
Temporally learning floating-gate VLSI synapses
Shih-Chii Liu and Rico Möckel
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Abstract— We present a floating-gate synaptic circuit that
updates its weight according to the Spike-Timing-Dependent
Plasticity (STDP) rule. The weight (or floating-gate voltage)
is updated only if the time difference between the pre- and
post-synaptic spikes falls within a learning window. The update
is implemented through tunneling and injection mechanisms
which can be tuned for very long time constants up to seconds.
The novelty of this circuit is that the tunneling and injection
mechanisms are turned on only when the correlation of the pre
and postsynaptic activity is significant. The additional benefit of
this non-volatile technology is that synaptic weights can be stored
locally on chip. We present experimental results that show the
learning and normalization effects from the fabricated circuits.

I. INTRODUCTION

The inclusion of local learning mechanisms into spiking
networks allows us to construct systems that can adapt their
network connectivity for different tasks. Floating-gate tech-
nology provides a natural medium for implementing learning
mechanisms and autonomous local adaptation in VLSI net-
works similar to the adaptive mechanisms in natural systems.
This premise has led to the development of single synapse
floating-gate transistors that implement long-term nonvolatile
analog memory, bidirectional weight updates, and continuous
learning from its inputs. These synapse transistors have been
used in the implementation of circuits for both supervised and
unsupervised learning on continuous-time analog signals [1]-
[4], and circuits that compensate for on-chip element differ-
ences [1], [2], [5].

In spiking networks, the learning rule of choice is the spike-
timing-dependent plasticity (STDP) rule. Networks employing
this rule can exhibit temporal pattern recognition, temporal
sequence learning, and coincidence detection [6]. Recent im-
plementations of STDP learning in VLSI spiking networks
demonstrate the use of these networks in classification and
computational tasks [7]-[11]. However, the slowest weight
update rate and time constant in most of these implementations
is limited to the transistor leakage currents in the chosen
fabrication process.

To obtain longer update time constants for the synaptic
weights, we describe another implementation of the STDP
learning rule which uses floating-gate technology to implement
the dynamics of the weight update. The synaptic weight is set
by the current flowing through a pFET transistor whose gate
is a floating node. The charge on the floating node is removed
or added using Fowler-Nordheim electron tunneling and hot-
electron injection [1], [12]. The time constant of the weight

update can be made long because the tunneling and injection
currents can be over 6 orders of magnitude smaller than leak-
age currents. Pulse-based floating-gate learning circuits have
been described in the past [11], [13], however, in this present
implementation, the mechanisms (tunneling and injection) that
change the floating-gate voltage are not activated with each
pre or postsynaptic spike. In addition, the tunneling currents
are activated locally for each synapse. The tunneling is also
not continuously activated as in most floating-gate learning
circuits. Our learning network implements an approximation
of the learning rules described in [6] and exhibits the benefits
associated with the floating-gate technology, that is, local
adaptation, non-volatile storage of the synaptic weights, and
the availability of long time constants in the network.
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Fig. 1. Circuits to update the floating-gate voltage, synaptic circuit and soma
model. (a) The floating-gate node, fg is updated according to control signals
generated as shown in (c). (b) A current-mode integrator which is used as the
synaptic circuit [9]. The bias Vτ , controls the time constant of the synapse. (c)
Circuits for generating the control pulses (vtunctrl and vinjcntrl) which
turn on the tunneling and injection currents respectively in (a). The circuit that
generates P and M uses the same synaptic circuit in (b) except that the fg
node is replaced by a fixed bias. The block that generates the control pulses
is a soma-like circuit similar to that in Fig. 2 where vmem is now replaced
by P∗ and M∗.
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II. SPIKE-BASED LEARNING RULE

The spike-timing dependent plasticity rule was first de-
scribed experimentally by [14], [15]. According to this rule,
the weight of a synapse is updated according to the relative
timing of the pre- and postsynaptic spikes. The amount of the
weight change is determined by a temporal learning window
following:

ΔW =
{

f+(W )K+(Δt) Δt > 0
−f−(W )K−(Δt) Δt ≤ 0 (1)

where f(W ) is an updating function and Δt = tpost − tpre.
If the presynaptic input spike arrives before the postsynaptic
spike, that is, Δt > 0, the synaptic weight is increased where
K+(Δt) = e−Δt/τ+ and τ+ is the time constant for the
potentiation window. Conversely, if the input spike arrives after
the postsynaptic spike, the synaptic weight is decreased (or
depressed) according to K−(Δt) = e−Δt/τ− where τ− is the
time constant for the depression window. If f(W ) is constant,
the weight update is additive and if f(W ) is proportional to
W , then the weight update is multiplicative.

The update in Equation 1 is computationally expensive if
it was applied for every possible pre- and postsynaptic spike
pairing in a network simulation. The equation can be simplified
as shown in Song et. al [6], where additional variables, P and
M are introduced to represent the integrated pre- and post-
synaptic activities respectively. The variable M is updated by
a fixed amount each time the postsynaptic neuron produces a
spike. Conversely, the variable P is updated by a fixed amount
each time a synapse receives an input presynaptic spike. These
variables decay in time following:

τ−
dM

dt
= −M(t) and τ+

dP

dt
= −P (t) (2)

To modify the weight, P (t) is sampled at the time of a
postsynaptic spike, and M(t) is sampled at the time of
a presynaptic spike. This sampled value is then added or
subtracted from the synaptic weight respectively.
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Fig. 2. The soma circuit implements an integrate-and-fire model.

III. CIRCUITS

We describe test results from fabricated circuits consisting
of a group of 24 STDP floating-gate synapses connected to
a spiking neuron (Fig. 1). The circuits were simulated using
a floating-gate SPICE model from [16] before fabrication.
This chip was fabricated in a 0.35 μm 4-metal 2-poly CMOS

technology. The neuron can also be stimulated by 4 non-
plastic excitatory and 4 inhibitory synapses. The floating-gate
synapse circuit (approximately 55 μm by 120 μm in area)
consists of the circuits for updating the floating-gate voltage
fg in Fig. 1(a), the current-mode integrator synaptic circuit in
Fig. 1(b), and circuits to generate the control pulses (vtunctrl
and vinjctrl) that turn on the tunneling and injection currents
respectively in Fig. 1(c). The soma is implemented by the
integrate-and-fire circuit in Fig. 2.

The dynamics of P and M in Figs. 1(b and c) follows that
of Equation 2. Unlike the formulation in Song et al. [6], the
sampled P and M values are used to charge up the capacitor
of individual soma-like circuits similar to the one in Fig. 2.
To determine when the vinjctrl pulse should be generated,
the integrated voltage on the soma-like circuit, P ∗(t), is
compared against a threshold. When the integrated voltage
exceeds this threshold, the circuit produces a spike which
activates the vinjctrl pulse thus turning on the injection.
The injection is carried out by the source-follower pFET in
Fig. 1(a) [4], [5]. A similar process occurs on M(t) during
a postsynaptic spike. When M∗(t) reaches a threshold, its
soma-like circuit generates a vtunctrl pulse thus activating
the tunneling through a charge pump circuit. Example P ∗(t)
and M∗(t) curves are shown in Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time(s)

Sc
al

ed
 a

m
pl

itu
de

P*

Post

M*

Pre

Fig. 3. Timing diagram of M∗ and P ∗ at a learning synapse receiving a
regular 50 Hz input spike train (pre) and a postsynaptic rate of 25 Hz (post).
P (t) is sampled by every postsynaptic spike onto P ∗(t) and M(t) is sampled
by every presynaptic spike onto M∗(t). Curves are offset from one another
for ease of visibility.

A. Characterization

We measure the effectiveness of the tunneling and injection
by quantifying the frequencies of the vinjctrl and vtunctrl
pulses in an experiment where a floating-gate learning synapse
is stimulated by a regular input spike train and a regular
postsynaptic spike output is generated through the stimulation
of the neuron by a fixed synapse. We used this measure in
quantifying the temporal learning window (see Fig. 4). The
time constants, τ+ and τ−, in Equation 2 determined the extent
of the temporal window and were adjusted so that there is a
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net negative area under the learning window, which is needed
for stability of the learning system [6].

This update frequency has to be combined with the actual
tunneling and injection currents during the pulses to determine
the actual weight change. The form of these currents will be
analyzed in the next section. In general, the net weight change
cannot be predicted from the window because both tunneling
and injection pulses occur during the learning process as
shown in Fig. 3. The vinjctrl and vtunctrl control pulses are
generated during a spike in the P ∗ and M∗ traces respectively.
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Fig. 4. Frequency of tunneling and injection pulses for a presynaptic input
rate of 20 Hz and a postsynaptic rate of 20 Hz. The curves are obtained with
various values of τ+ and τ−.

B. Weight Update

The weight update in our floating-gate synapse implementa-
tion is a multiplicative update because of the dependence of the
tunneling and injection currents on the floating-gate voltage
and hence the synaptic weight. We show this by using the
analysis in [2], [3], [12]. By defining the weight of the floating-
gate transistor W as the drain current Is flowing through this
transistor normalized by the drain current Iso at a particular
operating point, we get W = Is/Iso and the time derivative
of W following

dVfg

dt
=

UT

κpW

dW

dt
. (3)

The dynamics of the weight decrease for the pFET synapse
via the tunneling current is

UT CT

κpItun0

dW

dt
= −W 1+(UT /(κpVx)) (4)

where UT is the thermal voltage, CT is the total capacitance
at the floating-gate node, κ is the efficiency of the gate in
controlling the channel current, Itun0 is the quiescent tunnel-
ing current, and Vx is a parameter related to the quiescent
tunneling and floating-gate voltage.

The dynamics of the weight increase via the injection
current is

UT CT

κpIinj0

dW

dt
= W (1+α) (5)

where α is 1−(UT /Vinj) and Vinj is a constant which depends
on the injection efficiency of the floating-gate transistor.

C. Normalization and Correlation-Based Learning
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Fig. 5. Effect of input correlations on synaptic weight distribution. Dashed
curve: Distribution of synaptic efficacies of 22 synapses in response to
uncorrelated 20 Hz input Poisson spike trains. Solid curve: The change in
efficacies of 5 silent synapses (2,3,7,8,9) when these synapses along with
3 other finite-weight synapses received 80% correlated 20 Hz input Poisson
spike trains while the remaining synapses were stimulated by the uncorrelated
Poisson spike trains. Solid and dashed curves are coincident for synapses 11
to 23. The synaptic efficacy was computed by measuring the postsynaptic rate
of the neuron when a synapse was solely stimulated by a regular spike train
of 50 Hz. TunVdd=6.5V, InjVdd=5.4V.

One feature of a network which incorporates STDP is that
synapses with strong temporal correlations are strengthened
as expected from a Hebbian-like learning rule. We show this
feature in an experiment where we first stimulated a set of
22 floating-gate learning synapses with uncorrelated 20 Hz
Poisson spike trains. After approximately 20 minutes, the
synaptic distribution settled to the dashed curve in Fig. 5.
We then stimulated a subset of 8 synapses (5 are silent) with
correlated Poisson input spikes and the remaining synapses
with the original uncorrelated Poisson spikes. The weight of
the silent synapses increased in response to the new inputs
(solid curve in Fig. 5).

Another feature of STDP is that it naturally provides a form
of competitive Hebbian learning because of the dependence of
the synaptic modification on the spike timing [6]. This is unlike
many network models of Hebbian learning which usually
have to include constraints to ensure that strong synapses do
not grow arbitrarily. The competition with STDP leads to an
intrinsic stabilization of weight distribution without requiring
a global signal that reflects the state of the synapses. Hence if
the output rates increase, the synaptic weights will adjust to
keep the output rates stable [6], [17].

This normalization effect has also been described in [11]
and we observed the same effect in our floating-gate STDP
synapses (Fig. 6). In this experiment, the synapses were driven
by a fixed Poisson input rate while we varied the postsynaptic
rate through a non-learning synapse. The efficacy of the
synaptic weights decreased when the input rate to the non-
learning synapse was increased from 20 Hz to 300 Hz.
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Fig. 6. Distribution of the average synaptic efficacy of synapses which were
driven by 10 Hz Poisson spike trains. The synaptic efficacy was determined
by measuring the output spike rate when each synapse was stimulated by a 50
Hz regular input spike train. To increase the postsynaptic rate of the neuron,
we stimulated a non-learning excitatory synapse with a presynaptic rate of
20 Hz, 200 Hz, and 300 Hz. The average synaptic efficacy decreased with
increasing postsynaptic rate. TunVdd=6.5V, InjVdd=5.4V.

IV. DISCUSSION

We present floating-gate synaptic circuits that implement
the spike-timing dependent plasticity rule in a learning spiking
network. This work shares some circuit similarities with the
work of [11] showing the use of floating-gate technology for
implementing an STDP-like learning rule. Our circuits differ
in that the tunneling and injection currents are not activated for
each presynaptic pulse or postsynaptic pulse but but only when
the integrated sampled presynaptic or postsynaptic activity
exceeds a threshold. This difference means that we do not
unnecessarily turn on the injection and tunneling mechanisms
which can degrade the gate oxide over time especially if the
presynaptic and postsynaptic rates are high. In addition, the
tunneling is turned on locally and is not global or continuously
activated for all synapses.

This circuit includes the capability for non-volatile local
weight storage and slow weight update dynamics which are
not present in many VLSI implementations of learning spiking
networks. In addition, the multiplicative weight update in this
work replaces the additive weight update typically encountered
in the non floating-gate spike-based learning networks. The
multiplicative rule can provide stabilizing effects on the weight
increase or decrease at a synapse. This circuit has intrinsic nor-
malization properties which is an example of homeostasis [18]
and the floating-gate technology could potentially implement
other homeostatic mechanisms which usually require long time
constants [19].
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