise value of the proportionality constant embodied
in d0 is of lesser importance. In the context here, it is sufficient to know that
a value d0

d̄ � 1
4 will be fine (for related issues, see section 3).

In the second step, we implement a leaky I&F neuron site dynamics.
In order to eventually be able to implement the leaky I&F neurons most
naturally and efficiently in hardware, they are modeled here directly as
RC circuits, driven by an input current I. Including a leaky term, the basic
equation for the electrical potential u(t) of a single I&F neuron therefore is

∂u(t)
∂t

= −u(t)
RC

+ I
C

. (2.2)



Hebbian Self-Organizing Clustering 277

I can be divided into Iext and Iint. Iext is a driving current from an external
source. We assume Iext to be constant for all times and neurons. Iint is made
up of the electric signals (spikes) from the connected neurons. A spike is an
instantaneous pulse that is carried from neuron j to neighboring neurons i.
In our setting, the strength of the spike will be proportional to the synaptic
strength wij. For unconnected neurons, I = Iext , we observe that potentials
smaller than Iext R, are driven toward the value Iext R. At a threshold value
θ < Iext R, however, u is reset: at times tk defined by u(tk) = θ , the neuron
emits a spike, and u is set to 0. In this way, we obtain the network-specific
I&F equations,

∂ui (t)
∂t

= −ui (t)
RC

+ Iext

C
+

Iint,i︷ ︸︸ ︷∑
tk

j , j∈Ni

wi jδ
(
t − tk

j

) · 1
C

, (2.3)

where Ni , i = 1, . . . , N, is the set of indices of neurons connected to
neuron i.

Equation 2.2 allows the exact integration of the action potentials be-
tween spikes: Given the potential ui (t0) at t0, the time until ui (t) reaches the
threshold θ can be expressed as

Ti (t0) = RC ln
ui (t0) − Iext R

� − Iext R
. (2.4)

The time until the next spike in the network occurs can therefore be cal-
culated as Tk = mini {Ti }, where k indexes the neuron that fires next. The
action potentials of all the neurons are then updated according to

ui (t′) = Iext R
(

1 − exp
(−Tk

RC

))
+ ui (t) exp

(−Tk

RC

)
, (2.5)

where t′ = t + Tk . Instant spike emission and transmission are finally cal-
culated according to

ui (t′) → 0 and i ∈ F(t′), if ui (t′) > θ, (2.6)

ui (t′) → ui (t′) +
∑

j∈F(t′)

wi j R otherwise, (2.7)

where F(t′) is the set of all neurons that fire at time t′. Note that the updates
2.6 and 2.7 have to be repeated as long as equation 2.7 produces action
potentials that exceed the threshold θ . Every neuron, however, can spike
only once at t = t′, where u(t′) = 0.



278 F. Landis, T. Ott, and R. Stoop

Finally, the synapse dynamics needs to be defined. Two antagonistic
mechanisms dynamically determine the synaptic strength. Synapses be-
tween neurons that tend to fire synchronously are strengthened likewise to
the Hebbian learning rule. To have a practical criterion for synchronicity, a
time window τ is defined. Learning is then based on the following simple
rule: If the time difference between spikes of two connected neurons i and
j is smaller than τ , the two spikes are considered to be co-instantaneous,
and the synaptic weight wi j = w j i is doubled. A maximal synaptic weight
is implemented by means of a cutoff threshold at wi j = 1.

This simple rule gives rise to a self-organization and self-amplification
mechanism by means of which clusters defined as ensembles of syn-
chronously firing neurons emerge. For preventing uncontrolled strength-
ening of the synaptic connections, a constant decay of the synaptic weights
is implemented as well. This ingredient also prevents weakly connected
background neurons from clustering and supports the emergence of well-
defined clusters. A balance between increasing and decreasing weights is
achieved by means of the decay law,

wi j (t) = wi j (0) · 2
−2τ

T2
ext

t
, (2.8)

where

Text = RC ln
−Iext R

� − Iext R
(2.9)

is the firing period of unconnected neurons.
The initial weight distribution of the network contains weights of dif-

ferent sizes that are dynamically adjusted according to the laws described
above. The network simulation can be stopped once the dynamics have
become stationary. Weights within a cluster will then be close to wi j = 1, as
the small loss in weight due to the decay is compensated by the Hebbian
learning, whereas the weights of neurons that do not participate in a clus-
ter will approach zero. As a consequence, synchronization clusters can be
identified as components of the connectivity graph that have the maximal
number of internal connections. The learning process can therefore be con-
sidered to have come to an end once very few connection weights w with
smin < w < 1 remain. In practice, by means of accidental learning, some
weights may cross from [0, smin[ to [smin, 1]. In the long run, this could lead
to unwanted maximal connection strengths all over the network. It is there-
fore advisable to stop the learning process soon after the learning in the
highly connected groups of neurons has terminated, before the singletons
cluster. This can be achieved by observing the ratio

rlearn = nlearn/n1,

where nlearn = |{wi j |smin < wi j < 1}| and n1 = |{wi j |wi j = 1}|. This ratio
compares the present learning activity (number of neurons engaged in



Hebbian Self-Organizing Clustering 279

learning) versus the already accomplished learning processes. Obviously,
after rlearn has crossed an empirical learning threshold r� from above, the
learning can be stopped. The precise value of the empirical learning thresh-
old is not too critical (for a numerical value, see section 3). Arguments as to
why this is the case and why there are no learning oscillations can be found
in Ott et al. (2004).

For the identification of the clusters after termination, all connections
with a weight smaller than � = 0.8 are canceled, so that the connectivity
graph subdivides into a number of strongly connected components that
represent the clusters (see Figure 2C). The exact choice of the threshold �

is not critical, as most synaptic weights are either close to zero or close to
one, indicating a robust self-organizing process at work.

3 Choice of Parameters and Initial Conditions

For the I&F neuron parameters, we chose biologically inspired values
Iext R = 25 mV, θ = 16 mV, RC = 8 ms, and R = 1 M�. From this, the time
T it takes the action potential to rise from resting potential ur = 0 to the
threshold value θ in the absence of input from its next neighbors can be
measured. Another measurable quantity is the average distance between
two connected neurons, d̄ , which depends on the data to be clustered.
When choosing the parameters d0 and τ , it should be kept in mind that
larger values entail quicker synchronization. Our standard choices of these
parameters were τ = T

4 and d0 = d̄
4. Throughout, the learning threshold was

set to r� = 0.1. The neuron neighborhood order was knn = 10 if it was not
specified differently by the nature of the data. These values are motivated
by simulations of toy models, and some of them have been corroborated by
analytical arguments (Ott et al., 2004, 2005).

4 Applications

With the simple application shown in Figure 1, we demonstrated that a
clustering task that inherently cannot be solved by most other clustering
algorithms is solved by the proposed approach with ease. Note that no
supervised learning has taken place, yet the individualities of the two rings
have been worked out perfectly.

For several benchmark problems, we compared the proposed algorithm
with the k-means and the Ward clustering (Ward, 1963). The quality of
performance is usually determined by comparing an obtained clustering
cf to a given optimal clustering cg and by measuring the run time needed
for completing the process. For the first comparison, we evaluated the
following quantities: The Jaccard index (Wild & Blankley, 2000),

J (c) = a (c f , cg)
a (c f , cg) + e(c f , cg) + e(cg, c f )

, (4.1)



280 F. Landis, T. Ott, and R. Stoop

measures how similar two clusterings c f , cg are (the “goodness of clus-
tering” if the comparison to the perfect clustering can be made). Function
a (c1, c2) counts the pairs of data that are in the same cluster in clustering
c1 and c2, whereas function e(c1, c2) counts the pairs of data that are in the
same cluster in the clustering c2, but not in c1. In this way, the Jaccard index
reports the fraction of pairs that cluster together in both clusterings cf and
cg, relative to those pairs that cluster together in at least one clustering.
Therefore, if the clusterings have a relatively similar pair membership, the
Jaccard index should be close to one.

Measures that concentrate on the errorness of a clustering are

E1 = e(c f , cg)
maxc∈C e(c, cg)

, (4.2)

and, similarly,

E2 = e(cg, c f )
maxc∈C e(cg, c)

. (4.3)

They are based on the count of pairs of data items that were put into the
same cluster, although in the ideal clustering, they are in different classes,
scaled by the worst possible case. Therefore, for a decent clustering, these
values should be close to zero.

4.1 Example 1: Two-Dimensional Toy Set. As an introductory example
and an illustration of the first beneficial property of HLC, we discuss the
results of our clustering for the simple two-dimensional problem shown
in Figure 2A. Figure 2B shows the final strong connectivity components
provided by HLC, which reflect the detected clusters. Clearly, three main
clusters are correctly identified. Moreover, HLC discriminates between ac-
tual clusters and background points. The background distribution yields
small, temporally unstable clusters, whereas the remaining points are clas-
sified as singletons.

4.2 Example 2: Ring with Central Cluster. The second beneficial prop-
erty of HLC is demonstrated in this example. Many clustering methods
implicitly presume a certain cluster shape. Consequently, it is particularly
hard for them to solve problems involving clusters that do not conform to
the favored geometry. As an example, k-means, favoring spherical clusters,
fails to detect the ring cluster depicted in Figure 3. HLC, however, easily
finds an optimal solution. For a summary of the obtained results, clearly
exhibiting this feature, see Table 1.

4.3 Example 3: Iris Data Set. The Iris data set (Anderson, 1935) includes
measurements of 150 plants, dividing into 50 specimens of the three species



Hebbian Self-Organizing Clustering 281

Figure 3: Circle surrounded by another circle. The fact that the two clusters
cannot be described by detached spherical shapes makes this a difficult problem
to solve for many clustering methods. HLC has no problem with this situation.

Table 1: Performance of the Different Algorithms for the Data of Figure 3.

Ring Cluster HLC k-Means Ward Clustering

E1 0.000 0.500 0.483
E2 0 0.502 0.480
Jaccard index 0.990 0.419 0.436
Time [s] 0.917 0.0043 0.0473

Iris setosa, Iris versicolor, and Iris virginica. For each plant, the data set pro-
vides petal width, petal length, sepal width, and sepal length (Anderson,
1935). Figure 4 illustrates the data set by means of two two-dimensional
projections. In the picture on the left, it is clearly visible how the data for
the Iris setosa form a clearly distinct cluster at the left bottom, whereas the
clusters of Iris virginica and Iris versicolor overlap and cannot be separated
by a straight line in either of the two projections. Nonetheless, the noncon-
vex forms of the clusters can be expected to enhance the performance of
k-means and Ward clustering. For this data set, the results obtained by the
different clustering methods are shown in Table 2. For k-means and Ward’s
method, the correct number of clusters had been given as a prior informa-
tion. As the clusters of Iris virginica and Iris versicolor partially overlap, HLC
exhibits a relatively large error of the type highlighted by E2. In terms of
the Jaccard index, the algorithm does not do much worse than the other
algorithms, although the number of clusters is not provided. The a priori
knowledge of the numbers of clusters would significantly reduce the risk



282 F. Landis, T. Ott, and R. Stoop

10 30 50 70
0

10

20

Petal Width [mm]

Pe
ta

l L
en

gt
h 

[m
m

]

40 50 60 70 80
20

30

40

Sepal Width [mm]

Se
pa

l L
en

gt
h 

[m
m

]
Figure 4: Iris data set. (Left) The distribution with respect to petal width and
petal length. (Right) The coordinates are sepal width and sepal length.

Table 2: Performance of Different Algorithms on the Iris Data Set.

Iris Data Set HLC k-Means
Ward

Clustering

E1 0.097 0.198 0.176
E2 0.243 0.108 0.102
Jaccard index 0.552 0.657 0.682
Time [s] 0.511 0.0026 0.0147

for errors of type 2, since in the present setting, they originate from binding
the two overlapping species into one cluster. Using the a priori informa-
tion, k-means and Ward clustering deliberately separate this cluster into two
clusters. Although a classical example of clustering, from the projections, it
could be disputed whether the iris data set is a good clustering data set at
all, given the characteristics used for characterization of the data items.

4.4 Example 4: Scene Segmentation. An important and advanced
task for clustering algorithms is the analysis of visual scenes (Gdalyahu,
Weinshall, & Werman, 2001). In the following, we report on the clustering
analysis of two two-dimensional natural images, given as a 50 × 50 array
of pixels. This low resolution has been chosen for demonstration, although
due to its local coupling between neighboring pixels, it affects HLC un-
favorably. For HLC, the mapping of a pixel image to a neural network is
done by identifying each pixel with a neuron and connecting two neurons
if their respective pixels lie adjacent to each other. The similarity measure
dij is chosen to be the Euclidean distance in the RGB color space. For perfor-
mance evaluation, HLC was compared to k-means. In order to circumvent
the bias of k-means to convex shapes, for k-means the pixels were directly



Hebbian Self-Organizing Clustering 283

A B

C D E

Figure 5: (A) Initial problem. (B) HLC solution. (C–E) k-means solution in color
space (with k = 2, 3, 4, respectively), which circumvents the k-means convexity
bias. See the text.

translated into points in RGB color space, that is, spatial information of the
pixels was not taken into account (Bishop, 2006). As no well-defined opti-
mal clustering solution was determined for the images, the Jaccard index
was not evaluated. Instead, we will rely on a visual assessment of the results
and provide a subsequent qualitative discussion exhibiting the beneficial
properties of HLC even in this case.

A plane in a cloudy sky (see Figure 5A) is the input to our first scene
segmentation task. The HLC results displayed in Figure 5B demonstrate
that the shape of the plane is reproduced fairly well. Fractions of the clouds
are detected as single objects, as they are separated by the plane. Figures 5C
to 5E show the solutions for k-means clustering with k = 2, 3, 4, respec-
tively. k = 2 yields a perfect shape of the plane against the sky but fails to
distinguish between sky and clouds. The solution for k = 3 achieves this
distinction. Parts of certain clouds, however, are now attributed to the sky.
Setting k = 4 finally results in partitioning the sky above the plane into two
parts. k-means clustering uses the a priori information (which may hold or
may not be true) that pixels that have the same color belong to the same
object. Our algorithm is more prudent. By repeating the basic clustering



284 F. Landis, T. Ott, and R. Stoop

A

C D

B

Figure 6: (A) Initial problem. (B) HLC solution. (C–D) k-means solution in color
space, with k = 3, 7, respectively.

procedure on the achieved clustering or by using a coarse graining of the
average colors of the obtained clusters, we would effortlessly come up with
the optimal solution of k-means.

A scene with a stag in a meadow and a bush in the background (see
Figure 6A) provides a second illustration of this observation. The three
biggest clusters suggested by HLC (see Figure 6B) correspond the sky,
the body of the deer, and the bush, respectively. Whereas k-means with
k = 3 (see Figure 6C) appears to yield the most accurate picture of the
body, it should be noted, however, that the bush is not separated from the
deer. Increasing k does not solve this problem; before being recognized as
two different objects, the deer body and the bush have already split into
subclusters (see Figure 6D). Whereas due to its spatial nature, HLC is much
more affected by the low resolution of the original picture than k-means, the
example illustrates well the basic observation that for k-means, it is difficult
to detect the coarsest unbiased clustering of a scene.



Hebbian Self-Organizing Clustering 285

5 Time Performance

We find that the time complexity of the dynamics of HLC is O(N2), where N
is the size of the data file: Performing the spike updates is of order O(N), and
the subsequent checks for spike coincidences are of order O(N2). In terms
of equations, the essential loop the program works sequentially through are
equations 2.4 to 2.7, which implies O(N) (see 2.4, times calculation), O(N)
(see equation 2.5, potentials calculation), and O(N2) (see equations 2.6 and
2.7, spike coincidence), respectively. The learning and the stopping criterion
are of local nature and sequentially implemented in the code. Locally, each
neuron’s horizon extends only to its k nearest neighbors, whereas checking
for the termination of the process is of O(N). This analysis is corroborated
by the observation that at a site, the number of time-update steps until
learning termination is found to be insensitive to the size N of the data
set. These observations imply that in terms of time complexity, HLC can
compete with the well-established hierarchical Ward clustering even if the
results in section 4 (see Tables 1 and 2) suggest a weaker time performance
of HLC. Systematic trials with test files of the kind depicted in Figure 2
show, however, that for large test files, our nonoptimized implementation
of HLC outperforms the Matlab implementation of Ward clustering (see
Figure 7).

6 Conclusion

We presented the rationale, implementation, and results of a novel
Hebbian learning spiking neural network clustering approach. The robust,
locally mediated, self-organizing design makes it a genuinely nonparamet-
ric approach. As a consequence, unlike many standard methods such as
k-means clustering, the algorithm does not require any information about
the number or shape of clusters that it is supposed to find. This makes it
a good choice for clustering problems where little a priori information on
the nature of the clusters to be worked out is available. This is the case, as
an important application field, in image segmentation. We demonstrated
that our algorithm performs substantially better in the presence of noncon-
vex clusters. In these cases, frequently found in image segmentation, HLC
generally comes up with useful solutions, while k-means intrinsically fails.
Since our algorithm is able to separate clusters from background single-
tons, it is also more susceptible to density variations within the clusters to
be found. This behavior is present in the chemical data investigated in de-
tail in Ott et al. (2004), where we found an extremely strong cluster density
variation. For these data, our algorithm cannot cope with our previously
designed sequential superparamagnetic clustering SSC (Ott et al., 2004).
The proposed algorithm, however, performed much better than k-means
and better than Ward with automated Kelly criterion (Jaccard indices of
0.61 (HLC) versus 0.50 (Ward) for ISIS binary key and Euclidean distance



286 F. Landis, T. Ott, and R. Stoop

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
1

10
2

10
3

Ward

HLC

k−means

N

Tr  [s]

Figure 7: Run time Tr of HLC, of Ward’s method and of k-means clustering as
a function of the data size N.

(Ott et al., 2004)). We found earlier (Ott et al., 2004) that a non-Kelley,
hand-sorted, fully problem-optimized Ward clustering was able to push
the Jaccard index up to 0.66 for these data. We expect that a similar op-
timization procedure would also improve the performance of HLC. The
comparison with the superparamagnetic clustering SC (Blatt et al., 1996),
which is not sophisticated for the density issue, indicates that even with
this tuning, the performance of SSC will not be attained (Jaccard index of
0.66 (SC) versus Jaccard index of 0.96 (SSC)). In order to achieve this, HLC
would require a sequential sophistication, similar to the one used in SSC,
which is possible only at the cost of significantly decreased performance.
As it simulates a rather detailed learning process, for small data sets, the
computation time of HLC lags somewhat behind those of the other two stan-
dard methods. For larger data sets, however, the Matlab implementation
of our algorithm gains on Matlab’s hierarchical clustering implementation,
whereas k-means has the best immanent time performance (yielding, how-
ever, generally the worst results). We emphasize that our algorithm does



Hebbian Self-Organizing Clustering 287

not yet take advantage of the parallel nature of the learning processes. A
hardware implementation on a chip exploiting the close-to-hardware na-
ture of the fundamental elements, as well as the highly local and parallel
learning principles of HLC, will improve the time performance consider-
ably. In this way, the time and computational resources that algorithms with
similar beneficial features require (Blatt et al., 1996; Ott et al., 2004, 2005;
Ott & Stoop, 2006), are strongly reduced by HLC, which will make many
interesting problems and situations amenable to clustering-based sensory
perception.

What clustering algorithm to choose for an application obviously de-
pends a great deal on the nature of the data to be clustered. If the data are
likely to contain nonconvex clusters and residual background items and if
there are computation time constraints, the algorithm presented here may
be an optimal candidate.

References

Anderson, E. (1935). The irises of the Gaspe peninsula. Bulletin of the American Iris
Society, 59, 2–5.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Blatt, M., Wiseman, S., & Domany, E. (1996). Superparamagnetic clustering of data.

Phys. Rev. Lett., 76, 3251–3254.
Blatt, M., Wiseman, S., & Domany, E. (1997). Data clustering using a model granular

magnet. Neural Computation, 9, 1805–1842.
D’Andrade, R. (1978). U-statistic hierarchical clustering. Psychometrika, 4, 58–67.
Gdalyahu, Y., Weinshall, D., & Werman, M. (2001). Self-organization in vision:

Stochastic clustering for image segmentation, perceptual grouping, and image
database organization. IEEE Trans. Pattern Anal. Mach. Intell., 23, 1053–1074.

Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A model. Science,
233, 625–633.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM
Computing Surveys, 31, 275–279.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 2, 241–254.
Kohonen, T. (1997). Self-organizing maps. New York: Springer-Verlag.
Ott, T., & Stoop, R. (2006). Benefits and pitfalls of belief propagation-mediated

superparamagnetic clustering. Phys. Rev. E, 74(4), 042103.
Ott, T., Kern, A., Schuffenhauer, A., Popov, M., Acklin, P., Jacoby, E., & Stoop, R.

(2004). Sequential superparamagnetic clustering for unbiased classification of
high-dimensional chemical data. J. Chem. Inf. Comp. Sci., 44, 1358–1364.

Ott, T., Kern, A., Steeb, W.-H., & Stoop, R. (2005). Sequential clustering: Tracking
down the most natural clusters. Journal of Statistical Mechanics: Theory and Experi-
ment, P11014.

Samsonova, E. V., Kok, J. N., & Ijzerman, A.D. (2006). TreeSOM: Cluster analysis in
the self-organizing map. Neural Networks, 19(6–7), 935–949.

Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon.
Sci., 4, 801–804.



288 F. Landis, T. Ott, and R. Stoop

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. J. Am.
Stat. Assoc., 58, 236–244.

Wild, D. J., & Blankley, C. J. (2000). Comparison of 2D fingerprint types and hierarchy
level selection methods for structural grouping using Wards clustering. J. Chem.
Inf. Comput. Sci., 40, 155–162.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans. Neural
Netw., 16, 645–678.

Received December 18, 2008; accepted April 25, 2009.


