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Abstract. A novel algebraic and dynamic systems approach to finite
elementary cellular automata is presented. In particular, simple alge-
braic expressions for the local rules of elementary cellular automata are
deduced and the cellular automata configurations are represented via
Fourier analysis. This allows for a further analysis of the global dynamics
of cellular automata by the use of tools derived from functional analysis
and dynamical system theory.

1 Introduction

Cellular automata (CA) models have been widely studied and applied in physics,
biology and computer science. They are amongst the simplest systems which ex-
hibit self-organisation and are closely related to neural networks. CA have also
been suggested as the generic discrete model of pattern formation and decen-
tralised computation. Despite their simple appearance there are a number of
important open theoretical questions [1,2,3,4].

Contrary to the usual mathematical treatment we consider here finite cellular
automata. This starting point ensures a close analogy to actual biological systems
and may eventually be generalised in the infinite size limit.
A cellular automaton is specified by a d-dimensional regular discrete lattice L
with boundary conditions and a finite set Σ of states xi assigned to each node
or cell i of the lattice. A local rule f acting on the cells in the range k of
the neighbourhood N i

k of each cell i determines the dynamics of the cellular
automaton in discrete time steps starting from an initial condition. In this study
we consider only finite CA, that is CA with a finite number N of cells.

Unless stated otherwise, only elementary cellular automata will be consid-
ered, that is cellular automata with d = 1, Σ = {0, 1} and nearest neighbour-
hood k = 3. In this case, there are 256 different possible local rules xi

t+1 =
f(xi−1

t, xi
t, xi+1

t). The N cells are subject to periodic boundary conditions and
their states xi are updated synchronously by the local rule. Local rules are given
by a rule table.

Example 1 (rule 110). The rule table of CA rule 110 is (f(111) = 0, f(110) =
1, f(101) = 1, f(100) = 0, f(011) = 1, f(010) = 1, f(001) = 1, f(000) = 0).
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It is customary to assign a decimal number to such rule tables. One speaks
of rule 110 as the binary expansion of the decimal number 110, that is 110 =
01101110, encodes the rule table when read from left to right.

A configuration xt = (xt
0, x

t
1, ..., x

t
N−1) of a CA is the string of the states of

the N cells at the time t. Starting from an initial configuration x0, the global
function or map F then maps configurations xt to subsequent configurations xt+1

thereby generating a space-time pattern. The global map F is only indirectly
given through the local rule f . Figure 1 shows examples of space-time patterns
generated by the CA rules 90 and 110.

Understanding the global dynamics induced by the global map F is the long-
standing challenge of CA theory. CA with a finite number N of cells will even-
tually always become periodic (after at most 2N steps). However, already the
rather small CA of figure 1 with 65 cells could yield an intractable 265 ∼ 3.7·1019

time steps. In this paper we present a novel approach in order to further analyse
the global dynamics of finite CA. The outline of the paper is as follows: First,
we introduce algebraic expressions for the local CA rules. Second, a continuous
representation of the CA configuration space by Fourier analysis is presented.
We then discuss the implications and possibilities of this approach for finite CA
in view of functional analysis and dynamic system theory.

2 Algebraic Expressions of Local Rules

If a CA rule table is viewed as a truth table from propositional logic it is imme-
diately clear that every rule table represents a Boolean function, which must be
expressible as a disjunctive normal form (DNF) [5]. The DNF is a disjunction
of clauses, where a clause is a conjunction of Boolean variables.

Example 2 (DNF of rule 110). CA rule 110 written as a DNF is (Xi−1 ∧ Xi ∧
¬Xi+1)∨ (Xi−1 ∧¬Xi ∧ Xi+1) ∨ (¬Xi−1 ∧Xi ∧Xi+1)∨ (¬Xi−1 ∧ Xi ∧ ¬Xi+1)∨
(¬Xi−1 ∧ ¬Xi ∧ Xi+1) with the Boolean variables Xi, the disjunction denoted
by ∨, the conjunction by ∧ and the negation by ¬.

The representation of cellular automata rules as Boolean functions has in fact
been used by Wolfram to program cellular automata rules [6]. However, this line
of research seems to have not yielded any further insights into CA rule dynamics
[2]. We propose to translate the DNF of CA rules to algebraic expressions which
will allow for a further analysis of CA dynamics. A similar idea but within a
different framework was also proposed by Chua [8]. In the representation chosen
here, the conjunction Xi∧Xj is expressed by the algebraic multiplication, xi ·xj ,
the disjunction Xi ∨Xj is expressed by the algebraic relation xi +xj −xi ·xj and
the negation ¬Xi is expressed by 1−xi. All CA rules xi

t+1 = f(xi−1
t, xi

t, xi+1
t)

expressible as Boolean functions can be written in such a form, where the state
of the cell i at time t+1 is given by an algebraic expression of the neighbourhood
states at time t.

Example 3 (Algebraic expressions of rule 110 and rule 90). The algebraic ap-
proach proposed here is discussed by example of the prototypic rules 110 and
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Fig. 1. Space-time patterns generated by CA rules 90 and 110. The vertical axis is the
time axis. a Space-time pattern of rule 90 applied on a initial configuration of 65 cells
of which all are in state 0 except one being in state 1 for 250 iterations. b Space-time
pattern of rule 90 applied on a random initial configuration of 65 cells for 250 iterations.
c Space-time pattern of rule 110 applied on a initial configuration of 65 cells of which
all are in state 0 except one being in state 1 for 250 iterations. d Space-time pattern
of rule 90 applied on a random initial configuration of 65 cells for 250 iterations.

90. Rule 110 is amongst the most complex elementary CA rules as it has been
proven that it is capable of universal computation in the Turing sense [14]. Rule
90 is among the simplest elementary CA rules as one of the so-called additive
CA rules [7].

The Boolean formula (DNF) for CA rule 110 becomes

xi
t+1 = xi

t + xi+1
t − xi

t · xi+1
t − xi−1

t · xi
t · xi+1

t (1)

and for CA rule 90 (=01011010)

xi
t+1 = xi−1

t + xi+1
t − 2xi−1

t · xi+1
t. (2)

Elementary CA rules are grouped according to the 0-1-transformation and the
left-right-transformation of the rules yielding 88 independent groups of rules
which essentially display the same global dynamics [9]. Within the algebraic ap-
proach proposed here these transformations are simple algebraic operations on
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the CA rules. The 0− 1-transformation T0−1 is given by T0−1f(xi−1, xi, xi+1) =
1 − f(1 − xi−1, 1 − xi, 1 − xi+1) and the left-right transformation Tleft−right is
given by Tleft−rightf(xi−1, xi, xi+1) = f(xi+1, xi, xi−1).

Example 4 (The group of rules equivalent to rule 110). The group of rules equiv-
alent to rule 110 under the 0-1-transformation and the left-right-transformation:
Rule 110 (=01101110)

xi
t+1 = xi

t + xi+1
t − xi

txi+1
t − xi−1

txi
txi+1

t (3)

Rule 137 (=10001001) (0-1-transformation)

xi
t+1 = 1−xi−1

t −xi
t −xi+1

t +xi−1
txi

t +xi−1
txi+1

t +2xi
txi+1

t −xi−1
txi

txi+1
t

(4)
Rule 124 (=01111100) (left-right-transformation)

xi
t+1 = xi−1

t + xi
t − xi−1

txi
t − xi−1

txi
txi+1

t (5)

Rule 193 (=11000001) (0-1-transformation and left-right-transformation)

xi
t+1 = 1−xi−1

t −xi
t −xi+1

t +2xi−1
txi

t +xi−1
txi+1

t +xi
txi+1

t −xi−1
txi

txi+1
t

(6)

Note that all CA rules with Σ = {0, 1} can be assigned by this method to
an algebraic expression. In fact, this approach allows to derive an algebraic
expression for any kind of network which operates with Boolean functions.

If the variables xi are drawn from a probability distribution we get algebraic
expressions for probabilistic elementary CA which yield in the mean field ap-
proach the familiar mean field equations of probabilistic elementary CA [4,6].
To the best of our knowledge, we have here for the first time simple algebraic
expressions for all elementary CA rules. Previous studies either examine only
restricted classes of elementary CA rules, mostly additive CA rules [7] or can-
not yield the same simple forms as our approach [8]. Of course, the algebraic
expressions derived here apply equally to infinite elementary cellular automata.

In general, the algebraic approach proposed here will, through the equations
of the form (1), give a system of coupled nonlinear Boolean difference equations
for the time evolution of the global configurations xt. We will not pursue this
line further in this paper but instead investigate a continuous representation of
CA configurations in order to analyse global CA behaviour.

3 Global Functions and Dynamics of Finite Cellular
Automata

The global dynamics of a cellular automaton is determined by repeatedly ap-
plying the global map F to some initial configuration x0. The global map F is
only indirectly given by the local map f . One might be tempted to assign ratio-
nal or real (for infinite configurations) numbers to the configurations xt [6,10].
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This approach has the drawback that it induces a wrong topology in the CA
configuration space. The set of all possible CA configurations of length N forms
a N-dimensional hypercube with the Hamming distance as the natural metric.
The Hamming distance counts the number of bits for which two binary strings
differ and is here defined by dH(x, y) = 1

N

∑N−1
n=0 (x[n] − y[n])2 for two CA con-

figurations, i.e. two binary strings x[n] and y[n] of length N . We are looking for
a transformation which preserves the topology induced by the Hamming metric.
In the usual dynamic system approach to CA, infinite size CA in d dimensions
are treated as continuous functions on the compact metric space ΣZd

equipped
with the product topology [1]. This topology for CA as dynamical system has
been criticized in [11]. Here, we suggest a different approach for the topological
dynamics of finite CA.

We propose to treat the CA configurations x = x[n], n = 0, ..., N − 1 as a
sample of a continuous periodic signal x(s). A continuous signal with period 1
has a Fourier series

x(s) =
∞∑

k=−∞
x̂c(k)e2πiks (7)

with x̂c(k) being the Fourier coefficients. If the signal is band limited and sam-
pling is at a rate higher than the Nyquist rate the Fourier coefficients will up
to a constant factor be equal to the discrete Fourier transform values x̂(k)[12].
That is x̂(k) = Nx̂c(k) with the discrete Fourier transform

x̂(k) =
N−1∑

n=0

x[n]e−
2πikn

N , 0 ≤ k ≤ N − 1. (8)

We thus have in (7) only a finite summation yielding a continuous function x(s)
which returns the initial configuration x[n] when sampled at the rate 1

N .
The global dynamics of CA crucially depend on the initial configurations. Our

approach takes this fact into account as simple or periodic initial configuration
will automatically yield simple forms through the discrete Fourier transform (8).

The functions x(s) of equation (7) with finite N form a finite Hilbert space
L2[0, 1] with the inner product (x, y) =

∫ 1
0 x(s)∗y(s)ds, where x(s)∗ denotes the

complex conjugate of x(s). The distance metric is given by the inner product
∫ 1
0 (x(s) − y(s))∗(x(s) − y(s))ds which results in

d(x, y) =
∫ 1

0
(x(s) − y(s))∗(x(s) − y(s))ds (9)

=
1

N2

N−1∑

k=0

(x̂(k) − ŷ(k))∗(x̂(k) − ŷ(k)) (10)

=
1
N

N−1∑

n=0

(x[n] − y[n])2 (11)

= dH(x, y)
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We thus have through the discrete Fourier transform a distance-preserving
isomorphism between two metric spaces, that is between a finite Hamming space
(hypercube) and a finite Hilbert space L2[0, 1]. The distance measure in Fourier
space is given by (10). All dynamical properties of CA (e.g. fixed-points) can
accordingly be studied in Fourier space. In general, the dynamics will be given
by a nonlinear map in the Fourier space which will be the focus of future work.
Additive CA rules [6] however result in simple closed forms irrespective of the
initial conditions.

Example 5 (Global dynamics of rule 90). For the additive rule 90, the algebraic
expression of the local rule in equation (2) can be shortened to xi

t+1 = (xi−1
t +

xi+1
t) mod 2. Inserting xi

t+1 into the Fourier series expression (7) yields

x(s)T =
1
N

N−1∑

k=0

(2 cos(
2πk

N
))T x̂(k)e2πiksmod2 (12)

for the temporal evolution of the CA with T being an arbitrary time step. Note
that this equation applies to any initial configuration and is therefore more
general and simpler than previous results [7]. It might be surprising that the
rather complicated looking dynamics of figure 1 (b) is generated by such a simple
form.

Our approach yields through (7) the well behaved functions of a finite Hilbert
space L2[0, 1]. Accordingly, results from functional analysis can readily be ap-
plied. As a first example consider the Banach fixed-point theorem.

Theorem (Banach fixed-point theorem for finite CA). If the global func-
tion F : X → X is k-contractive:

d(Fx, Fy) ≤ kd(x, y), ∀x, y ∈ X (13)

and fixed k, 0 ≤ k ≤ 1, the global function F has exactly one fixed point x∗ on the
closed set X. That is there is a unique fixed point, a single homogeneous state
the cellular automaton evolves to.

Proof. The classic Banach fixed-point theorem from functional analysis holds
because all necessary conditions are satisfied within our approach [13]. 
�
Only the trivial rules 0 and 255 are contractive and therefore yield single homo-
geneous states. In ongoing work we study subsets of configurations which yield
unique fixed points for certain rules through a (in this regard) restricted Banach
fixed-point theorem. The crucial point is proving that these subsets are closed.
As the functions x(s) live in a finite Hilbert space, which is in a certain regard the
most convenient space for analysis, we expect that more results from functional
analysis will turn out to be useful in the analysis of global CA dynamics.

4 Concluding Remarks

Despite the simplicity of the local update rules for elementary cellular automata,
the prediction of the global dynamics is a difficult problem, in its generality
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unsolved to date. In fact, in the infinite case, it has been proven that rule 110
is capable of universal computation and its global dynamics are therefore, in
general, intractable [14].

Here, the idea is to tackle the problem by associating the configurations of
a finite cellular automaton with states of a continuous state space, allowing
for an analysis from a viewpoint of dynamic system theory. Previous approaches
following this idea suffered from the fact that, first, there were no simple algebraic
expressions for the local CA rules and, second, the association map did not
preserve the topology of the original configuration space, the N -dimensional
hypercube induced by the Hamming distance. This led to irreconcilable problems
in the analysis of the global dynamics. In this contribution we showed:

1. that the rules of a elementary cellular automaton can be translated into alge-
braic expressions, yielding the possibility of an interpretation as continuous
maps,

2. that on the basis of Fourier series, a continuous representation of the configu-
rations can be introduced, which preserves the topology of the configuration
space. This leads to a description of the global dynamics of a elementary cel-
lular automaton in terms of the dynamics in a finite Hilbert space L2[0, 1].

This preliminary contribution focused on illustrating the method characterised
by these two main points. We believe that this approach opens up various new
possibilities in the analysis of global dynamics of CA. We believe that the prob-
lems emerging within our approach can be amenable to a rigorous mathematical
treatment, this is however outside of the scope of this contribution. Ongoing
and future work will focus on studying non-additive CA from a dynamic system
perspective. In addition, the Fourier series representation in the Hilbert space
L2[0, 1] stipulates further analysis of the dynamics from a functional analysis
perspective. Finally, our approach shall in some weaker sense be generalised in
the thermodynamic limit, that is the infinite size limit N → ∞.
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