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Abstract

We propose a compact, low power VLSI network of spiking neurons which can
learn to classify complex patterns of mean firing rates on–line and in real–time.
The network of integrate-and-fire neurons is connected by bistable synapses that
can change their weight using a local spike–based plasticity mechanism. Learning
is supervised by a teacher which provides an extra input to the output neurons
during training. The synaptic weights are updated only if the current generated
by the plastic synapses does not match the output desired by the teacher (as in
the perceptron learning rule). We present experimental results that demonstrate
how this VLSI network is able to robustly classify uncorrelated linearly separable
spatial patterns of mean firing rates.

1 Introduction

Spike driven synaptic plasticity mechanisms have been thoroughly investigated in recent years to
solve two important problems of learning: 1) how to modify the synapses in order to generate
new memories 2) how to protect old memories against the passage of time, and the overwriting of
new memories by ongoing activity. Temporal patterns of spikes can be encoded with spike-timing
dependent plasticity (STDP) mechanisms (e.g. see [1, 2]). However, STDP in its simplest form is
not suitable for learning patterns of mean firing rates [3], and most of the proposed STDP learning
algorithms solved the problems of memory encoding and memory preservation only for relatively
simple patterns of mean firing rates.

Recently a new model of stochastic spike-driven synaptic plasticity has been proposed [4] that is
very effective in protecting old learned memories, and captures the rich phenomenology observed
in neurophysiological experiments on synaptic plasticity, including STDP protocols. It has been
shown that networks of spiking neurons that use this synaptic plasticity model can learn to classify
complex patterns of spike trains ranging from stimuli generated by auditory/vision sensors to im-
ages of handwritten digits from the MNIST database [4]. Here we describe a neuromorphic VLSI
implementation of this spike-driven synaptic plasticity model and present classification experiments
using the VLSI device that validate the model’s implementation. The silicon neurons and synapses
inside the chip are implemented using full custom hybrid analog/digital circuits, and the network’s
spikes are received in input and transmitted in output using asynchronous digital circuits. Each
spike is represented as an Address-Event, where the address encodes either the source neuron or the
destination synapse. This device is part of an increasing collection of spike-based computing chips
that have been recently developed within the framework of Address-Event Representation (AER)
systems [5, 6]. There are even multiple implementations of the same spike-driven plasticity model
being investigated in parallel [7, 8]. The focus of this paper is to show that the VLSI device pro-
posed here can successfully classify complex patterns of spike trains, producing results that are in
accordance with the theoretical predictions.
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Figure 1: Layout of a test chip comprising a network of I&F neurons and plastic synapses. The
placement of a single neuron along with its synapses is highlighted in the top part of the figure.
Other highlighted circuits are described in the test.

In Section 2 we describe the main features of the spike-based plasticity model and show how they are
well suited for future scaled CMOS VLSI technologies; in Section 3 we characterize the function-
ality of the spike-based learning circuits; in Section 4 we show control experiments on the learning
properties of the VLSI network; and in Section 5 we present experimental results on complex pat-
terns of mean firing rates. In Section 6 we present the concluding remarks and point out future
outlooks and potential applications of this system.

2 Implementation of the spike-based plasticity mechanism

Physical implementations of long lasting memories, either biological or electronic, are confronted
with two hard limits: the synaptic weights are bounded (they cannot grow indefinitely or become
negative), and the resolution of the synapse is limited (i.e. the synaptic weight cannot have an infinite
number of states). These constraints, usually ignored by the vast majority of software models, have
strong impact on the classification performance of the network, and on its memory storage capacity.
It has been demonstrated that the number of random uncorrelated patterns p which can be classified
or stored in a network of neurons connected by bounded synapses grows only logarithmically with
the number of synapses [9]. In addition, if each synapse has a n stable states (i.e. its weight has to
traverse n states to go from the lower bound to the upped bound), then the number of patterns p can
grow quadratically n. However, this can happen only in unrealistic scenarios, where fine tuning of
the network’s parameters is allowed. In more realistic scenarios where there are inhomogeneities
and variability (as is the case for biology and silicon) p is largely independent of n [9].

Therefore, an efficient strategy for implementing long lasting memories in VLSI networks of spiking
neurons is to use a large number of synapses with only two stable states (i.e. n = 2), and to modify
their weights in a stochastic manner, with a small probability. This slows down the learning process,
but has the positive effect of protecting previously stored memories from being overwritten. Using
this strategy we can build large networks of spiking neurons with very compact learning circuits
(e.g. that do not require local Analog-to-Digital Converters or floating gate cells for storing weight
values). By construction, these types of devices operate in a massively parallel fashion and are fault-
tolerant: even if a considerable fraction of the synaptic circuits is faulty due to fabrication problems,
the overall functionality of the chip is not compromised. This can be a very favorable property in
view of the potential problems of future scaled VLSI processes.

The VLSI test chip used to carry out classification experiments implementing such strategy is shown
in Fig. 1. The chip comprises 16 low-power integrate-and-fire (I&F) neurons [5] and 2048 dynamic
synapses. It was fabricated using a standard 0.35µm CMOS technology, and occupies an area of
6.1mm2 . We use an AER communication infrastructure that allows the chip to receive and transmit
asynchronous events (spikes) off-chip to a workstation (for data logging and prototyping) and/or to
other neuromorphic event-based devices [10]. An on-chip multiplexer can be used to reconfigure
the neuron’s internal dendritic tree connectivity. A single neuron can be connected to 128, 256, 512
or 1024 synapses. Depending on the multiplexer state the number of active neurons decrease from
16 to 2. In this work we configured the chip to use all 16 neurons with 128 synapses per neuron.
The synapses are divided into different functional blocks: 4 are excitatory with fixed (externally
adjustable) weights, 4 inhibitory and 120 excitatory with local learning circuits.

Every silicon neuron in the chip can be used as a classifier that separates the input patterns into two
categories. During training, the patterns to be classified are presented to the pre-synaptic synapses,
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Figure 2: (a) Plastic synapse circuits belonging to the neuron’s dendritic tree. The synaptic weight
node w is modified when there is a pre-synaptic input (i.e. when S1 and S2 are on) depending on
the values of VUP and VDN . In parallel, the bistable circuit slowly drives the node w toward either of
its two stable states depending on its amplitude. The DPI is a pulse integrator circuit that produces
an Excitatory Post-Synaptic Current (IEPSC), with an amplitude that depends on the synaptic weight
w. (b) Neuron’s “soma” block diagram with stop-learning module. It comprises a low-power I&F
neuron block, a DPI integrator, a voltage comparator and a three current comparators(CC). Winner-
take-all (WTA) circuits are used as current comparators that set the output to be either the bias
current IB, or zero. The voltage comparator enables either the IUP or the IDN block, depending on
the value of Vmem with respect to Vmth. The voltages VUP and VDN are used to broadcast the values
of IUP and IDN to the neuron’s dendritic tree.

in parallel with a teacher signal that represents the desired response. The post-synaptic neuron
responds with an activity that is proportional to its net input current, generated by the input pattern
weighted by the learned synaptic efficacies, and by the teacher signal. If the neuron’s mean activity is
in accordance with the teacher signal (typically either very high or very low), then the output neuron
produces the correct response. In this case the the synapses should not be updated. Otherwise, the
synapses are updated at the time of arrival of the (Poisson distributed) input spikes, and eventually
make a transition to one of the two stable states. Such stochasticity, in addition to the ’stop-learning’
mechanism which prevents the synapses from being modified when the output is correct, allows
each neuron to classify a wide class of highly correlated, linearly separable patterns. Furthermore,
by using more than one neuron per class, it is possible to classify also complex non-linearly separable
patterns [4].

3 The VLSI learning circuits

The learning circuits are responsible for locally updating the synaptic weights with the spike-based
learning rule proposed in [4].

Upon the arrival of a pre-synaptic spike (an address-event), the plastic synapse circuit updates its
weight w according to the spike-driven learning rule. The synapse then produces an Excitatory
Post-Synaptic Current (EPSC) with an amplitude proportional to its weight, and with an exponential
time course that can be set to last from microseconds to several hundreds of milliseconds [11]. The
EPSC currents of all synapses afferent to the target neuron are summed into the neuron’s membrane
capacitance, and eventually the I&F neuron’s membrane potential exceeds a threshold and the circuit
generates an output spike. As prescribed by the model of [4], the post-synaptic neuron’s membrane
potential, together with its mean firing rate are used to determine the weight change values ∆w.
These weight change values are expressed in the chip as subthreshold currents. Specifically, the
signal that triggers positive weight updates is represented by an IUP current, and the signal that
triggers weight decreases if represented by the IDN current.

The weight updates are performed locally at each synapse, in a pre-synaptic weight update module,
while the ∆w values are computed globally (for each neuron), in a post-synaptic weight control
module.
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Figure 3: Post-synaptic circuit data. (a) State of the VUP and VDN voltages as a function of the cal-
cium concentration voltage VCa. (b) State of the VUP and VDN voltages as function of the membrane
potential Vmem. This data corresponds to a zoomed-version of the data shown in (a) for VCa ≈ 2.8V .

3.1 Pre-synaptic weight-update module

This module, shown in Fig. 2(a), comprises four main blocks: an input AER interfacing circuit [12],
a bistable weight refresh circuit, a weight update circuit and a log-domain current-mode integrator,
dubbed the “diff-pair integrator” (DPI) circuit, and fully characterized in [11]. Upon the arrival of an
input event (pre-synaptic spike), the asynchronous AER interfacing circuits produce output pulses
that activate switches S1 and S2. Depending on the values of IUP and IDN , mirrored from the post-
synaptic weight control module, the node w charges up, discharge toward ground, or does not get
updated. The same input event activates the DPI circuit that produces an EPSC current (IEPSC) with
an amplitude that depends on the synaptic weight value w. In parallel, the bistable weight refresh
circuit slowly drives w toward one of two stable states depending on whether it is higher or lower
than a set threshold value. The two stable states are global analog parameters, set by external bias
voltages.

3.2 Post-synaptic weight control module

This module is responsible for generating the two global signals VUP and VDN , mirrored to all
synapses belonging to the same dendritic tree. Post-synaptic spikes (Vspk), generated in the soma
are integrated by an other instance of the DPI circuit to produce a current ICa proportional to the
neuron’s average spiking activity. This current is compared to three threshold values, Ik1, Ik2, and
Ik3 of Fig. 2(b), using three current-mode winner-take-all circuits [13]. In parallel, the instantaneous
value of the neuron’s membrane potential Vmem is compared to the threshold Vmth (see Fig. 2(b)).
The values of IUP and IDN depend on the state of the neuron’s membrane potential and its average
frequency. Specifically, if Ik1 < ICa < Ik3 and Vmem > Vmth, then IUP = IB. If Ik1 < ICa < Ik2 and
Vmem < Vmth, then IDN = IB. Otherwise both IUP, and IDN are null.

To characterize these circuits we injected a step current in the neuron, produced a regular output
mean firing rate, and measured the voltages VCa, VUP, and VDN (see Fig. 3(a)). VCa is the gate volt-
age of the P-FET transistor producing ICa, while VDN , VUP are the gate voltages of the P- and N-FET
transistors mirroring IDN and IUP respectively (Fig. 2(a)). The neuron’s spikes are integrated and
the output current ICa increases with an exponential profile over time (VCa decreases accordingly
over time, as shown in Fig. 3(a)). The steady-state asymptotic value depends on the average input
frequency, as well as the circuit’s bias parameters [11]. As ICa becomes larger than the first thresh-
old Ik1 (VCa decreases below the corresponding threshold voltage) both VUP and VDN are activated.
When ICa becomes larger than the second threshold Ik2 the VDN signal is deactivated, and finally
as ICa becomes larger than the third threshold Ik3, also the VUP signal is switched off. The small ∼
300mV changes in VUP and VDN produce subthreshold currents (IUP and IDN) that are mirrored to the
synapses (Fig. 2(a)). In Fig. 3(b) the VDN and VUP signals are zoomed in along with the membrane
potential of the post-synaptic neuron (Vmem), for values of VCa ∼ 2.8V . Depending on the state of
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Figure 4: Stochastic synaptic LTP transition: in both sub-figures the non-plastic synapse is stim-
ulated with Poisson distributed spikes at a rate of 250Hz, making the post-synaptic neuron fire at
approximately 80Hz; and the plastic synapse is stimulated with Poisson distributed spike trains of
100Hz. (a) The updates in the synaptic weight did not produce any LTP transition during the 250ms
stimulus presentation. (b) The updates in the synaptic weight produced an LTP transition that re-
mains consolidated.

Vmem, the signals VUP and VDN are activated or inactivated. When not null, currents IUP and IDN are
complementary in nature: only one of the two is equal to IB.

4 Stochastic plasticity

To characterize the stochastic nature of the weight update process we stimulated the neuron’s plastic
synapses with Poisson distributed spike trains. When any irregular spike train is used as a pre-
synaptic input, the synaptic weight voltage crosses the synapse bistability threshold in a stochastic
manner, and the probability of crossing the threshold depends on the input’s mean frequency. There-
fore Long Term Potentiation (LTP) or Long Term Depression (LTD) occur stochastically even when
the mean firing rates of the input and the output are always the same. In Fig. 4 we show two in-
stances of a learning experiment in which the mean input firing rate (bottom row) was 100Hz, and
the mean output firing rate (top row) was 80Hz. Although these frequencies were the same for both
experiments, LTP occurred only in one of the two cases (compare synaptic weight changes in middle
row of both panels). In this experiment we set the efficacy of the “high” state of all plastic synapses
to a relatively low value. In this way the neuron’s mean output firing rate depends primarily on the
teacher signal, irrespective of the states of plastic synapses.

One essential feature of this learning rule is the non-monotonicity of both the LTP/LTD probabilities
as a function of the post-synaptic firing frequency νpost [4]. Such a non-monotonicity is essential
to slow down and eventually stop-learning when νpost is very high or very low (indicating that
the learned synaptic weights are already correctly classifying the input pattern). In Fig. 5 we show
experimental results where we measured the LTP and LTD transitions of 60 synapses over 20 training
sessions: for the LTD case (top row) we initialized the synapses to a high state (white pixel) and
plotted a black pixel if its final state was low, at the end of the training session. The transitions
(white to black) are random in nature and occur with a probability that first increases and then
decreases with νpost . An analogous experiment was done for the LTP transitions (bottom row), but
with complementary settings (the initial state was set to a low value). In Fig. 5(b) we plot the LTD
(top row) and LTP (bottom row) probabilities measured for a single synapse. The shape of these
curves can be modified by acting on the post-synaptic weight control module bias parameters such
as Ik1−k3, or IB.
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Figure 5: (a) LTD and LTP transitions of 60 synapses measured across 20 trials, for different values
of post-synaptic frequency νpost (top label on each panel). Each black pixel represents a low synaptic
state, and white pixel a high one. On x-axis of each panel we plot the trial number (1 to 20) and y-axis
shows the state of the synapses at the end of each trial. In the top row we show the LTD transitions
that occur after initializing all the synapses to high state. In the bottom row we show the LTP
transition that occur after initializing the synapses to low state. The transitions are stochastic and the
LTP/LTD probabilities peak at different frequencies before falling down at higher νpost validating
the stop-learning algorithm. No data was taken for the gray panels. (b) Transition probabilities
measured for a single synapse as a function νpost . The transition probabilities can be reduced by
decreasing the value of IB. The probability peaks can also be modified by changing the biases that
set Ik1−k3. (Fig. 2(b))
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C+ C

Excitatory synapse, non−plastic

Inhibitory synapse, non−plastic

Excitatory synapse, plastic

High input state (30Hz)
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Figure 6: A typical training scenario with 2 random binary spatial patterns. High and low inputs are
encoded with generate Poisson spike trains with mean frequencies of 30Hz and 2Hz respectively.
Binary patterns are assigned to the C+ or C− class arbitrarily. During training patterns belonging
to the C+ class are combined with a T + (teacher) input spike train of with 250Hz mean firing rate.
Similarly, patterns belonging to the C− class are combined with a T− spike train of 20Hz mean
firing rate. New Poisson distributed spike trains are generated for each training iterations.

5 Classification of random spatial patterns

In order to evaluate the chip’s classification ability, we used spatial binary patterns of activity, ran-
domly generated (see Fig. 6). The neuron’s plastic synapses were stimulated with Poisson spike
trains of either high (30Hz) or low (2Hz) mean firing rates. The high/low binary state of the input
was chosen randomly, and the number of synapses used was 60. Each 60-input binary pattern was
then randomly assigned to either a C+ or a C− class.

During training, spatial patterns belonging to the C+ class are presented to the neuron in conjunction
with a T + teacher signal (i.e. a 250Hz Poisson spike train). Conversely patterns belonging to the
C− class are combined with a T− teacher signal of 20Hz. The T + and T− spike trains are presented
to the neuron’s non-plastic synapses. Training sessions with C+ and C− patterns are interleaved
in a random order, for 50 iterations. Each stimulus presentation lasted 500ms, with new Poisson
distributions generated at each training session.
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After training, the neuron is tested to see if it can correctly distinguish between patterns belonging
to the two classes C+ and C−. The binary patterns used during training are presented to the neuron
without the teacher signal, and the neuron’s mean firing rate is measured. In Fig. 7(a) we plot
the responses of two neurons labeled neuron-A and neuron-B. Neuron-A was trained to produce a
high output firing rate in response to patterns belonging to class C+, while neuron-B was trained to
respond to patterns belonging to class C−. As shown, a single threshold (e.g. at 20Hz) is enough to
classify the output in C+ (high frequency) and C− (low frequency) class.
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Figure 7: Classification results, after training on 4 patterns. (a) Mean output frequencies of neurons
trained to recognize class C+ patterns (Neuron-A), and class C− patterns (Neuron-B). Patterns 1,2
belong to class C+, while patterns 3,4 belong to class C−. (b) Output frequency probability distribu-
tion, for all C+ patterns (top) and C− patterns (bottom) computed over 20 independent experiments.

Fig. 7(b) shows the probability distribution of post-synaptic frequencies (of neuron-A) over different
classification experiments, each done with new sets of random spatial patterns.

To quantify the chip’s classification behavior statistically, we employed a Receiver Operating Char-
acteristics (ROC) analysis [14]. Figure 8(a) shows the area under the ROC curve (AUC) plotted on
y-axis for increasing number of patterns. An AUC magnitude of 1 represents 100% correct classi-
fication while 0.5 represents chance level. In Fig. 8(b) the storage capacity (p) –expressed as the
number of patterns with AUC larger than 0.75– is plotted against the number of synapses N. The top

and bottom traces show the theoretical predictions from [3], with (p∝ 2
√

N) and without (p∝
√

N)
the stop learning condition, respectively. The performance of the VLSI system with 20, 40 and 60
synapses and the stop-learning condition lie within the two theoretical curves.

6 Conclusions

We implemented in a neuromorphic VLSI device a recently proposed spike-driven synaptic plastic-
ity model that can classify complex patterns of spike trains [4]. We presented results from the VLSI
chip that demonstrate the correct functionality of the spike-based learning circuits, and performed
classification experiments of random uncorrelated binary patterns, that confirm the theoretical pre-
dictions. Additional experiments have demonstrated that the chip can be applied to the classification
of correlated spatial patterns of mean firing rates and as well [15]. To our knowledge, the classifi-
cation performance achieved with this chip has not yet been reported for any other silicon system.
These results show that the device tested can perform real-time classification of sequences of spikes,
and is therefore an ideal computational block for adaptive neuromorphic sensory-motor systems and
brain-machine interfaces.
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Figure 8: (a). Area under ROC curve (AUC) measured by performing 50 classification experiments.
(b) Storage capacity (number of patterns with AUC value ≥ 0.75) as a function of the number of
plastic synapses used. The solid line represents the data obtained from chip, while top and bottom
traces represent the theoretical predictions with and without the stop learning condition.
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