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Abstract—Recently there has been an increasing interest in
application of bio-mimetic controllers and neuromorphic vision
sensors to planetary landing tasks. Within this context, we
present combined low-level (SPICE) and high-level (behavioral)
simulations of a novel neuromorphic VLSI vision sensor in a
realistic planetary landing scenar io. We use results from low
level simulations to build an abstract descr iption of the chip
which can be used in higher level simulations which include
closed-loop control of the craft.

I. INTRODUCTION

Landing is a critical stage of any planetary exploration mis-
sion. As smooth a landing as possible is desired to protect on-
board equipment. In comparison to landing on Earth, landing
on other planets is made more challenging by the constraints
under which it must be achieved. No existing infrastructure
is available on the surface for guidance, and the atmosphere
(or lack thereof) limits the sensing modalities available. Fur-
thermore, as with any space mission, cost rises rapidly with
weight. Therefore custom lightweight vision sensors with low
power consumption to limit battery weight are an attractive
alternative to standard machine-vision systems. Reliability is
also crucial because repair of a remote craft is not usually
feasible. We propose to use vision sensors and bio-mimetic
control principles for planetary landing tasks. Specifically, we
propose to implement the motion sensing and computation
operations required to control planetary landing tasks by using
a set of compact neuromorphic vision sensors distributed on
the craft external surface. The low-power vision processing
capabilities of the neuromorphic sensors, combined with the
distributed approach allow both a low weight budget and a
redundant fault-tolerant architecture.

Neuromorphic vision sensors are custom VLSI devices that
process images directly at the focal plane level. These sensors
typically use bio-inspired circuits which implement hardware
models of the first stages of visual processing in biological
systems [1], [2]. In biological retinas, early visual processing is
performed by receptors and neurons arranged in a manner that
preserves the retinal topography with local interconnections.
Neuromorphic circuits have a similar physical organization:
photo-receptors, memory elements, and computational nodes
share the same physical space on the silicon surface and are
combined into local circuits that process, in real-time, differ-

ent types of spatio-temporal computations on the continuous
analog brightness signal.

The highly distributed nature of physical computation in
neuromorphic systems leads to efficient processing that would
be computationally expensive on general-purpose digital ma-
chines. For example, like their biological counterparts, neu-
romorphic sensors can operate over an input range covering
many orders of magnitude, despite limited bandwidth [1],
[3]. This extraordinary performance is achieved by a simple
but densely parallel process that involves continually adapting
local reference signals to the average signal statistics prevailing
there.

In this work we present the combined circuit and behavioral
software simulation results of a novel tracker motion sensor
device, in a realistic planetary landing scenario which includes
the closed-loop control of the landing craft.

Detailed circuit simulations are typically carried out using
SPICE simulators. However the closed-loop control require-
ments imply that current sensor output signals determine
how future sensor inputs change. For this reason SPICE
simulations are not well suited. In addition, the small time-
steps typically used in SPICE simulations are ill-suited for
use in the behavioral landing simulations, of which the sensor
is only one component.

We approach the problem by initially simulating individual
circuit blocks in SPICE and then using these results to build
a higher level model of each block. We and then combine
these blocks into a full chip simulation from which we derive
a simple behavioral model of the sensor for use in the landing
simulations.

II. THE NEUROMORPHIC VISION SENSOR

The Neuromorphic Vision Sensor used in this work is an
asynchronous event-driven motion chip recently developed and
fabricated, named as Tracker Motion Sensor (TMS). The TMS
extracts the spatial derivative and the temporal derivative of the
temporal contrast change detected by each photoreceptor and
extracts edges of moving objects and their velocity. The chip
readout can be either “traditional” frame-based scanning of the
pixels output, or asynchronous. In the latter case the output is
read in order of decreasing pixel saliency, implementing a form
of stimulus-driven attention.



Fig. 1. Tracker Motion Sensor Block Diagram: the photo-receptor’s output is
spatially and temporally derived, fast transitions of the photo-current triggers
an event and the computation of velocity and direction of the event movement
over the array. The temporal and space derivative and the speed are summed
to compute the saliency map. A WTA network with self inhibition scans the
saliency map in order of decreasing saliency. The identity of the winning
pixel is a digital output of the chip and can be used to steer the readout of
the analog values corresponding to the winning pixel.

Figure 1 shows the block diagram of the TMS. The input
is an adaptive logarithmic photoreceptor [4], that responds
to temporal variations of the logarithm of light intensity
impinging on the photo sensitive area; this makes the photore-
ceptor sensitive to the relative contrast change, rather than to
absolute illumination, furthermore the photoreceptor is capable
of adapting its response to the global scene illumination level,
accomplishing a wide dynamic range.

The temporal derivative circuit detects fast variations of
the photoreceptor output, typically corresponding to edges of
objects moving in front of the sensor. Such an event triggers
the computation of velocity as time to travel of the event across
neighboring pixels, by “Facilitate-and-sample” circuits based
on [5].

The attentional read-out is implemented by means of a
Winner-take-All circuit (WTA) that selects the pixel with
highest activity in the saliency map [6], computed by summing
with tunable weights the outputs of the spatial and temporal
derivative and of the velocity circuits. The attentional system
comprises also a self-inhibition mechanism that implements
shifts of attention and allows to scan the pixels output in order

of decreasing saliency [7]. The output of the chip indicates the
location of the object moving with highest saliency and can be
used to select the analog outputs of the corresponding pixel.
In addition it is possible to read-out the analog outputs (spatial
and temporal derivative, and velocity) of each individual pixel.

In the current work we intend to use the velocity measure-
ments of the TMS as the main sensor output for controlling the
craft landing. The sensor has not been fully characterized yet
and was therefore simulated to obtain velocity measurement
estimates.

III. SIMULATION

Following our distributed sensor approach we plan to place
sensors in pairs perpendicular to each other allowing for
measurement of optical flow along two orthogonal axes. This
arrangement of sensors was simulated on three different levels.
The lowest-level simulations involve simulating individual cir-
cuit blocks at the transistor level, with specified control inputs,
to verify their operation and determine their transfer function.
These transfer functions are used to implement full-chip mid-
level simulations, in which input signals are generated from
realistic landing scenarios, to investigate the effect of transistor
mismatch and the direction of motion on the output. The high
level simulations determine sensor outputs as a function of
the rotational and translational velocities of the chip and the
accuracy determined from the mid-level simulations.

A. Low-Level Simulation

Circuit blocks described in Fig. 1 were simulated at a tran-
sistor level to gain a better understanding of their operation and
to predict their response to known signals. These simulations
are typically run with a microsecond time-step and span only
a few milliseconds.

B. Mid-Level Simulation

When possible, we derived analytically the equations de-
scribing the response properties of each circuit block (from
circuit analysis). The low-level simulations were instrumental
for determining the unknown parameters in the equations. To
account for worst case transistor mismatch we randomly varied
transistor widths in the block level equations from -20% to
+20%. For more complex circuit blocks the output waveforms
computed by the low-level SPICE simulations were stored and
used as look-up tables by the mid-level simulation.

At this level, we connected all circuit blocks together (as
shown in Fig. 1) and carried out full chip simulations, from
simulated optical input to final voltage output.

The optical inputs were derived from artificially generated
images of the moon surface obtained from PANGU (Planet and
Asteroid Natural-Scene Generation Utility) (see Fig. 2). The
images were up-sampled and blurred to simulate the effect of
the sensor’s finite pixel size and field of view (FOV). Typically
a 5◦ FOV was used, but this can be changed in simulation or
on the actual sensor by mounting a different lens. After scaling
and blurring the image, we subtracted its zero to account for
the fact that we assume the photo-receptors are fully adapted



Fig. 2. A typical image of the moon surface generated by the PANGU
software.

to the current lighting conditions. For each pixel we traced a
path through the image, based on the array orientation, speed
and direction of movement. Pixel values along this trace are
scaled and used as an input to the photoreceptor circuits.

In simulation the user can set the chip parameters which
are controlled by bias voltages (the user specifies the desired
parameters and the simulation calculates the appropriate circuit
bias voltages). These simulations are typically run with a
microsecond time-step.

C. High-Level Simulation

High level simulation of the sensor was implemented as a
Matlab function which is called by the landing simulation.
The function has no explicit time-step, but rather returns a
result when requested. The function works by calculating the
actual motion of the image on the optical plane (1) before
taking into account error introduced by the aperture problem
(2) [8] and the transistor mismatch. The sensor is assumed
to be fixed in position and orientation relative to the craft.
Forward kinematics are used to infer the sensor position,
orientation, rotational velocity and translational velocity from
the craft position, orientation and motion. With this knowledge
the image motion can be calculated at each pixel as:
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Where v is velocity, subscript s denotes co-ordinates relative
to the sensor, subscript pix indicates pixel co-ordinates and
ω is rotational velocity about the sensor axes. The first two
equations serve to convert from sensor to pixel co-ordinates
(64 pixels in the array).

D. The aperture problem

When viewing only a small section of an edge, the compo-
nent of motion in the direction of the edge is ambiguous. This
is the aperture problem which all visual sensors are prone to,
including the human visual system. The problem is even more
serious when using a linear array to detect motion because
the array measures only the component of the motion that lies
along the direction of its axis. If the array axis orientation is
different from the direction of motion of the edge this will
introduce an error (see Fig. 4). The measured edge velocity
can be described by:

vmeasured =
vedgesin(φ)

sin(φ−θ)
(2)

Where vedge is the speed at which the edge moves across the
image plane, φ is the angle between the edge and its direction
of motion, θ is the angle between the array and the direction
of motion of the edge.

We assume that image edges will mainly occur at crater
boundaries and therefore be circular. The symmetry allows
us to define the probability of encountering an edge with
orientation φ to the sensing array as:

p(φ) =
sin(φ)

2

Thus we are most likely to encounter an edge with orien-
tation φ = π

2 which greatly simplifies our equations. In the
following simulation results we assume that φ is always equal
to π

2 . This is equivalent to measuring the normal flow [8].

IV. SIMULATION RESULTS

A. Low-level simulations

Simulation of the photoreceptor circuit reveals that it can be
accurately approximated as a constant gain on the input signal
for low frequencies and short time-scales. This does not hold
true for high frequencies, but the finite pixel size and the lens
transfer function of our current application will cause blurring,
which will remove high frequencies from the incoming signals.
Over longer simulation times the assumption of constant gain
also fails because the photoreceptor adapts.

Simulation results for four adjacent pixels derived using the
image in Fig. 2 are shown in Fig. 3.

B. Mid-level simulations

When the array and velocity are aligned (θ = 0) and no
transistor mismatch is present the full chip simulation results
are exactly as expected. Inclusion of mismatch causes a
random error of -15 to 15% in each pixel output. One of the
terms defining the strength of each pixel in the saliency map is
the measured velocity at that pixel. This causes the sensor to
be biased towards higher velocities, which results in a typical
overestimate the optical flow by 15% (see Fig. 4).

The TMS is biased to measure the flow at the point of
highest contrast in an image and indicates whether sufficient
contrast is present to make a reliable measurement. Smooth
transitions of the WTA output between adjacent pixels suggest



Fig. 3. An example of photo-receptor outputs for four adjacent pixels derived
using the image in Fig. 2. In this case θ = 20,◦ . The pixels are adjacent to
each other and are therefore all focused on a small portion of the image.
They have very similar outputs due to the low spatial frequency content of
the image.

that a single edge is being tracked across the image plane. A
constant velocity output from the TMS as the WTA transitions
between pixels suggests that the edge is moving with constant
velocity. We can therefore derive a confidence estimate in the
output of a single sensor by monitoring the WTA and velocity
outputs. By considering an orthogonal pair of sensors we can
determine both the direction and magnitude of the normal
flow and by making a comparison between outputs of nearby
orthogonal pairs we can further refine the confidence estimate.

C. High-Level Simulation

The high level simulation allows the output of the sensor to
be determined for an arbitrary position, orientation, rotation
and linear velocity of the craft. Multiple sensors can be
simulated by just specifying their positions and orientations
relative to the craft center of mass (COM).

V. CONCLUSIONS

We have simulated the operation of a neuromorphic vision
sensor in realistic planetary landing scenarios, at three different
levels. At the lowest level we carried out SPICE simulations to
characterize the response properties of the sensor’s individual
blocks; at the intermediate level we used transistor equations
to derive analytically the individual circuit block behavior and
carry out full-chip simulations, by providing realistic inputs
from planetary landing scenarios; at the last level we derived
velocity estimates for controlling the craft in the landing task,
by combining outputs from perpendicularly oriented sensors,
placed on the surface of the craft. Our results are useful
for evaluating the overall performance of the chip in this
specific task. The simulations achieve their aim of enabling us
to verify bio-inspired control strategies for planetary landing
using different configurations of sensor placements on the
surface of the craft.
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Fig. 4. Top: A comparison between the optical flow predicted by equations
and simulation results as a function of θ. The actual velocity is 500m/s.
For θ = 0 the measurement is accurate as expected. Deviation between the
measured and expected result can be explained by the effect of the edge
orientation (φ) which is assumed to be π

2 for the prediction curve.
Bottom: An example of a simulation result at a velocity of 500m/s, 2km
from the surface. Before 0.28s no pixels have measured optical flow and the
minimum output is given. At 0.28s a pixel makes a valid flow measurement
and becomes the current pixel of interest. At around 0.29s another pixel makes
an even larger measurement of optical flow and becomes the new pixel of
interest. The inhibition of return (IOR) circuit block causes the output to
jump between these two pixels until a third pixel makes a valid measurement
at 0.31s, after which the IOR block causes the output to jump between all
three pixels. It is likely that other pixels made valid measurements during this
time, but any measurements significantly smaller than these three readings
will not be reflected at the sensor output. The distance to the planet surface
in simulation is used to determine the actual velocity.
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