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Abstract—We present a system consisting of a spiking cochlea 
chip and real-time event-based processing software that is able 
to discriminate between two sets of sounds based on their 
periodicity content. The periodicity measurements are 
computed from the spike timing information of asynchronous 
output spikes from the binaural spiking-cochlea chip. The chip 
consists of a matched pair of silicon cochlea with an address 
event interface for the output. Each section of the cochlea is 
modeled by a second-order low-pass filter followed by a 
simplified Inner Hair Cell circuit and a Spiking Neuron 
circuit. We show discrimination results using the periodicity 
measure for 2 classes of sound and preliminary localization 
results based on a discriminated sound. 

I. INTRODUCTION  
Periodicity information is an important alternative to 

spectral analysis because of its precision and repeatability.  
The biological cochlear filters are highly nonlinear, with 
bandwidths and gain changing based on the incoming sound 
level [1].   The location of the filter with the peak response 
changes, thus it is difficult for a perceptual system to 
estimate the spectrum from only the rate profile.  Some 
authors [2] have suggested that neural circuits in the cochlea 
subtract the responses at two nearby locations to mark the 
location of the sharp high-frequency cutoff, which is more 
stable.  But the phase of the signal, as a function of place on 
the cochlea, is also changing rapidly at this location, and it is 
difficult to know how this subtraction is implemented in a 
spiking network.  

Instead, in this paper, we investigate the use of just 
timing information to recognize and localize sounds.  Even 
as the cochlear filters change, peak excursions in a 100Hz 
cochlear channel due to a 100Hz input occur every 10ms. 
The timing information is preserved.  Others have used this 
information to judge the relative time delay of a sound 
between two ears [3] and in this paper we use the same 
information to judge pitch and identify sounds.  The same 
tolerance to imperfect filters useful to the auditory system is 
also useful in our silicon models. 

Although we have 20 years of experience in designing 
silicon cochlea chips, it is only in recent years that we see 
cochlea chips that produce asynchronous spike outputs 
resembling outputs of the auditory nerve fibres. These spikes 
are transmitted using the Address Event Representation 
(AER) where each spike carries the identity of the sender. 
There are a handful of silicon cochleae with an Address 
Event type representation [4][5][6][7]. The AER EAR chip 
that we use in this work is an improved version over the 
prototype described by Chan et al. [3].  

There are a couple of groups that have looked at aVLSI 
systems for extracting periodicity in sounds. The 
implementation from van Schaik [9] extracted periodicity 
information by ANDing the neuron outputs of bandpass filter 
channels that are spaced a period apart. The implementation 
from Abdalla and Horiuchi consists of an aVLSI chip which 
extracts the periodicity information directly from the output 
of the microphone [10]. In this work, we extract periodicity 
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from spike trains by using a system consisting of a spiking 
silicon cochlea (AER EAR) and an event-based software 
infrastructure (jAER) by using the spike timing information 
from the output spikes of the AER EAR [3]. The jAER 
software can process in real-time the spike events from AER 
chips/devices [11]. 

 We use this periodicity information to discriminate 
between two classes of sounds, harmonic and inharmonic 
sounds or noise, independent of the speaker. In addition, this 
classification information can be used to selectively localize 
an auditory sound that falls into one of the two classes.  

 

Figure 1.  The block diagram of circuits of one of the 2 cochleas on the 
binaural AER EAR chip. 

 

II. THE SILICON COCHLEA 
Figure 1 shows the basic building blocks in the spiking 

cochlear chip. The incoming sound goes through a cascade 
of 32 bandpass filters for each cochlea of this chip with a 
range of exponentially decreasing cutoff frequencies usually 
tuned from around 100 Hz to 1 kHz.  

A simplified Inner Hair Cell circuit rectifies and low 
passes the output of each bandpass filter before passing it to 
a ganglion cell circuit. The cut-off frequency of the Inner 
Hair Cell is set around 1 kHz, as in the real Inner Hair Cell. 
This low-pass filtering models the reduction in phase-locking 
observed on biological auditory nerve fibres at frequencies 
greater than 1 kHz. The outputs of the ganglion cell circuits 
are transmitted asynchronously on a common digital-address 
bus which carries the identity of the channel that produced 
the output spike. The time of the spike is coded implicitly in 
the event. 

 

 
 

Figure 2.  Spike responses from a single cochlea across 32 channels (y-
axis) in response to (top) a “hiss” and (bottom) a “coo” from a speaker. 

Channel ‘0’ of this chip has a low threshold for spiking because of 
transistor mismatch. 

III. PERIODICITY MEASUREMENT 
We chose a database of “coo” and “hiss” sounds voiced 

by 12 speakers for our experiment. We recorded both the 
analog waveform from the microphone and the spike trains 
of the cochlea. Figure 2 shows examplar responses of the 32 
channels of the cochlea to these sounds as voiced by one 
speaker. The periodicity of the spike patterns in the “coo” is 
obvious while the spike patterns of the “hiss” do not show 
this regularity.  To compute the periodicity from the spike 
times, we first calculated an all-order histogram of the 
interspike intervals (ISIs) of the spikes. Using only a first-
order ISI histogram (that is, taking only the time difference 
between adjacent spikes in each channel) will not give the 
right period for the fundamental frequency because the low-
frequency channels spike more than once per cycle while the 
high frequency channels spike once or none for a cycle. The 
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peaks in the histogram will not reflect the period of a cycle 
for low-frequency sounds. 

For each speaker, we computed the ISI histogram of the 
spike responses to the two sets of sounds. We tried different 
order ISIs and found that the histogram of ISIs up to 7th order 
give noticeable peaks (Figure 3 shows an example). 
Including higher than 7th order ISIs does not change the 
histogram profile noticeably. The first peak under 1ms 
represents the ISIs of spikes from a single cycle and is 
ignored. The next peak reflects the pitch of the speaker and 
subsequent peaks represent the harmonics of the pitch 
frequency.  

 

 

Figure 3.  Histogram computed from 1st to 7th order ISIs of cochlear spikes 
from a single speaker voicing a “coo”.  Peaks represent the harmonics in 

the speaker’s pitch except for the first peak which is due to the ISIs of 
spikes within a cycle. 

 

To determine whether the pitch and harmonic frequencies 
of harmonic sounds such as “coo” extracted from spike trains 
are similar to the pitch information in the analog output from 
the microphone, we plotted the fundamental peak from the 
FFT of the analog waveform versus the fundamental 
frequency computed from the FFT of the ISI waveforms 
across all speakers (Figure 4). As seen, these points fall very 
close to the unity line, even with the response variations 
across the silicon cochlea frequency channels (Figure 2). 
Even in the case of a sound file where the speaker had varied 
his pitch in time while voicing the “coo” sound, the FFT of 
the extracted pitch from the analog waveform and the spike 
ISI histogram are almost equal (Figure 5). 

 

IV. DISCRIMINATION 
To discriminate between the two classes of sounds, we 

select a fundamental frequency that is around 100 to 200 Hz 
and we then look for multiples of this base frequency.  Each 
detected frequency corresponds to the inverse of the period 

of a local peak in the ISI histogram.  A local peak in the ISI 
histogram meets two criteria: 1) it is significant because it 
contains a sufficient number of samples to meet a set 
threshold population level and 2) it is prominent because it 
contains a sufficient number of samples more than 
surrounding samples to distinguish it from the neighboring 
region. We label a segment of sound as harmonic if its ISI 
histogram has a local peak. For each 0.2s segment of the 
sound, we classified it as a “coo”, “hiss”, or “undecided”. 
Taking the majority of the hits in each of the 3 classes, we 
determined if the speaker was voicing a “coo” or a “hiss”. 
Using this approach and our database of 12 speakers, the 
“coo” was correctly identified in 10 speakers and the same 
was true of the “hiss”. 

 

Figure 4.  Data set of the 12 speakers (circles) showing that the 
fundamental frequency for a steady pitch computed from the FFT of the 
analog waveform vs the fundamental frequency computed from the ISI 

histogram. 

 

 

Figure 5.  Data set of a speaker showing the correspondence for a time-
varying pitch between the frequency computed from the FFT of the analog 

waveform and the frequency computed from the ISI histogram. 
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V. SOUND LOCALIZATION 
We were able to use the outputs of the binaural cochlea, 

each with input from its own microphone, to predict the 
horizontal location of the sound source.  When a sound wave 
travels from a source to the two microphones, there is a 
difference in the travel time to each microphone that is 
visible in the recorded waveforms.  This time difference can 
be seen in the phase difference of the spikes between the two 
cochleas. 

 
Figure 6.  Localization data where a speaker voicing the “coo” sound 
moves continuously in time from the far end of one microphone to the 
other microphone and back again. The ITD is computed from the spike 

trains of the binaural cochlea. 

 
We fed the outputs of matching channels from each 

cochlea chip to a correlation algorithm that counts the 
number of occurrences at a range of inter-spike delays. This 
algorithm was also implemented in jAER. If the spike 
outputs from corresponding channels are exactly in phase 
with each other (for example, being fed input from the same 
microphone), the algorithm gives a spike at 0us, and have no 
output for any other inter-spike delay. For real signals the 
data is somewhat noisier, but there is still an observable peak 
at 0us delay. When a sound comes from one side of the 
microphone pair, the spikes from the chip with the closest 
microphone will lead the other, and there will be a peak in 
the correlation algorithm’s output at the corresponding delay.  

We combine information across frequency channels to 
estimate the sound’s location.  A naïve approach simply 
weights each frequency channel equally. However it is also 
possible to use available information about the stimulus, for 
example the fundamental frequency and harmonic 
composition of the sound as determined by the periodicity 
measurement described in Section IV, to assign more weight 
to frequencies that are known to be dominated by the 
stimulus of interest.  This can serve to reduce the effect of 
the corruption of phase information by background noise and 
competing sound sources.  

VI. CONCLUSION 
In this work we demonstrated a system that uses the 

timing of spike outputs from a binaural silicon AER cochlea 
to determine the harmonicity of a sound. We present data 
that shows that the harmonicity information in the spike 
trains was compatible with the information in the original 
analog waveform, even with the variance in the ISIs across 
the different frequency channels of the silicon AER EAR. 
This information can be used for distinguishing the sex of the 
speaker [10] or to distinguish between two classes of sounds. 
This harmonicity computation can be combined with a 
localization module which uses the interaural time difference 
information in the spike trains from the binaural cochlea. The 
subsequent system consisting of the silicon AER cochlea and 
the jAER program can detect the location of a particular 
class of sounds in real-time. This approach is important 
because it shows the temporal information can be used for 
perceptual experiments, even in the face of imperfect 
cochlear filters. 
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