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Abstract

A majority of hearing defects are due to malfunction of the outer hair cells (OHCs), those cells within the mammalian
hearing sensor (the cochlea) that provide an active amplification of the incoming signal. Malformation of the hearing sensor,
ototoxic drugs, acoustical trauma, infections, or the effect of aging affect often a whole frequency interval, which leads to a
substantial loss of speech intelligibility. Using an energy-based biophysical model of the passive cochlea, we obtain an
explicit description of the dependence of the tonotopic map on the biophysical parameters of the cochlea. Our findings
indicate the possibility that by suitable local modifications of the biophysical parameters by microsurgery, even very salient
gaps of the tonotopic map could be bridged.

Citation: Kern A, Heid C, Steeb W-H, Stoop N, Stoop R (2008) Biophysical Parameters Modification Could Overcome Essential Hearing Gaps. PLoS Comput Biol 4(8):
e1000161. doi:10.1371/journal.pcbi.1000161

Editor: Stefano Boccaletti, Istituto Nazionale di Ottica Applicata, Italy

Received February 4, 2008; Accepted July 16, 2008; Published August 29, 2008

Copyright: � 2008 Kern et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by the Swiss National Science Foundation and a ZNZ grant from University/ETH of Zurich.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ruedi@ini.phys.ethz.ch

Introduction

The heart of the mammalian auditory system is the hearing

sensor, the cochlea. Acoustic signals arriving in the form of sound

pressure waves are funneled by the outer ear towards the tympanic

membrane, forcing the latter to oscillate. These oscillations are

transmitted to the oval window, a membrane-covered oval

opening to the cochlea, by the middle ear ossicles. Within the

cochlea, the oscillating membrane elicits incompressible and

inviscid hydrodynamic surface waves, comprising the basilar

membrane (BM) that partitions the tube containing the cochlear

fluid (see Figure 1).

Using coordinate x to express the distance from the oval window

towards the apex, the BM transversal stiffness E has the

dependence E(x) = E0 e2ax, where a<3 cm21 [1]. The generated

travelling waves [2] display space-dependent amplitudes that

increase from base towards the apex, until they attain their

maxima at frequency-dependent locations, xc(v). It can be shown

[1,3] that as x approaches xc(v), the wave stalls, i.e., vG = 0, and

that the wave number k(x,v) diverges. Beyond xc(v), strong

attenuation suppresses further travelling. Hence, the location of

maximal wave amplitude encodes the stimulus frequency in a 1-to-

1 way (the ‘‘tonotopic map’’ (TM), see Figure 2). Along with the

BM, the organ of Corti with the attached outer hair cells (OHC)

oscillates. Cells located at distance x provide an active amplifica-

tion most effective for waves oscillating at the cell’s preferred, or

characteristic, frequency vc(x) [4,5].

Measured OHC-amplification profiles can be modelled by

driven Hopf oscillators [3,6]. It is known that systems closely

below a Hopf bifurcation act like small-signal amplifiers [7,8].

The amount of amplification is determined by the closeness of

the wave frequency to the local system’s preferred frequency

vc(x) on one hand, and the local system’s distance to the Hopf

bifurcation point on the other hand (the closer to the bifurcation

point, the stronger the amplification). A biophysiologically

detailed model of the cochlea based on these insights [9] has

reliably reproduced the salient physiological measurements of

the mammalian cochlea [3,10–12]. An electronic implementa-

tion using a slightly modified coupling among the active elements

[13], reproduces the physiological measurements to the extent

that it is hard to distinguish between the physiological and the

electronic outputs [14]. The theoretical model, the electronic

implementation, and corresponding physiological evidence

suggest that the closeness to the bifurcation point can be

controlled via a cortico-cochlear feedback loop. By means of this

mechanism, the set of the active amplifiers (hair cells) can be

tuned towards the amplification of a predetermined signal shape,

i.e., towards an auditory object. The degeneration of the hair

cells that provide the active amplification, is the most common

origin of hearing deficits, where often whole bands of OHC are

affected. Because of the importance of the cortico-cochlear

hearing loop, the caused hearing impairment cannot be

overcome by current hearing aids technology.

In this contribution, we investigate on biophysical grounds

whether the TM could theoretically be modified in order to

overcome this problem, by a modification of the biophysical

parameters of the cochlea. In particular, we study whether

modifications can be identified that send incoming frequency

information originally targeted to handicapped OHC, to regions

of intact OHC. In this case, all salient properties of the cochlea,

such as its high input-dependent sensitivity, two-tone-suppression,

combination-tone-generation and the ability to tune in into sound

sources, would be preserved, and could be used for information

processing. It is the aim of this contribution to show that by

suitable alterations of the biophysical parameters of the cochlea,

such a remapping is, in principle, possible.
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Results

We use an energy-based passive modeling approach that, on the

desired level of description, has previously reliably described the

physical processes within the cochlea [3,10–12]. The full details of

this approach are given in the Materials and Methods section. In

short, this approach departs from the energy balance equation

[15],

Le

Lt
z

L
Lx

vGeð Þ~0, ð1Þ

where e(x,v) denotes the one-dimensional energy density pertain-

ing to a traveling wave, propagating with group velocity vG(x,v)

and oscillating with frequency v. The equation is valid both for

linear and nonlinear waves and allows us to include in a simple

way external power sources, denoted by a(x,e,v), representing the

amplification by outer hair cells. From Equation 1 we obtain the

change of the energy contained between points x1,x2 of the

cochlear duct as

d ~EE

dt
~

ðx2 tð Þ

x1 tð Þ

Le

Lt
dxzvG x2ð Þe x2ð Þ{vG x1ð Þe x1ð Þ~0: ð2Þ

In this equation, the first term denotes energy supplied into or

dissipated from the interval [x1(t),x2(t)], while the last two terms

take care of the total energy leaving the interval. In the steady state

situation, the contributions must compensate. From this, we

deduce that

Le

Lt
~{a x,e,vð Þzd x,vð Þe x,vð Þ ð3Þ

holds, where d(x,v) denotes the rate of viscous dissipation.

Inserting this expression into the energy balance Equation 1, we

obtain the cochlea model differential equation [3]

Le

Lx
~{

1

vG x,vð Þ
LvG

Lx
x,vð Þzd x,vð Þ

� �
e x,vð Þz a x,e,vð Þ

vG x,vð Þ : ð4Þ

Traditional cochlear models generally lead to partial differential

equations, involving often detailed assumptions about geometry

and forces within the cochlear canal. In contrast, our energy-based

approach leads to an ordinary differential equation. This allows us

to separate between the passive components of the cochlea on the

one hand and the active amplifiers on other hand.

From the equipartition theorem, we can express the traveling

wave amplitude A(x,v) by the wave energy density e(x,v) and the

BM stiffness E(x),

A x,vð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e x,vð Þ

E xð Þ

s
: ð5Þ

Denoting the amplitude of the stapes displacement by A0, the

passive traveling wave amplitude has the expression

A x,vð Þ~ A0 vð Þffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffi

E xð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vG 0,vð Þ
vG x,vð Þ

s
exp {

1

2

ðx

0

d x0,vð Þ
vG x0,vð Þ dx0

� �
, ð6Þ

where A0(v) : = vA0.

Based on a two-dimensional surface-wave analogy of the

cochlea [16], the group velocity of the travelling wave vG(x,v)

has the form

vG~
Lv

Lk
~

rE xð Þ khzsinh khð Þcosh khð Þð Þ
2v mk sinh khð Þzr cosh khð Þð Þ2

, ð7Þ

where r is the cochlear fluid density, m the BM mass density, and h

the diameter of the cochlear canal. The wave number k(x,v) obeys

the dispersion relation

k tanh khð Þ~ rv2

E xð Þ{mv2
, ð8Þ

whereas the dissipation rate d(x,v) can be expressed by [9]

d x,vð Þ~
ffiffiffiffiffiffi
n

2v

r
rv3

E xð Þz4nk2: ð9Þ

In this equation originally due to Lighthill [17], the last term,

which describes the viscous losses by internal friction among the

fluid elements, is dominant. n denotes the cochlear fluid kinematic

viscosity. The locus of maximal travelling wave amplitude,

associated with a frequency v, is therefore related in a 1-to-1

way with a characteristic place xc(v), which defines the TM.

Numerical evaluation of the TM f(x) from Equation 6, using

natural parameters, reveals a linear semilogarithmic behavior of

the form (see Figure 3)

f xð Þ~emxzg&e{1:6xz10, ð10Þ

where the obtained values result from a least-squares-fit (mean

absolute error ufit
xc
&3:9|10{3 cm, mean absolute error deviation

sf it
xc
&5:1|10{3 cm).

Figure 1. Uncoiled cochlea. Emergence of a travelling wave on the
BM due to a sinusoidally varying sound wave with stapes amplitude pst

(OW: oval window, RW: round window, ST: scala tympani, SV: scala
vestibuli).
doi:10.1371/journal.pcbi.1000161.g001

Author Summary

The cochlea, the mammalian hearing sensor, is a
formidable biophysical construct in many respects. Its task
is to pick up environmental auditory information, which
provides us with a sensory communication channel
without which we experience great problems in our every
day life. In its extreme form, the lack of hearing capability
often leads to social isolation. Mending hearing deficits—
increasingly important in societies of growing average
age—is difficult, not least because of a delicate interplay
between the brain and the sensor. Here, we investigate to
what extent the hearing sensor could be tuned in such a
way that regions of malfunction are circumvented by
relaying the signal to areas of normal functionality. The
means by which we envisage achieving this goal is
through local changes of the biophysical parameters of
the cochlea. By investigation of a detailed biophysical
model of the cochlea, we find that nature indeed appears
to offer such a possibility.

Cochlea’s Biophysical Parameter Dependence
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In order to estimate the effects introduced by changed

biophysical parameters, the space derivative of the travelling wave

amplitude, d
dx

A x,vð Þ needs to be evaluated. We are interested in

the behavior in the close neighborhood of the peak, where k

becomes exceedingly large, so that kh&1 (the short-wave limit). In

this limit, an approximative relation emerges that is sufficiently

accurate and manageable that has the form

2aE xcð Þ E xcð Þ{mv2
� �3

{r2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

E xcð Þ{mv2
� �2

{8nr3v5E xcð Þ~0:
ð11Þ

This equation provides the desired description of the impact of

parameter variations to the TM. We are unaware that with

classical, not explicitly energy-based approaches [18,19], a similar

characterization could be achieved.

Whereas Equation 11 is strongly nonlinear in the space

coordinate x, the effects by variations of m, n, and r on the TM

are amenable to a simple qualitative discussion nevertheless. Using

the substitution D : = E(xc)2mv2, for x#xc(v), Equation 11 can be

written as

2aD3E xcð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
:~T1w0

{ r2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

D2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
:~T2w0

{ 8nr3v5E xcð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
:~T3w0

~0,

where the transversal stiffness E(xc), mv2, and E(xc)2mv2 are

positive (otherwise for any value of x, Equation 11 would not hold).

E(xc) and mv2 are of the same order of magnitude. For Equation 11

to hold, T1 needs to balance the two subtractive terms T2 and T3.

Owing to the different powers associated with the parameters in

T1,2,3, the TM is affected more by changes in m and r than by

changes in n. The following theorem can be seen as the direct

benefit of our energy-based description, where a proof is provided

in the Materials and Methods section.

Theorem
(I) Space-dependent or -independent increase/decrease of r, n,

and m result in left-/right-shifts of the TM.

(II) A change of the transversal stiffness exponent from ax into

a9g(x9), with g(x) invertible but otherwise arbitrary, affects the TM

as follows (with g as in Equation 10):

x0c vð Þ~g{1 a

a0
ln fð Þ{g

m
{

1

a0
ln

E0

E ’
0

� �� �
: ð12Þ

TM obtained from variations of BM transversal stiffness,

evaluated numerically from Equation 6 and predicted analytically

by Equation 12, are compared in Figure 4. Taking as the reference

the numerical evaluations of the TM from Equation 6, the

approximation Equation 11 predicts the effects on the TM up to a

numerical accuracy of ,1.561022 cm.

Changes in the initial transversal stiffness E0 lead to a shift of the

TM parallel to the original TM (see Figure 4a). Variations in the

decay constant a result in a rotation of the TM around the

intersection of the original TM with the frequency axis (Figure 4b).

Alterations of the space-dependence of the exponent, i.e., xRg(x),

result in a non-linear space-dependence of the TM in a

semilogarithmic plot (see Figure 3).

These observations are sufficient to construct TM profiles

according to will and need. In particular, by suitable modifications

of the transversal stiffness (or the surface tension T
,

(x), which in the

domain of interest are phenomenologically related by T
,

(x) = FE(x),

with F<1025 m2 [9]), using Part II of the theorem, the TM can be

Figure 2. Uncoiled cochlea with BM. The position x of the maximal amplitude of the travelling wave corresponds in a 1-to-1 way to a stimulus
frequency. (Adapted from [26].)
doi:10.1371/journal.pcbi.1000161.g002

Cochlea’s Biophysical Parameter Dependence
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forged in such a way that large intervals of hair-cell dysfunction

are bridged.

Assume, as an example, that the outer hair cells are damaged

across the frequency range fM[300,4000] Hz. Such a handicap

across the essential frequency band of human speech would result

in a severe hearing deficit. By using Equation 12, the space-

dependence of transversal stiffness could be modified in such a way

that the obtained piecewise continuous TM maps this frequency

interval into a region of intact hair cells. The modified TM, as

calculated numerically or analytically, demonstrates that the

procedure serves the purpose perfectly (Figure 5a).

As a second example, we consider how a local variation of

the mass of the BM can be used to bridge gaps. Suppose

that the mass distribution is modified from P0(x) to

P xð Þ~qP0 xð ÞzrP0 xð Þ 1ffiffiffiffi
2p
p e

{
x{x0ð Þ2

2s2 . According to the first part

of the theorem, q#1 determines the initial shift of the TM.

Whereas such a shift may be important for medical applications,

for the present example we will not need it, hence we choose q = 1.

By the second term, we model the attachment of an additional,

Gaussian distributed mass distribution of strength r, centered

around x0 (Figure 5b). Although in this case the theorem makes no

explicit quantitative predictions, it correctly predicts that as s is

decreased and the distribution thus becomes more localized, the

compressed part and the bridging interval become more

prominent, but at the cost of an increased deviation from the

desired horizontal orientation of the curve (Figure 5c). Outside the

bridged intervals, the modified TM essentially coincide with the

original one, even though P(x).P0(x), Yx. According to our

theorem, a modification of the remaining biophysical parameters

leads to qualitatively similar modifications of the TM. Whereas the

observed effects appear overall strongest and best realizable in the

case of a modification of the mass density, a modification of other

parameters as well as multiple locations of modifications, could be

considered in order to achieve optimized results.

Discussion

Our study is based on a passive cochlea model that has already

reliably served as the blueprint for a biomorphic cochlea model

and its electronic implementation [3,9–13]. Using the short-wave

approximation as the key tool, we have analytically, and

quantitatively, predicted the effects of variations of BM mass

density, fluid viscosity and fluid density on the TM. We have been

able to analytically predict the effects of variations of the

transversal stiffness on the passive TM. The obtained insights

can be used as a benchmark and guideline for the effects by

different kinds of cochlear malformation.

Moreover, a paradigm has been derived that allows one to

evaluate the modifications of the local transversal stiffness, mass

density, fluid density viscosity, required to bridge defective regions

on the BM. We provide here but an short overview of why we

believe that the obtained results could have medical relevance. An

in-depth discussion of this topic would clearly lead beyond the

scope of this research. Although the working BM is extremely

sharply tuned, where this tuning comes from is still a matter of

debate [20]. In particular, it is as yet unknown to what extent the

frequency tuning is due to the BM and to what extent it is an

intrinsic property of the active amplifiers, the OHC. There is

evidence that the passive BM is not as broadly tuned as was

Figure 3. (a) E(x) = E0 e2ag(x). Analytical prediction (dashed) together with the corresponding numerical evaluation (solid) for space dependence a)
g(x) = x2 and b) g(x) = 2 ln(x+1), respectively. For comparison, the full straight line displays the unmodified TM. (b) E(x) = E09 e2a9g(x), using E09 = 102E0

and a9 = 3a. Analytical prediction (dashed), together with the corresponding numerical evaluation (solid) for the space dependence a) g(x) = x2 and b)
g(x) = 2 ln(x+1), respectively. For comparison, the full straight line displays the unmodified TM.
doi:10.1371/journal.pcbi.1000161.g003

Figure 4. (a) E0 xð Þ~E00 e{ax. Analytical prediction (dashed) and corresponding numerical evaluation (solid). From left bottom to right top:
E0

0

E0
[ 10{2,10{1,1,10,102
	 


. (b) E9(x) = E0 e2a9x. Analytical prediction (dashed) together with the corresponding numerical evaluation (solid). From right
top to left bottom: a0

a [ 0:25,0:5,1,1:5,3f g.
doi:10.1371/journal.pcbi.1000161.g004
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initially suspected [20,21] and that isolated mammalian OHC are

not sharply tuned as initially thought [21,22]. It is conceivable that

it is only in their (nonlinear) combination that these two

subsystems achieve the remarkable sharp tuning property. Finally,

the efferent connections to the OHC are also able to influence the

tuning. We believe that due to the plasticity of the auditory cortex,

these OHC could nevertheless amplify frequencies arriving at the

remapped places, at least in moderate cases of remapping. Which

of the identified changes of the biophysical parameters could be

engineered and, in particular, what difficulties will be encountered

in a surgical application of the developed framework, remains to

be seen. It should, however, be kept in mind that most routine

surgery of our days was barely imaginable even a few decades ago.

To which extent the auditory cortex would find it easy to deal with

an altered TM (proper co-operation of the active elements and

successful processing by higher auditory centers), is another

question. This issue, however, appears to be softened by the

extraordinary plasticity of the human brain, which is already

exploited in current cochlear implant technology. For any further

investigations into these directions, the obtained results can serve

as valuable benchmarks and guidelines.

Materials and Methods

Classical Cochlea Modeling
One of the classical references for modeling the passive

membrane behavior is Zwislocki’s seminal paper [23], where he

analyzed an electrical transmission line model of the cochlea

originally proposed by Wegel and Lane in 1924 [24]. Peterson and

Bogert [25] presented the first mathematical analysis of a

hydrodynamical cochlea model. In later works (see, e.g., [1]),

these classical models of the cochlea were greatly elaborated.

Zweig [18] later deduced the BM transfer function from actual

measurements. Moreover, he was able to demonstrate that the

organ of Corti actively enhances the cochlear traveling wave.

Lighthill [19] analyzed the classical hydrodynamical cochlea

models from the point of view of energy propagation, but did

not develop a proper wave-energy-propagation model of the

cochlea.

Details of Our Energy-Based Cochlea Modeling
A model that achieved this and accordingly allowed to include

active amplification by outer hair cells in a transparent way was

introduced in [3] (see also [9] for details). This model departs from

the energy balance equation [15],

Le

Lt
z

L
Lx

vGeð Þ~0, ð13Þ

where e(x,v) denotes the one-dimensional energy density pertain-

ing to a traveling wave propagating with group velocity vG(x,v) and

oscillating with frequency v. This equation is valid both for linear

and nonlinear waves and allows us to include external power

sources, denoted by a(x,e,v), representing the amplification by

outer hair cells.

The model differential equation for the steady state situation can

now be obtained in the following way. We first consider two points

x1(t) and x2(t) moving with group velocity v(xi) = vG(k(xi,v),v),

i = 1,2, where k(x,v) denotes the location-dependent wave number.

The energy contained between these two points is

~EE tð Þ~
ðx2 tð Þ

x1 tð Þ
edx: ð14Þ

From Equation 13 we obtain for the change of E
,

the expression

d ~EE

dt
~

ðx2 tð Þ

x1 tð Þ

Le

Lt
dxzvG x2ð Þe x2ð Þ{vG x1ð Þe x1ð Þ~0: ð15Þ

Consider the case where vG(x2)e(x2)2vG(x1)e(x1).0, i.e., if more

energy leaves the interval [x1(t),x2(t)] than enters it. From this, it

follows that the first term on the right hand side, and therefore he/

ht, must be negative. Work done by the surrounding—by an

amplification mechanism—would therefore be expressed by a

negative contribution 2a(x,e,v) (work done by unit length). On the

other hand, dissipative losses would appear as positive contribu-

Figure 5. (a) TM constructed by discontinuous variation of the
stiffness parameters a, E0, constructed according to part II of
the theorem. Dotted lines indicate the defect region in frequency
space (fM[300,4000] Hz), dash-dotted lines the corresponding cochlea
area. Red: TM before, blue: TM after remapping. (b) Bridging gaps by an

additional Gaussian mass distribution m xð Þ~m0 1z 1ffiffiffiffi
2p
p

s
e
{

x{1:038ð Þ2

2s2

� �
,

where s = 0.1. Red: Relevant part of TM before, blue: TM after
remapping. (c) Effects by additional Gaussian mass distributions of s:
sM{0.01,0.1,1} (graphs a–c, respectively). The dashed lines indicate the
essentially modified areas. The achieved space shifts on the TM are
obtained by horizontals leading from the modified to the original TM.
doi:10.1371/journal.pcbi.1000161.g005

Cochlea’s Biophysical Parameter Dependence
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tions. From this, we conclude that

Le

Lt
~{a x,e,vð Þzd x,vð Þe x,vð Þ ð16Þ

holds, where d(x,v) denotes viscous dissipation. Inserting this

expression into the energy balance Equation 13, we obtain the

cochlea model differential equation [3]

Le

Lx
~{

1

vG x,vð Þ
LvG

Lx
x,vð Þzd x,vð Þ

� �
e x,vð Þz a x,e,vð Þ

vG x,vð Þ : ð17Þ

Traditional cochlear models generally lead to partial differential

equations, involving often detailed assumptions about geometry

and forces within the cochlear canal. In contrast, our energy-based

approach leads to an ordinary differential equation. This allows us,

e.g., to concentrate on basic assumptions about the nature of the

active amplifier only. In the absence of active amplification

(a(e,x,v);0), as considered here, Equation 17 is readily integrated

to

e x,vð Þ~e0 vð Þ vG 0,vð Þ
vG x,vð Þ exp {

ðx

0

d x0,vð Þ
vG x0,vð Þ dx0

� �
, ð18Þ

where e0(v) and vG(0,v) denote the initial condition and the group

velocity at stapes, respectively.

For the evaluation of the the traveling wave amplitude A(x,v),

we assume a linear fluid, v(x,v) = vA(x,v). In this case, the

equipartition principle implies that e(x,v) 2epot(x,v) = 2ekin(x,v).

The density of the potential energy is determined by the

transversal stiffness E(x) and the BM displacement f(t). In linear

approximation, by Hooke’s law we have

epot x,vð Þ~ 1

2
E xð Þf x,tð Þ2:

For sinusoidal displacements f(x,t) = A sin(vt+h) we obtain a time

average of

SepotT~
1

4
E xð ÞA x,vð Þ2:

The energy density e(x,v) and the BM stiffness E(x) are therefore

related by

A x,vð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e x,vð Þ

E xð Þ

s
: ð19Þ

Inserting Equation 18 into the last equation and denoting the

displacement amplitude at stapes by A0, the passive traveling wave

amplitude is described by

A x,vð Þ~ A0 vð Þffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffi

E xð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vG 0,vð Þ
vG x,vð Þ

s
exp {

1

2

ðx

0

d x0,vð Þ
vG x0,vð Þ dx0

� �
, ð20Þ

where A0(v) : = vA0. In order to render this expression

computationally seizable, we need to specify the functions E(x),

vG(x,v), and d(x,v) and the remaining parameters.

For the evaluation of these functions, we proceed similarly to

what is explained to more detail in [3]. From a two-dimensional

surface-wave analogy of the cochlea [16], the dispersion relation

v2~
E xð Þk sinh khð Þ

mk sinh khð Þzr cosh khð Þ

can be derived. The group velocity vG of the travelling wave then

obtains the expression

vG~
Lv

Lk
~

rE xð Þ khzsinh khð Þcosh khð Þð Þ
2v mk sinh khð Þzr cosh khð Þð Þ2

, ð21Þ

where r is the cochlear fluid density, m the BM mass density, and h

the diameter of the cochlear canal. For convenience we note that

the dispersion relation can be written in the form

k tanh khð Þ~ rv2

E xð Þ{mv2
, ð22Þ

which shows that the dispersion relation defines a locus xcc(v)

where the wave number k and, as will be seen in Equation 23, the

dissipation diverges.

Whereas for the investigation in mind we can dispose of the

active amplification contribution a(x,e,v), the dissipation rate d(x,v)

is needed. The dissipation is composed from different sources,

among them as the most prominent ones the internal friction

dI = 4nk2 (as originally derived by Stokes), where n is the fluid

kinematic viscosity and the friction between the moving fluid and

the vibrating BM surface, which equals [9] dS~
ffiffiffiffiffi
n

2v

p rv3

E xð Þ. As a

result, we are left with a dissipation rate of

d x,vð Þ~
ffiffiffiffiffiffi
n

2v

r
rv3

E xð Þz4nk2: ð23Þ

A similar equation was already obtained by Lighthill [17]. By

inspection of Equations 20–23, it is easily seen that the locus of

maximal traveling wave amplitude, associated with a frequency v,

is related in a 1-to-1 way with a characteristic place xc(v)=xcc(v).

This defines the TM.

Numerical evaluation of the TM from Equation 20 also requires

the values of the remaining constants and the form of E(x). Typical

values at natural conditions (‘natural parameters’) are

n = 0.01 m2 s21, r = 2000 kg m23, m = 0.5 kg m22, h = 1023 m.

The transversal stiffness, finally, has the form E(x) = E0 e2ax, with

the decay exponent a = 36104 m21. The surface tension contri-

bution T(x) can be incorporated by means of a modified

transversal stiffness E(x) = E0 e2ax+k(x)2T(x) = (1+Fk(x)2)E0 e2ax,

with the proportionality constant F = 1029 m2, see [3]. At natural

parameters, this reveals a linear semilogarithmic behavior of the

form

f ~emxzg&e{1:6xz10 ð24Þ

(cf. Figures 3 and 4), where the obtained values result from a least-

squares-fit (mean absolute error ufit
xc
&3:9|10{5 m, mean abso-

lute error deviation sfit
xc
&5:1|10{5 m).

Short-Wave Approximation
In order to estimate the effects introduced by changed

biophysical parameters, the space derivative of the travelling wave

amplitude, d
dx

A x,vð Þ needs to be evaluated. Below, we consider

our model without the surface tension term T(x) [3,9]. In principle,

it would be desirable to include this contribution [3], for which one
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would have to substitute in the dispersion relation and in the

expression obtained for the group velocity the term E(x) by

E(x)+k2T(x), where k is the wave number. On first view this looks

like a simple modification; for the analytical expression of the

response peak, the extra term, however, is a major obstacle, since

k2 changes in a complex manner in the neighborhood of the peak.

Whereas an analytical treatment appears nearly impossible, the

problem stated in this form is accessible to numerical approaches,

via Equation 20. Since we will be interested in the location of the

response peak alone, we expect that the surface tension can be

neglected. Figures 3 and 4, where the numerical approach and the

analytical approximation are compared, demonstrate that this is

indeed the case. For the model without surface tension, from

Equation 20 it emerges that

d

dx
A x,vð Þ~ d

dx

A0 vð Þffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffi

E xð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vG 0,vð Þ
vG x,vð Þ

s
exp {

1

2

ðx

0

d x0,vð Þ
vG x0,vð Þ

� �

~
A x,vð Þ

2
a{

d
dx

vG x,vð Þ
vG x,vð Þ {

d x,vð Þ
vG x,vð Þ

� �
:

With A(xc,v)?0Yxc(v), at all characteristic places x = xc(v) the

relation

a{
1

vG x,vð Þ
d

dx
vG x,vð Þ{ d x,vð Þ

vG x,vð Þ~0 ð25Þ

has to be fulfilled. This equation, however, cannot be solved

analytically.

Since we are interested in the close neighborhood of the peak

only, where k becomes exceedingly large, so that kh&1 (the short-

wave limit), we obtain an approximation that is sufficiently

accurate and manageable at the same time. In the short-wave

limit, we obtain the relation

cosh khð Þ&sinh khð Þ& ekh

2
,tanh khð Þ&1, ð26Þ

which is valid in the vicinity of the characteristic place xc(v), i.e.,

the place of interest. Insertion of Equation 26 into Equations 21

and 22 yields

k x,vð Þ~ rv2

E xð Þ{mv2
, ð27Þ

vG x,vð Þ~ E xð Þr
2v

1

mkzrð Þ2
: ð28Þ

By inserting Equation 27 in Equation 28, we obtain

vG x,vð Þ~ E xð Þr
2v

1

mrv2

E xð Þ{mv2 zr
� �2

~
E xð Þ{mv2
� �2

2rE xð Þv :

ð29Þ

By using E(x) = E0 exp(2ax) in Equation 29, we obtain for the

space derivative of vG(x,v)

d

dx
vG x,vð Þ~avG x,vð Þ{ 2avG x,vð Þ

E xð Þ{mv2
, ð30Þ

from which it follows that

1

vG x,vð Þ
d

dx
vG x,vð Þ~a{

2aE xð Þ
E xð Þ{mv2

: ð31Þ

Inserting Equation 27 in Equation 23 leads to

d x,vð Þ~
ffiffiffiffiffiffi
n

2v

r
rv3

E xð Þz4n
r2v4

E xð Þ{mv2ð Þ2
: ð32Þ

Dividing the dissipation rate d(x,v) by the group velocity vG(x,v),

Equation 29, we obtain

d x,vð Þ
vG x,vð Þ~

1

E xð Þ{mv2ð Þ2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

r2z
8nr3v5E xð Þ
E xð Þ{mv2ð Þ4

: ð33Þ

Using Equations 31 and 33 in Equation 25 leads to

0~
2aE xð Þ

E xð Þ{mv2
{

1

E xð Þ{mv2ð Þ2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

r2

{
8nr3v5E xð Þ
E xð Þ{mv2ð Þ4

:

ð34Þ

Multiplication of this equation by (E(x)2mv2)4 for convenience,

and remembering that we required x = xc(v), we arrive at the

desired description of the impact of parameter variations to the

TM,

2aE xcð Þ E xcð Þ{mv2
� �3

{r2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

E xcð Þ{mv2
� �2

{8nr3v5E xcð Þ~0:
ð35Þ

We are unaware that with classical, not explicitly energy-based

approaches [18,19], a similar characterization could be achieved.

Proof of the Theorem
Whereas Equation 35 is strongly nonlinear in the space

coordinate x, the effects by variations of m, n, and r on the TM

are sufficiently simple to be discussed qualitatively as follows:

Using the substitution D : = E(xc)2mv2, for x#xc(v), Equation 35

can be written as

2aD3E xcð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
:~T1w0

{ r2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

D2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
:~T2w0

{ 8nr3v5E xcð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
:~T3w0

~0,

where the transversal stiffness E(xc), mv2, and E(xc)2mv2 are

positive (otherwise for any value of x, Equation 35 would not hold).

E(xc) and mv2 are of the same order of magnitude. For Equation 35

to hold, T1 needs to balance the two subtractive terms T2 and T3.

Due to the different powers associated with the parameters in

T1,2,3, the TM is affected more by changes in m and r than by

changes in n. Although some general features of changed

biophysical parameters might be extrapolated from various
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arguments, the mathematical demonstration of such properties as

given in the following theorem, as well as the detailed statements

provided by Part II of the theorem, appears to be novel.
Proof: Part I. For r and n consider

r0 xð Þwr0,or n0 xð Þwn0,

respectively, where index 0 indicates an original, constant,

parameter value. As is easy to see,

T 02,3 xð ÞwT2,3 xð Þ:

Since T 01 needs to compensate T 02,3, it follows that

T 01 xð ÞwT1 xð Þ:

With E(x) = E0 e2ax, we obtain

x0cvxc:

In the case of ,, the inequalities simply invert.

For m we similarly assume

m0 xð Þwm0,Vx:

It then follows that

T 01,2 xð ÞvT1,2 xð Þ, whereas T 03 xð Þ~T3 xð Þ:

D3 in T1 reacts stronger upon changes in m than D2 in T2.

Therefore, we obtain

T2 xð Þ
T 02 xð Þv

T1 xð Þ
T 01 xð Þ :

Hence, we can compensate the increase in T2 and T3 by an

increase of T1. Such an increase, however, again implies

x0cvxc:

In the case of m9(x),m0, the inequalities invert.
Proof: Part II. Inserting into Equation 35 a modified

transversal stiffness E9(x9) = E09 e2a9g(x9) (where g(x9) is invertible

but otherwise arbitrary), we obtain

2aE0 x0c
� �

E0 x0c
� �

{mv2
� �3

{r2
ffiffiffiffiffiffiffiffiffiffi
2nv7
p

E0 x0c
� �

{mv2
� �2

{8nr3v5E0 x0c
� �

~0,
ð36Þ

where xc9(v) is the new characteristic place. A comparison of

Equation 35 with Equation 36, together with the uniqueness of the

biologically reasonable solution of Equation 35, yields

E0 x0c
� �

~E ’
0 e{a0g x0cð Þ~E0 e{axc~E xcð Þ,

which relates xc9 to xc in a unique way. Due to the invertibility of

g(x), xc9 can be expressed as

x0c vð Þ~g{1 a

a0
xc vð Þ{ 1

a0
ln

E0

E00

� �� �
:

Taking into account Equation 24, it follows that

x0c vð Þ~g{1 a

a0
ln fð Þ{g

m
{

1

a0
ln

E0

E00

� �� �
, ð37Þ

with g as in Equation 24.

The second part of the theorem is new and can be seen as the

direct benefit of our energy-based description. Equation 35

predicts numerically the effects generated by variations in the

transversal stiffness E(x). TM obtained from variations of BM

transversal stiffness, evaluated numerically from Equation 20 and

predicted analytically by Equation 37, are compared in Figure 4.

Taking as the reference the numerical evaluations of the TM from

Equation 20, the approximation Equation 35 predicts the effects

on the TM up to a numerical accuracy of ,1.561022 cm. The

figures reveal that changes in the initial transversal stiffness E0 lead

to a shift of the TM parallel to the original TM (Figure 4a).

Variations in the decay constant a result in a rotation of the TM

around the intersection of the original TM with the frequency axis

(Figure 4b). Alterations of the space-dependence of the exponent,

i.e., xRg(x), result in a non-linear space-dependence of the TM in

a semilogarithmic plot (Figure 3).
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